bgfg_gaussmix.cpp 48.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                        Intel License Agreement
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"

/////////////////////////////////////// MOG model //////////////////////////////////////////

static void CV_CDECL
icvReleaseGaussianBGModel( CvGaussBGModel** bg_model )
{
    if( !bg_model )
        CV_Error( CV_StsNullPtr, "" );
50

51 52
    if( *bg_model )
    {
53
        delete (cv::BackgroundSubtractorMOG*)((*bg_model)->mog);
54 55 56 57 58 59 60 61 62 63 64 65 66
        cvReleaseImage( &(*bg_model)->background );
        cvReleaseImage( &(*bg_model)->foreground );
        memset( *bg_model, 0, sizeof(**bg_model) );
        delete *bg_model;
        *bg_model = 0;
    }
}


static int CV_CDECL
icvUpdateGaussianBGModel( IplImage* curr_frame, CvGaussBGModel*  bg_model, double learningRate )
{
    cv::Mat image = cv::cvarrToMat(curr_frame), mask = cv::cvarrToMat(bg_model->foreground);
67

68 69
    cv::BackgroundSubtractorMOG* mog = (cv::BackgroundSubtractorMOG*)(bg_model->mog);
    CV_Assert(mog != 0);
70 71

    (*mog)(image, mask, learningRate);
72
    bg_model->countFrames++;
73

74
    return 0;
75 76 77 78 79 80
}

CV_IMPL CvBGStatModel*
cvCreateGaussianBGModel( IplImage* first_frame, CvGaussBGStatModelParams* parameters )
{
    CvGaussBGStatModelParams params;
81

82
    CV_Assert( CV_IS_IMAGE(first_frame) );
83

84 85 86 87 88
    //init parameters
    if( parameters == NULL )
    {                        // These constants are defined in cvaux/include/cvaux.h
        params.win_size      = CV_BGFG_MOG_WINDOW_SIZE;
        params.bg_threshold  = CV_BGFG_MOG_BACKGROUND_THRESHOLD;
89

90 91
        params.std_threshold = CV_BGFG_MOG_STD_THRESHOLD;
        params.weight_init   = CV_BGFG_MOG_WEIGHT_INIT;
92

93 94 95 96 97 98
        params.variance_init = CV_BGFG_MOG_SIGMA_INIT*CV_BGFG_MOG_SIGMA_INIT;
        params.minArea       = CV_BGFG_MOG_MINAREA;
        params.n_gauss       = CV_BGFG_MOG_NGAUSSIANS;
    }
    else
        params = *parameters;
99

100 101 102 103 104
    CvGaussBGModel* bg_model = new CvGaussBGModel;
    memset( bg_model, 0, sizeof(*bg_model) );
    bg_model->type = CV_BG_MODEL_MOG;
    bg_model->release = (CvReleaseBGStatModel)icvReleaseGaussianBGModel;
    bg_model->update = (CvUpdateBGStatModel)icvUpdateGaussianBGModel;
105

106
    bg_model->params = params;
107

108 109 110 111 112
    cv::BackgroundSubtractorMOG* mog =
        new cv::BackgroundSubtractorMOG(params.win_size,
                                        params.n_gauss,
                                        params.bg_threshold,
                                        params.variance_init);
113

114
    bg_model->mog = mog;
115

116 117 118
    CvSize sz = cvGetSize(first_frame);
    bg_model->background = cvCreateImage(sz, IPL_DEPTH_8U, first_frame->nChannels);
    bg_model->foreground = cvCreateImage(sz, IPL_DEPTH_8U, 1);
119

120
    bg_model->countFrames = 0;
121

122
    icvUpdateGaussianBGModel( first_frame, bg_model, 1 );
123

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
    return (CvBGStatModel*)bg_model;
}


//////////////////////////////////////////// MOG2 //////////////////////////////////////////////

/*M///////////////////////////////////////////////////////////////////////////////////////
 //
 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 //
 //  By downloading, copying, installing or using the software you agree to this license.
 //  If you do not agree to this license, do not download, install,
 //  copy or use the software.
 //
 //
 //                        Intel License Agreement
 //
 // Copyright (C) 2000, Intel Corporation, all rights reserved.
 // Third party copyrights are property of their respective owners.
 //
 // Redistribution and use in source and binary forms, with or without modification,
 // are permitted provided that the following conditions are met:
 //
 //   * Redistribution's of source code must retain the above copyright notice,
 //     this list of conditions and the following disclaimer.
 //
 //   * Redistribution's in binary form must reproduce the above copyright notice,
 //     this list of conditions and the following disclaimer in the documentation
 //     and/or other materials provided with the distribution.
 //
 //   * The name of Intel Corporation may not be used to endorse or promote products
 //     derived from this software without specific prior written permission.
 //
 // This software is provided by the copyright holders and contributors "as is" and
 // any express or implied warranties, including, but not limited to, the implied
 // warranties of merchantability and fitness for a particular purpose are disclaimed.
 // In no event shall the Intel Corporation or contributors be liable for any direct,
 // indirect, incidental, special, exemplary, or consequential damages
 // (including, but not limited to, procurement of substitute goods or services;
 // loss of use, data, or profits; or business interruption) however caused
 // and on any theory of liability, whether in contract, strict liability,
 // or tort (including negligence or otherwise) arising in any way out of
 // the use of this software, even if advised of the possibility of such damage.
 //
 //M*/

/*//Implementation of the Gaussian mixture model background subtraction from:
 //
 //"Improved adaptive Gausian mixture model for background subtraction"
173
 //Z.Zivkovic
174 175
 //International Conference Pattern Recognition, UK, August, 2004
 //http://www.zoranz.net/Publications/zivkovic2004ICPR.pdf
176
 //The code is very fast and performs also shadow detection.
177 178 179 180 181
 //Number of Gausssian components is adapted per pixel.
 //
 // and
 //
 //"Efficient Adaptive Density Estimapion per Image Pixel for the Task of Background Subtraction"
182
 //Z.Zivkovic, F. van der Heijden
183 184 185 186 187 188
 //Pattern Recognition Letters, vol. 27, no. 7, pages 773-780, 2006.
 //
 //The algorithm similar to the standard Stauffer&Grimson algorithm with
 //additional selection of the number of the Gaussian components based on:
 //
 //"Recursive unsupervised learning of finite mixture models "
189
 //Z.Zivkovic, F.van der Heijden
190 191 192 193 194 195
 //IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.26, no.5, pages 651-656, 2004
 //http://www.zoranz.net/Publications/zivkovic2004PAMI.pdf
 //
 //
 //Example usage with as cpp class
 // BackgroundSubtractorMOG2 bg_model;
196
 //For each new image the model is updates using:
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
 // bg_model(img, fgmask);
 //
 //Example usage as part of the CvBGStatModel:
 // CvBGStatModel* bg_model = cvCreateGaussianBGModel2( first_frame );
 //
 // //update for each frame
 // cvUpdateBGStatModel( tmp_frame, bg_model );//segmentation result is in bg_model->foreground
 //
 // //release at the program termination
 // cvReleaseBGStatModel( &bg_model );
 //
 //Author: Z.Zivkovic, www.zoranz.net
 //Date: 7-April-2011, Version:1.0
 ///////////*/

#include "precomp.hpp"


/*
 Interface of Gaussian mixture algorithm from:
217

218 219 220 221
 "Improved adaptive Gausian mixture model for background subtraction"
 Z.Zivkovic
 International Conference Pattern Recognition, UK, August, 2004
 http://www.zoranz.net/Publications/zivkovic2004ICPR.pdf
222

223 224 225
 Advantages:
 -fast - number of Gausssian components is constantly adapted per pixel.
 -performs also shadow detection (see bgfg_segm_test.cpp example)
226

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
 */


#define CV_BG_MODEL_MOG2            3                 /* "Mixture of Gaussians 2".  */


/* default parameters of gaussian background detection algorithm */
#define CV_BGFG_MOG2_STD_THRESHOLD            4.0f     /* lambda=2.5 is 99% */
#define CV_BGFG_MOG2_WINDOW_SIZE              500      /* Learning rate; alpha = 1/CV_GBG_WINDOW_SIZE */
#define CV_BGFG_MOG2_BACKGROUND_THRESHOLD     0.9f     /* threshold sum of weights for background test */
#define CV_BGFG_MOG2_STD_THRESHOLD_GENERATE   3.0f     /* lambda=2.5 is 99% */
#define CV_BGFG_MOG2_NGAUSSIANS               5        /* = K = number of Gaussians in mixture */
#define CV_BGFG_MOG2_VAR_INIT                 15.0f    /* initial variance for new components*/
#define CV_BGFG_MOG2_VAR_MIN                    4.0f
#define CV_BGFG_MOG2_VAR_MAX                      5*CV_BGFG_MOG2_VAR_INIT
#define CV_BGFG_MOG2_MINAREA                  15.0f    /* for postfiltering */

/* additional parameters */
#define CV_BGFG_MOG2_CT                               0.05f     /* complexity reduction prior constant 0 - no reduction of number of components*/
#define CV_BGFG_MOG2_SHADOW_VALUE             127       /* value to use in the segmentation mask for shadows, sot 0 not to do shadow detection*/
#define CV_BGFG_MOG2_SHADOW_TAU               0.5f      /* Tau - shadow threshold, see the paper for explanation*/

typedef struct CvGaussBGStatModel2Params
{
    //image info
    int nWidth;
    int nHeight;
    int nND;//number of data dimensions (image channels)
255 256

    bool bPostFiltering;//defult 1 - do postfiltering - will make shadow detection results also give value 255
257
    double  minArea; // for postfiltering
258

259
    bool bInit;//default 1, faster updates at start
260

261 262 263 264 265 266 267 268 269 270 271 272
    /////////////////////////
    //very important parameters - things you will change
    ////////////////////////
    float fAlphaT;
    //alpha - speed of update - if the time interval you want to average over is T
    //set alpha=1/T. It is also usefull at start to make T slowly increase
    //from 1 until the desired T
    float fTb;
    //Tb - threshold on the squared Mahalan. dist. to decide if it is well described
    //by the background model or not. Related to Cthr from the paper.
    //This does not influence the update of the background. A typical value could be 4 sigma
    //and that is Tb=4*4=16;
273

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
    /////////////////////////
    //less important parameters - things you might change but be carefull
    ////////////////////////
    float fTg;
    //Tg - threshold on the squared Mahalan. dist. to decide
    //when a sample is close to the existing components. If it is not close
    //to any a new component will be generated. I use 3 sigma => Tg=3*3=9.
    //Smaller Tg leads to more generated components and higher Tg might make
    //lead to small number of components but they can grow too large
    float fTB;//1-cf from the paper
    //TB - threshold when the component becomes significant enough to be included into
    //the background model. It is the TB=1-cf from the paper. So I use cf=0.1 => TB=0.
    //For alpha=0.001 it means that the mode should exist for approximately 105 frames before
    //it is considered foreground
    float fVarInit;
    float fVarMax;
    float fVarMin;
    //initial standard deviation  for the newly generated components.
    //It will will influence the speed of adaptation. A good guess should be made.
    //A simple way is to estimate the typical standard deviation from the images.
    //I used here 10 as a reasonable value
    float fCT;//CT - complexity reduction prior
    //this is related to the number of samples needed to accept that a component
    //actually exists. We use CT=0.05 of all the samples. By setting CT=0 you get
    //the standard Stauffer&Grimson algorithm (maybe not exact but very similar)
299

300 301
    //even less important parameters
    int nM;//max number of modes - const - 4 is usually enough
302

303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
    //shadow detection parameters
    bool bShadowDetection;//default 1 - do shadow detection
    unsigned char nShadowDetection;//do shadow detection - insert this value as the detection result
    float fTau;
    // Tau - shadow threshold. The shadow is detected if the pixel is darker
    //version of the background. Tau is a threshold on how much darker the shadow can be.
    //Tau= 0.5 means that if pixel is more than 2 times darker then it is not shadow
    //See: Prati,Mikic,Trivedi,Cucchiarra,"Detecting Moving Shadows...",IEEE PAMI,2003.
} CvGaussBGStatModel2Params;

#define CV_BGFG_MOG2_NDMAX 3

typedef struct CvPBGMMGaussian
{
    float weight;
    float mean[CV_BGFG_MOG2_NDMAX];
    float variance;
}CvPBGMMGaussian;

typedef struct CvGaussBGStatModel2Data
323
{
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
    CvPBGMMGaussian* rGMM; //array for the mixture of Gaussians
    unsigned char* rnUsedModes;//number of Gaussian components per pixel (maximum 255)
} CvGaussBGStatModel2Data;


/*
 //only foreground image is updated
 //no filtering included
 typedef struct CvGaussBGModel2
 {
 CV_BG_STAT_MODEL_FIELDS();
 CvGaussBGStatModel2Params params;
 CvGaussBGStatModel2Data   data;
 int                       countFrames;
 } CvGaussBGModel2;
339

340 341
 CVAPI(CvBGStatModel*) cvCreateGaussianBGModel2( IplImage* first_frame,
 CvGaussBGStatModel2Params* params CV_DEFAULT(NULL) );
342
 */
343 344 345 346 347

//shadow detection performed per pixel
// should work for rgb data, could be usefull for gray scale and depth data as well
//  See: Prati,Mikic,Trivedi,Cucchiarra,"Detecting Moving Shadows...",IEEE PAMI,2003.
CV_INLINE int _icvRemoveShadowGMM(float* data, int nD,
348
                                  unsigned char nModes,
349 350
                                  CvPBGMMGaussian* pGMM,
                                  float m_fTb,
351
                                  float m_fTB,
352 353 354 355 356 357 358
                                  float m_fTau)
{
    float tWeight = 0;
    float numerator, denominator;
    // check all the components  marked as background:
    for (int iModes=0;iModes<nModes;iModes++)
    {
359

360
        CvPBGMMGaussian g=pGMM[iModes];
361

362 363 364 365 366 367 368
        numerator = 0.0f;
        denominator = 0.0f;
        for (int iD=0;iD<nD;iD++)
        {
            numerator   += data[iD]  * g.mean[iD];
            denominator += g.mean[iD]* g.mean[iD];
        }
369

370 371 372 373 374 375
        // no division by zero allowed
        if (denominator == 0)
        {
            return 0;
        };
        float a = numerator / denominator;
376

377 378 379
        // if tau < a < 1 then also check the color distortion
        if ((a <= 1) && (a >= m_fTau))
        {
380

381
            float dist2a=0.0f;
382

383 384 385 386 387
            for (int iD=0;iD<nD;iD++)
            {
                float dD= a*g.mean[iD] - data[iD];
                dist2a += (dD*dD);
            }
388

389 390 391 392 393
            if (dist2a<m_fTb*g.variance*a*a)
            {
                return 2;
            }
        };
394

395 396 397 398 399 400 401 402 403 404 405 406
        tWeight += g.weight;
        if (tWeight > m_fTB)
        {
            return 0;
        };
    };
    return 0;
}

//update GMM - the base update function performed per pixel
//
//"Efficient Adaptive Density Estimapion per Image Pixel for the Task of Background Subtraction"
407
//Z.Zivkovic, F. van der Heijden
408 409 410 411 412 413
//Pattern Recognition Letters, vol. 27, no. 7, pages 773-780, 2006.
//
//The algorithm similar to the standard Stauffer&Grimson algorithm with
//additional selection of the number of the Gaussian components based on:
//
//"Recursive unsupervised learning of finite mixture models "
414
//Z.Zivkovic, F.van der Heijden
415 416 417 418
//IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.26, no.5, pages 651-656, 2004
//http://www.zoranz.net/Publications/zivkovic2004PAMI.pdf

CV_INLINE int _icvUpdateGMM(float* data, int nD,
419
                            unsigned char* pModesUsed,
420 421 422 423
                            CvPBGMMGaussian* pGMM,
                            int m_nM,
                            float m_fAlphaT,
                            float m_fTb,
424
                            float m_fTB,
425 426 427 428 429 430 431
                            float m_fTg,
                            float m_fVarInit,
                            float m_fVarMax,
                            float m_fVarMin,
                            float m_fPrune)
{
    //calculate distances to the modes (+ sort)
432
    //here we need to go in descending order!!!
433
    bool bBackground=0;//return value -> true - the pixel classified as background
434

435
    //internal:
436
    bool bFitsPDF=0;//if it remains zero a new GMM mode will be added
437 438 439
    float m_fOneMinAlpha=1-m_fAlphaT;
    unsigned char nModes=*pModesUsed;//current number of modes in GMM
    float totalWeight=0.0f;
440

441 442 443 444 445 446 447 448
    //////
    //go through all modes
    int iMode=0;
    CvPBGMMGaussian* pGauss=pGMM;
    for (;iMode<nModes;iMode++,pGauss++)
    {
        float weight = pGauss->weight;//need only weight if fit is found
        weight=m_fOneMinAlpha*weight+m_fPrune;
449

450 451 452 453 454 455
        ////
        //fit not found yet
        if (!bFitsPDF)
        {
            //check if it belongs to some of the remaining modes
            float var=pGauss->variance;
456

457 458 459 460 461
            //calculate difference and distance
            float dist2=0.0f;
#if (CV_BGFG_MOG2_NDMAX==1)
            float dData=pGauss->mean[0]-data[0];
            dist2=dData*dData;
462
#else
463
            float dData[CV_BGFG_MOG2_NDMAX];
464

465 466 467 468 469
            for (int iD=0;iD<nD;iD++)
            {
                dData[iD]=pGauss->mean[iD]-data[iD];
                dist2+=dData[iD]*dData[iD];
            }
470
#endif
471 472 473
            //background? - m_fTb - usually larger than m_fTg
            if ((totalWeight<m_fTB)&&(dist2<m_fTb*var))
                bBackground=1;
474

475 476 477 478 479 480
            //check fit
            if (dist2<m_fTg*var)
            {
                /////
                //belongs to the mode - bFitsPDF becomes 1
                bFitsPDF=1;
481 482 483

                //update distribution

484 485
                //update weight
                weight+=m_fAlphaT;
486

487
                float k = m_fAlphaT/weight;
488

489 490 491
                //update mean
#if (CV_BGFG_MOG2_NDMAX==1)
                pGauss->mean[0]-=k*dData;
492
#else
493 494 495 496 497
                for (int iD=0;iD<nD;iD++)
                {
                    pGauss->mean[iD]-=k*dData[iD];
                }
#endif
498

499 500
                //update variance
                float varnew = var + k*(dist2-var);
501
                //limit the variance
502
                pGauss->variance = MIN(m_fVarMax,MAX(varnew,m_fVarMin));
503

504
                //sort
505 506
                //all other weights are at the same place and
                //only the matched (iModes) is higher -> just find the new place for it
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
                for (int iLocal = iMode;iLocal>0;iLocal--)
                {
                    //check one up
                    if (weight < (pGMM[iLocal-1].weight))
                    {
                        break;
                    }
                    else
                    {
                        //swap one up
                        CvPBGMMGaussian temp = pGMM[iLocal];
                        pGMM[iLocal] = pGMM[iLocal-1];
                        pGMM[iLocal-1] = temp;
                        pGauss--;
                    }
                }
                //belongs to the mode - bFitsPDF becomes 1
                /////
            }
        }//!bFitsPDF)
527

528 529 530 531 532 533
        //check prune
        if (weight<-m_fPrune)
        {
            weight=0.0;
            nModes--;
        }
534

535 536 537 538 539
        pGauss->weight=weight;//update weight by the calculated value
        totalWeight+=weight;
    }
    //go through all modes
    //////
540

541 542 543 544 545
    //renormalize weights
    for (iMode = 0; iMode < nModes; iMode++)
    {
        pGMM[iMode].weight = pGMM[iMode].weight/totalWeight;
    }
546

547 548 549 550 551 552 553 554 555 556 557 558 559 560
    //make new mode if needed and exit
    if (!bFitsPDF)
    {
        if (nModes==m_nM)
        {
            //replace the weakest
            pGauss=pGMM+m_nM-1;
        }
        else
        {
            //add a new one
            pGauss=pGMM+nModes;
            nModes++;
        }
561

562 563 564 565 566 567 568
        if (nModes==1)
        {
            pGauss->weight=1;
        }
        else
        {
            pGauss->weight=m_fAlphaT;
569

570 571 572 573 574 575
            //renormalize all weights
            for (iMode = 0; iMode < nModes-1; iMode++)
            {
                pGMM[iMode].weight *=m_fOneMinAlpha;
            }
        }
576 577

        //init
578 579
        memcpy(pGauss->mean,data,nD*sizeof(float));
        pGauss->variance=m_fVarInit;
580

581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
        //sort
        //find the new place for it
        for (int iLocal = nModes-1;iLocal>0;iLocal--)
        {
            //check one up
            if (m_fAlphaT < (pGMM[iLocal-1].weight))
            {
                break;
            }
            else
            {
                //swap one up
                CvPBGMMGaussian temp = pGMM[iLocal];
                pGMM[iLocal] = pGMM[iLocal-1];
                pGMM[iLocal-1] = temp;
            }
        }
    }
599

600 601
    //set the number of modes
    *pModesUsed=nModes;
602

603 604 605 606 607
    return bBackground;
}

// a bit more efficient implementation for common case of 3 channel (rgb) images
CV_INLINE int _icvUpdateGMM_C3(float r,float g, float b,
608
                               unsigned char* pModesUsed,
609 610 611 612
                               CvPBGMMGaussian* pGMM,
                               int m_nM,
                               float m_fAlphaT,
                               float m_fTb,
613
                               float m_fTB,
614 615 616 617 618 619 620
                               float m_fTg,
                               float m_fVarInit,
                               float m_fVarMax,
                               float m_fVarMin,
                               float m_fPrune)
{
    //calculate distances to the modes (+ sort)
621
    //here we need to go in descending order!!!
622
    bool bBackground=0;//return value -> true - the pixel classified as background
623

624
    //internal:
625
    bool bFitsPDF=0;//if it remains zero a new GMM mode will be added
626 627 628
    float m_fOneMinAlpha=1-m_fAlphaT;
    unsigned char nModes=*pModesUsed;//current number of modes in GMM
    float totalWeight=0.0f;
629

630 631 632 633 634 635 636 637
    //////
    //go through all modes
    int iMode=0;
    CvPBGMMGaussian* pGauss=pGMM;
    for (;iMode<nModes;iMode++,pGauss++)
    {
        float weight = pGauss->weight;//need only weight if fit is found
        weight=m_fOneMinAlpha*weight+m_fPrune;
638

639 640 641 642 643 644
        ////
        //fit not found yet
        if (!bFitsPDF)
        {
            //check if it belongs to some of the remaining modes
            float var=pGauss->variance;
645

646 647 648 649
            //calculate difference and distance
            float muR = pGauss->mean[0];
            float muG = pGauss->mean[1];
            float muB = pGauss->mean[2];
650

651 652 653
            float dR=muR - r;
            float dG=muG - g;
            float dB=muB - b;
654 655 656

            float dist2=(dR*dR+dG*dG+dB*dB);

657 658 659
            //background? - m_fTb - usually larger than m_fTg
            if ((totalWeight<m_fTB)&&(dist2<m_fTb*var))
                bBackground=1;
660

661 662 663 664 665 666
            //check fit
            if (dist2<m_fTg*var)
            {
                /////
                //belongs to the mode - bFitsPDF becomes 1
                bFitsPDF=1;
667 668 669

                //update distribution

670 671
                //update weight
                weight+=m_fAlphaT;
672

673
                float k = m_fAlphaT/weight;
674

675 676 677 678
                //update mean
                pGauss->mean[0] = muR - k*(dR);
                pGauss->mean[1] = muG - k*(dG);
                pGauss->mean[2] = muB - k*(dB);
679

680 681
                //update variance
                float varnew = var + k*(dist2-var);
682
                //limit the variance
683
                pGauss->variance = MIN(m_fVarMax,MAX(varnew,m_fVarMin));
684

685
                //sort
686 687
                //all other weights are at the same place and
                //only the matched (iModes) is higher -> just find the new place for it
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
                for (int iLocal = iMode;iLocal>0;iLocal--)
                {
                    //check one up
                    if (weight < (pGMM[iLocal-1].weight))
                    {
                        break;
                    }
                    else
                    {
                        //swap one up
                        CvPBGMMGaussian temp = pGMM[iLocal];
                        pGMM[iLocal] = pGMM[iLocal-1];
                        pGMM[iLocal-1] = temp;
                        pGauss--;
                    }
                }
                //belongs to the mode - bFitsPDF becomes 1
                /////
706 707
            }

708
        }//!bFitsPDF)
709

710 711 712 713 714 715
        //check prunning
        if (weight<-m_fPrune)
        {
            weight=0.0;
            nModes--;
        }
716

717 718 719 720 721
        pGauss->weight=weight;
        totalWeight+=weight;
    }
    //go through all modes
    //////
722

723 724 725 726 727
    //renormalize weights
    for (iMode = 0; iMode < nModes; iMode++)
    {
        pGMM[iMode].weight = pGMM[iMode].weight/totalWeight;
    }
728

729 730 731 732 733 734 735 736 737 738 739 740 741 742
    //make new mode if needed and exit
    if (!bFitsPDF)
    {
        if (nModes==m_nM)
        {
            //replace the weakest
            pGauss=pGMM+m_nM-1;
        }
        else
        {
            //add a new one
            pGauss=pGMM+nModes;
            nModes++;
        }
743

744 745 746 747 748 749 750
        if (nModes==1)
        {
            pGauss->weight=1;
        }
        else
        {
            pGauss->weight=m_fAlphaT;
751

752 753 754 755 756 757
            //renormalize all weights
            for (iMode = 0; iMode < nModes-1; iMode++)
            {
                pGMM[iMode].weight *=m_fOneMinAlpha;
            }
        }
758 759

        //init
760 761 762
        pGauss->mean[0]=r;
        pGauss->mean[1]=g;
        pGauss->mean[2]=b;
763

764
        pGauss->variance=m_fVarInit;
765

766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
        //sort
        //find the new place for it
        for (int iLocal = nModes-1;iLocal>0;iLocal--)
        {
            //check one up
            if (m_fAlphaT < (pGMM[iLocal-1].weight))
            {
                break;
            }
            else
            {
                //swap one up
                CvPBGMMGaussian temp = pGMM[iLocal];
                pGMM[iLocal] = pGMM[iLocal-1];
                pGMM[iLocal-1] = temp;
            }
        }
    }
784

785 786
    //set the number of modes
    *pModesUsed=nModes;
787

788 789 790 791
    return bBackground;
}

//the main function to update the background model
792
static void icvUpdatePixelBackgroundGMM2( const CvArr* srcarr, CvArr* dstarr ,
793 794 795 796
                                  CvPBGMMGaussian *pGMM,
                                  unsigned char *pUsedModes,
                                  //CvGaussBGStatModel2Params* pGMMPar,
                                  int nM,
797 798 799
                                  float fTb,
                                  float fTB,
                                  float fTg,
800 801 802 803 804 805 806 807 808 809 810 811 812
                                  float fVarInit,
                                  float fVarMax,
                                  float fVarMin,
                                  float fCT,
                                  float fTau,
                                  bool bShadowDetection,
                                  unsigned char  nShadowDetection,
                                  float alpha)
{
    CvMat sstub, *src = cvGetMat(srcarr, &sstub);
    CvMat dstub, *dst = cvGetMat(dstarr, &dstub);
    CvSize size = cvGetMatSize(src);
    int nD=CV_MAT_CN(src->type);
813

814 815 816 817 818 819
    //reshape if possible
    if( CV_IS_MAT_CONT(src->type & dst->type) )
    {
        size.width *= size.height;
        size.height = 1;
    }
820

821 822 823
    int x, y;
    float data[CV_BGFG_MOG2_NDMAX];
    float prune=-alpha*fCT;
824

825
    //general nD
826

827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
    if (nD!=3)
    {
        switch (CV_MAT_DEPTH(src->type))
        {
            case CV_8U:
                for( y = 0; y < size.height; y++ )
                {
                    uchar* sptr = src->data.ptr + src->step*y;
                    uchar* pDataOutput = dst->data.ptr + dst->step*y;
                    for( x = 0; x < size.width; x++,
                        pGMM+=nM,pUsedModes++,pDataOutput++,sptr+=nD)
                    {
                        //convert data
                        for (int iD=0;iD<nD;iD++) data[iD]=float(sptr[iD]);
                        //update GMM model
                        int result = _icvUpdateGMM(data,nD,pUsedModes,pGMM,nM,alpha, fTb, fTB, fTg, fVarInit, fVarMax, fVarMin,prune);
                        //detect shadows in the foreground
                        if (bShadowDetection)
                            if (result==0) result= _icvRemoveShadowGMM(data,nD,(*pUsedModes),pGMM,fTb,fTB,fTau);
                        //generate output
847
                        (* pDataOutput)= (result==1) ? 0 : (result==2) ? (nShadowDetection) : 255;
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
                    }
                }
                break;
            case CV_16S:
                for( y = 0; y < size.height; y++ )
                {
                    short* sptr = src->data.s + src->step*y;
                    uchar* pDataOutput = dst->data.ptr + dst->step*y;
                    for( x = 0; x < size.width; x++,
                        pGMM+=nM,pUsedModes++,pDataOutput++,sptr+=nD)
                    {
                        //convert data
                        for (int iD=0;iD<nD;iD++) data[iD]=float(sptr[iD]);
                        //update GMM model
                        int result = _icvUpdateGMM(data,nD,pUsedModes,pGMM,nM,alpha, fTb, fTB, fTg, fVarInit, fVarMax, fVarMin,prune);
                        //detect shadows in the foreground
                        if (bShadowDetection)
                            if (result==0) result= _icvRemoveShadowGMM(data,nD,(*pUsedModes),pGMM,fTb,fTB,fTau);
                        //generate output
867
                        (* pDataOutput)= (result==1) ? 0 : (result==2) ? (nShadowDetection) : 255;
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
                    }
                }
                break;
            case CV_16U:
                for( y = 0; y < size.height; y++ )
                {
                    unsigned short* sptr = (unsigned short*) (src->data.s + src->step*y);
                    uchar* pDataOutput = dst->data.ptr + dst->step*y;
                    for( x = 0; x < size.width; x++,
                        pGMM+=nM,pUsedModes++,pDataOutput++,sptr+=nD)
                    {
                        //convert data
                        for (int iD=0;iD<nD;iD++) data[iD]=float(sptr[iD]);
                        //update GMM model
                        int result = _icvUpdateGMM(data,nD,pUsedModes,pGMM,nM,alpha, fTb, fTB, fTg, fVarInit, fVarMax, fVarMin,prune);
                        //detect shadows in the foreground
                        if (bShadowDetection)
                            if (result==0) result= _icvRemoveShadowGMM(data,nD,(*pUsedModes),pGMM,fTb,fTB,fTau);
                        //generate output
887
                        (* pDataOutput)= (result==1) ? 0 : (result==2) ? (nShadowDetection) : 255;
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
                    }
                }
                break;
            case CV_32S:
                for( y = 0; y < size.height; y++ )
                {
                    int* sptr = src->data.i + src->step*y;
                    uchar* pDataOutput = dst->data.ptr + dst->step*y;
                    for( x = 0; x < size.width; x++,
                        pGMM+=nM,pUsedModes++,pDataOutput++,sptr+=nD)
                    {
                        //convert data
                        for (int iD=0;iD<nD;iD++) data[iD]=float(sptr[iD]);
                        //update GMM model
                        int result = _icvUpdateGMM(data,nD,pUsedModes,pGMM,nM,alpha, fTb, fTB, fTg, fVarInit, fVarMax, fVarMin,prune);
                        //detect shadows in the foreground
                        if (bShadowDetection)
                            if (result==0) result= _icvRemoveShadowGMM(data,nD,(*pUsedModes),pGMM,fTb,fTB,fTau);
                        //generate output
907
                        (* pDataOutput)= (result==1) ? 0 : (result==2) ? (nShadowDetection) : 255;
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
                    }
                }
                break;
            case CV_32F:
                for( y = 0; y < size.height; y++ )
                {
                    float* sptr = src->data.fl + src->step*y;
                    uchar* pDataOutput = dst->data.ptr + dst->step*y;
                    for( x = 0; x < size.width; x++,
                        pGMM+=nM,pUsedModes++,pDataOutput++,sptr+=nD)
                    {
                        //update GMM model
                        int result = _icvUpdateGMM(sptr,nD,pUsedModes,pGMM,nM,alpha, fTb, fTB, fTg, fVarInit, fVarMax, fVarMin,prune);
                        //detect shadows in the foreground
                        if (bShadowDetection)
                            if (result==0) result= _icvRemoveShadowGMM(data,nD,(*pUsedModes),pGMM,fTb,fTB,fTau);
                        //generate output
925
                        (* pDataOutput)= (result==1) ? 0 : (result==2) ? (nShadowDetection) : 255;
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
                    }
                }
                break;
            case CV_64F:
                for( y = 0; y < size.height; y++ )
                {
                    double* sptr = src->data.db + src->step*y;
                    uchar* pDataOutput = dst->data.ptr + dst->step*y;
                    for( x = 0; x < size.width; x++,
                        pGMM+=nM,pUsedModes++,pDataOutput++,sptr+=nD)
                    {
                        //convert data
                        for (int iD=0;iD<nD;iD++) data[iD]=float(sptr[iD]);
                        //update GMM model
                        int result = _icvUpdateGMM(data,nD,pUsedModes,pGMM,nM,alpha, fTb, fTB, fTg, fVarInit, fVarMax, fVarMin,prune);
                        //detect shadows in the foreground
                        if (bShadowDetection)
                            if (result==0) result= _icvRemoveShadowGMM(data,nD,(*pUsedModes),pGMM,fTb,fTB,fTau);
                        //generate output
945
                        (* pDataOutput)= (result==1) ? 0 : (result==2) ? (nShadowDetection) : 255;
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
                    }
                }
                break;
        }
    }else ///if (nD==3) - a bit faster
    {
        switch (CV_MAT_DEPTH(src->type))
        {
            case CV_8U:
                for( y = 0; y < size.height; y++ )
                {
                    uchar* sptr = src->data.ptr + src->step*y;
                    uchar* pDataOutput = dst->data.ptr + dst->step*y;
                    for( x = 0; x < size.width; x++,
                        pGMM+=nM,pUsedModes++,pDataOutput++,sptr+=nD)
                    {
                        //convert data
                        data[0]=float(sptr[0]),data[1]=float(sptr[1]),data[2]=float(sptr[2]);
                        //update GMM model
                        int result = _icvUpdateGMM_C3(data[0],data[1],data[2],pUsedModes,pGMM,nM,alpha, fTb, fTB, fTg, fVarInit, fVarMax, fVarMin,prune);
                        //detect shadows in the foreground
                        if (bShadowDetection)
                            if (result==0) result= _icvRemoveShadowGMM(data,nD,(*pUsedModes),pGMM,fTb,fTB,fTau);
                        //generate output
970
                        (* pDataOutput)= (result==1) ? 0 : (result==2) ? (nShadowDetection) : 255;
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
                    }
                }
                break;
            case CV_16S:
                for( y = 0; y < size.height; y++ )
                {
                    short* sptr = src->data.s + src->step*y;
                    uchar* pDataOutput = dst->data.ptr + dst->step*y;
                    for( x = 0; x < size.width; x++,
                        pGMM+=nM,pUsedModes++,pDataOutput++,sptr+=nD)
                    {
                        //convert data
                        data[0]=float(sptr[0]),data[1]=float(sptr[1]),data[2]=float(sptr[2]);
                        //update GMM model
                        int result = _icvUpdateGMM_C3(data[0],data[1],data[2],pUsedModes,pGMM,nM,alpha, fTb, fTB, fTg, fVarInit, fVarMax, fVarMin,prune);
                        //detect shadows in the foreground
                        if (bShadowDetection)
                            if (result==0) result= _icvRemoveShadowGMM(data,nD,(*pUsedModes),pGMM,fTb,fTB,fTau);
                        //generate output
990
                        (* pDataOutput)= (result==1) ? 0 : (result==2) ? (nShadowDetection) : 255;
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
                    }
                }
                break;
            case CV_16U:
                for( y = 0; y < size.height; y++ )
                {
                    unsigned short* sptr = (unsigned short*) src->data.s + src->step*y;
                    uchar* pDataOutput = dst->data.ptr + dst->step*y;
                    for( x = 0; x < size.width; x++,
                        pGMM+=nM,pUsedModes++,pDataOutput++,sptr+=nD)
                    {
                        //convert data
                        data[0]=float(sptr[0]),data[1]=float(sptr[1]),data[2]=float(sptr[2]);
                        //update GMM model
                        int result = _icvUpdateGMM_C3(data[0],data[1],data[2],pUsedModes,pGMM,nM,alpha, fTb, fTB, fTg, fVarInit, fVarMax, fVarMin,prune);
                        //detect shadows in the foreground
                        if (bShadowDetection)
                            if (result==0) result= _icvRemoveShadowGMM(data,nD,(*pUsedModes),pGMM,fTb,fTB,fTau);
                        //generate output
1010
                        (* pDataOutput)= (result==1) ? 0 : (result==2) ? (nShadowDetection) : 255;
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
                    }
                }
                break;
            case CV_32S:
                for( y = 0; y < size.height; y++ )
                {
                    int* sptr = src->data.i + src->step*y;
                    uchar* pDataOutput = dst->data.ptr + dst->step*y;
                    for( x = 0; x < size.width; x++,
                        pGMM+=nM,pUsedModes++,pDataOutput++,sptr+=nD)
                    {
                        //convert data
                        data[0]=float(sptr[0]),data[1]=float(sptr[1]),data[2]=float(sptr[2]);
                        //update GMM model
                        int result = _icvUpdateGMM_C3(data[0],data[1],data[2],pUsedModes,pGMM,nM,alpha, fTb, fTB, fTg, fVarInit, fVarMax, fVarMin,prune);
                        //detect shadows in the foreground
                        if (bShadowDetection)
                            if (result==0) result= _icvRemoveShadowGMM(data,nD,(*pUsedModes),pGMM,fTb,fTB,fTau);
                        //generate output
1030
                        (* pDataOutput)= (result==1) ? 0 : (result==2) ? (nShadowDetection) : 255;
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
                    }
                }
                break;
            case CV_32F:
                for( y = 0; y < size.height; y++ )
                {
                    float* sptr = src->data.fl + src->step*y;
                    uchar* pDataOutput = dst->data.ptr + dst->step*y;
                    for( x = 0; x < size.width; x++,
                        pGMM+=nM,pUsedModes++,pDataOutput++,sptr+=nD)
                    {
                        //update GMM model
                        int result = _icvUpdateGMM_C3(sptr[0],sptr[1],sptr[2],pUsedModes,pGMM,nM,alpha, fTb, fTB, fTg, fVarInit, fVarMax, fVarMin,prune);
                        //detect shadows in the foreground
                        if (bShadowDetection)
                            if (result==0) result= _icvRemoveShadowGMM(data,nD,(*pUsedModes),pGMM,fTb,fTB,fTau);
                        //generate output
1048
                        (* pDataOutput)= (result==1) ? 0 : (result==2) ? (nShadowDetection) : 255;
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
                    }
                }
                break;
            case CV_64F:
                for( y = 0; y < size.height; y++ )
                {
                    double* sptr = src->data.db + src->step*y;
                    uchar* pDataOutput = dst->data.ptr + dst->step*y;
                    for( x = 0; x < size.width; x++,
                        pGMM+=nM,pUsedModes++,pDataOutput++,sptr+=nD)
                    {
                        //convert data
                        data[0]=float(sptr[0]),data[1]=float(sptr[1]),data[2]=float(sptr[2]);
                        //update GMM model
                        int result = _icvUpdateGMM_C3(data[0],data[1],data[2],pUsedModes,pGMM,nM,alpha, fTb, fTB, fTg, fVarInit, fVarMax, fVarMin,prune);
                        //detect shadows in the foreground
                        if (bShadowDetection)
                            if (result==0) result= _icvRemoveShadowGMM(data,nD,(*pUsedModes),pGMM,fTb,fTB,fTau);
                        //generate output
1068
                        (* pDataOutput)= (result==1) ? 0 : (result==2) ? (nShadowDetection) : 255;
1069 1070 1071 1072
                    }
                }
                break;
        }
1073
    }//a bit faster for nD=3;
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
}


//only foreground image is updated
//no filtering included
typedef struct CvGaussBGModel2
{
    CV_BG_STAT_MODEL_FIELDS();
    CvGaussBGStatModel2Params params;
    CvGaussBGStatModel2Data   data;
    int                       countFrames;
} CvGaussBGModel2;

CVAPI(CvBGStatModel*) cvCreateGaussianBGModel2( IplImage* first_frame,
                                               CvGaussBGStatModel2Params* params CV_DEFAULT(NULL) );

//////////////////////////////////////////////
//implementation as part of the CvBGStatModel
static void CV_CDECL icvReleaseGaussianBGModel2( CvGaussBGModel2** bg_model );
static int CV_CDECL icvUpdateGaussianBGModel2( IplImage* curr_frame, CvGaussBGModel2*  bg_model );


CV_IMPL CvBGStatModel*
cvCreateGaussianBGModel2( IplImage* first_frame, CvGaussBGStatModel2Params* parameters )
{
    CvGaussBGModel2* bg_model = 0;
    int w,h;
1101

1102
    CV_FUNCNAME( "cvCreateGaussianBGModel2" );
1103

1104
    __BEGIN__;
1105

1106
    CvGaussBGStatModel2Params params;
1107

1108 1109
    if( !CV_IS_IMAGE(first_frame) )
        CV_ERROR( CV_StsBadArg, "Invalid or NULL first_frame parameter" );
1110

1111 1112
    if( first_frame->nChannels>CV_BGFG_MOG2_NDMAX )
        CV_ERROR( CV_StsBadArg, "Maxumum number of channels in the image is excedded (change CV_BGFG_MOG2_MAXBANDS constant)!" );
1113 1114


1115 1116 1117 1118 1119
    CV_CALL( bg_model = (CvGaussBGModel2*)cvAlloc( sizeof(*bg_model) ));
    memset( bg_model, 0, sizeof(*bg_model) );
    bg_model->type    = CV_BG_MODEL_MOG2;
    bg_model->release = (CvReleaseBGStatModel) icvReleaseGaussianBGModel2;
    bg_model->update  = (CvUpdateBGStatModel)  icvUpdateGaussianBGModel2;
1120 1121

    //init parameters
1122
    if( parameters == NULL )
1123
    {
1124
        memset(&params, 0, sizeof(params));
1125

1126 1127 1128 1129
        // These constants are defined in cvaux/include/cvaux.h
        params.bShadowDetection = 1;
        params.bPostFiltering=0;
        params.minArea=CV_BGFG_MOG2_MINAREA;
1130

1131 1132
        //set parameters
        // K - max number of Gaussians per pixel
1133
        params.nM = CV_BGFG_MOG2_NGAUSSIANS;//4;
1134 1135 1136 1137
        // Tb - the threshold - n var
        //pGMM->fTb = 4*4;
        params.fTb = CV_BGFG_MOG2_STD_THRESHOLD*CV_BGFG_MOG2_STD_THRESHOLD;
        // Tbf - the threshold
1138
        //pGMM->fTB = 0.9f;//1-cf from the paper
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
        params.fTB = CV_BGFG_MOG2_BACKGROUND_THRESHOLD;
        // Tgenerate - the threshold
        params.fTg = CV_BGFG_MOG2_STD_THRESHOLD_GENERATE*CV_BGFG_MOG2_STD_THRESHOLD_GENERATE;//update the mode or generate new
        //pGMM->fSigma= 11.0f;//sigma for the new mode
        params.fVarInit = CV_BGFG_MOG2_VAR_INIT;
        params.fVarMax = CV_BGFG_MOG2_VAR_MAX;
        params.fVarMin = CV_BGFG_MOG2_VAR_MIN;
        // alpha - the learning factor
        params.fAlphaT = 1.0f/CV_BGFG_MOG2_WINDOW_SIZE;//0.003f;
        // complexity reduction prior constant
        params.fCT = CV_BGFG_MOG2_CT;//0.05f;
1150

1151 1152 1153 1154 1155 1156 1157 1158 1159
        //shadow
        // Shadow detection
        params.nShadowDetection = (unsigned char)CV_BGFG_MOG2_SHADOW_VALUE;//value 0 to turn off
        params.fTau = CV_BGFG_MOG2_SHADOW_TAU;//0.5f;// Tau - shadow threshold
    }
    else
    {
        params = *parameters;
    }
1160

1161
    bg_model->params = params;
1162 1163

    //image data
1164 1165
    w = first_frame->width;
    h = first_frame->height;
1166

1167 1168
    bg_model->params.nWidth = w;
    bg_model->params.nHeight = h;
1169

1170
    bg_model->params.nND = first_frame->nChannels;
1171 1172


1173
    //allocate GMM data
1174

1175 1176 1177 1178 1179
    //GMM for each pixel
    bg_model->data.rGMM = (CvPBGMMGaussian*) malloc(w*h * params.nM * sizeof(CvPBGMMGaussian));
    //used modes per pixel
    bg_model->data.rnUsedModes = (unsigned char* ) malloc(w*h);
    memset(bg_model->data.rnUsedModes,0,w*h);//no modes used
1180 1181

    //prepare storages
1182 1183
    CV_CALL( bg_model->background = cvCreateImage(cvSize(w,h), IPL_DEPTH_8U, first_frame->nChannels));
    CV_CALL( bg_model->foreground = cvCreateImage(cvSize(w,h), IPL_DEPTH_8U, 1));
1184

1185 1186
    //for eventual filtering
    CV_CALL( bg_model->storage = cvCreateMemStorage());
1187

1188
    bg_model->countFrames = 0;
1189

1190
    __END__;
1191

1192 1193 1194
    if( cvGetErrStatus() < 0 )
    {
        CvBGStatModel* base_ptr = (CvBGStatModel*)bg_model;
1195

1196 1197 1198 1199 1200 1201
        if( bg_model && bg_model->release )
            bg_model->release( &base_ptr );
        else
            cvFree( &bg_model );
        bg_model = 0;
    }
1202

1203 1204 1205 1206 1207 1208 1209 1210
    return (CvBGStatModel*)bg_model;
}


static void CV_CDECL
icvReleaseGaussianBGModel2( CvGaussBGModel2** _bg_model )
{
    CV_FUNCNAME( "icvReleaseGaussianBGModel2" );
1211

1212
    __BEGIN__;
1213

1214 1215
    if( !_bg_model )
        CV_ERROR( CV_StsNullPtr, "" );
1216

1217 1218 1219
    if( *_bg_model )
    {
        CvGaussBGModel2* bg_model = *_bg_model;
1220

1221 1222
        free (bg_model->data.rGMM);
        free (bg_model->data.rnUsedModes);
1223

1224 1225 1226 1227 1228 1229
        cvReleaseImage( &bg_model->background );
        cvReleaseImage( &bg_model->foreground );
        cvReleaseMemStorage(&bg_model->storage);
        memset( bg_model, 0, sizeof(*bg_model) );
        cvFree( _bg_model );
    }
1230

1231 1232 1233 1234 1235 1236
    __END__;
}


static int CV_CDECL
icvUpdateGaussianBGModel2( IplImage* curr_frame, CvGaussBGModel2*  bg_model )
1237 1238
{
    //checks
1239 1240
    if ((curr_frame->height!=bg_model->params.nHeight)||(curr_frame->width!=bg_model->params.nWidth)||(curr_frame->nChannels!=bg_model->params.nND))
        CV_Error( CV_StsBadSize, "the image not the same size as the reserved GMM background model");
1241

1242 1243
    float alpha=bg_model->params.fAlphaT;
    bg_model->countFrames++;
1244

1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
    //faster initial updates - increase value of alpha
    if (bg_model->params.bInit){
        float alphaInit=(1.0f/(2*bg_model->countFrames+1));
        if (alphaInit>alpha)
        {
            alpha = alphaInit;
        }
        else
        {
            bg_model->params.bInit = 0;
        }
    }
1257

1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
    //update background
    //icvUpdatePixelBackgroundGMM2( curr_frame, bg_model->foreground, bg_model->data.rGMM,bg_model->data.rnUsedModes,&(bg_model->params),alpha);
    icvUpdatePixelBackgroundGMM2( curr_frame, bg_model->foreground, bg_model->data.rGMM,bg_model->data.rnUsedModes,
                                 bg_model->params.nM,
                                 bg_model->params.fTb,
                                 bg_model->params.fTB,
                                 bg_model->params.fTg,
                                 bg_model->params.fVarInit,
                                 bg_model->params.fVarMax,
                                 bg_model->params.fVarMin,
                                 bg_model->params.fCT,
                                 bg_model->params.fTau,
                                 bg_model->params.bShadowDetection,
                                 bg_model->params.nShadowDetection,
                                 alpha);
1273

1274 1275 1276 1277 1278
    //foreground filtering
    if (bg_model->params.bPostFiltering==1)
    {
        int region_count = 0;
        CvSeq *first_seq = NULL, *prev_seq = NULL, *seq = NULL;
1279 1280


1281 1282
        //filter small regions
        cvClearMemStorage(bg_model->storage);
1283

1284 1285
        cvMorphologyEx( bg_model->foreground, bg_model->foreground, 0, 0, CV_MOP_OPEN, 1 );
        cvMorphologyEx( bg_model->foreground, bg_model->foreground, 0, 0, CV_MOP_CLOSE, 1 );
1286

1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
        cvFindContours( bg_model->foreground, bg_model->storage, &first_seq, sizeof(CvContour), CV_RETR_LIST );
        for( seq = first_seq; seq; seq = seq->h_next )
        {
            CvContour* cnt = (CvContour*)seq;
            if( cnt->rect.width * cnt->rect.height < bg_model->params.minArea )
            {
                //delete small contour
                prev_seq = seq->h_prev;
                if( prev_seq )
                {
                    prev_seq->h_next = seq->h_next;
                    if( seq->h_next ) seq->h_next->h_prev = prev_seq;
                }
                else
                {
                    first_seq = seq->h_next;
                    if( seq->h_next ) seq->h_next->h_prev = NULL;
                }
            }
            else
            {
                region_count++;
            }
        }
        bg_model->foreground_regions = first_seq;
        cvZero(bg_model->foreground);
        cvDrawContours(bg_model->foreground, first_seq, CV_RGB(0, 0, 255), CV_RGB(0, 0, 255), 10, -1);
1314 1315

        return region_count;
1316
    }
1317

1318 1319 1320 1321
    return 1;
}

/* End of file. */