dlaed9.c 7.97 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/* dlaed9.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

13 14
#include "clapack.h"

15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
/* Table of constant values */

static integer c__1 = 1;

/* Subroutine */ int dlaed9_(integer *k, integer *kstart, integer *kstop, 
	integer *n, doublereal *d__, doublereal *q, integer *ldq, doublereal *
	rho, doublereal *dlamda, doublereal *w, doublereal *s, integer *lds, 
	integer *info)
{
    /* System generated locals */
    integer q_dim1, q_offset, s_dim1, s_offset, i__1, i__2;
    doublereal d__1;

    /* Builtin functions */
    double sqrt(doublereal), d_sign(doublereal *, doublereal *);

    /* Local variables */
    integer i__, j;
    doublereal temp;
    extern doublereal dnrm2_(integer *, doublereal *, integer *);
    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
	    doublereal *, integer *), dlaed4_(integer *, integer *, 
	    doublereal *, doublereal *, doublereal *, doublereal *, 
	    doublereal *, integer *);
    extern doublereal dlamc3_(doublereal *, doublereal *);
    extern /* Subroutine */ int xerbla_(char *, integer *);


44
/*  -- LAPACK routine (version 3.2) -- */
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DLAED9 finds the roots of the secular equation, as defined by the */
/*  values in D, Z, and RHO, between KSTART and KSTOP.  It makes the */
/*  appropriate calls to DLAED4 and then stores the new matrix of */
/*  eigenvectors for use in calculating the next level of Z vectors. */

/*  Arguments */
/*  ========= */

/*  K       (input) INTEGER */
/*          The number of terms in the rational function to be solved by */
/*          DLAED4.  K >= 0. */

/*  KSTART  (input) INTEGER */
/*  KSTOP   (input) INTEGER */
/*          The updated eigenvalues Lambda(I), KSTART <= I <= KSTOP */
/*          are to be computed.  1 <= KSTART <= KSTOP <= K. */

/*  N       (input) INTEGER */
/*          The number of rows and columns in the Q matrix. */
/*          N >= K (delation may result in N > K). */

/*  D       (output) DOUBLE PRECISION array, dimension (N) */
/*          D(I) contains the updated eigenvalues */
/*          for KSTART <= I <= KSTOP. */

/*  Q       (workspace) DOUBLE PRECISION array, dimension (LDQ,N) */

/*  LDQ     (input) INTEGER */
/*          The leading dimension of the array Q.  LDQ >= max( 1, N ). */

/*  RHO     (input) DOUBLE PRECISION */
/*          The value of the parameter in the rank one update equation. */
/*          RHO >= 0 required. */

/*  DLAMDA  (input) DOUBLE PRECISION array, dimension (K) */
/*          The first K elements of this array contain the old roots */
/*          of the deflated updating problem.  These are the poles */
/*          of the secular equation. */

/*  W       (input) DOUBLE PRECISION array, dimension (K) */
/*          The first K elements of this array contain the components */
/*          of the deflation-adjusted updating vector. */

/*  S       (output) DOUBLE PRECISION array, dimension (LDS, K) */
/*          Will contain the eigenvectors of the repaired matrix which */
/*          will be stored for subsequent Z vector calculation and */
/*          multiplied by the previously accumulated eigenvectors */
/*          to update the system. */

/*  LDS     (input) INTEGER */
/*          The leading dimension of S.  LDS >= max( 1, K ). */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit. */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
/*          > 0:  if INFO = 1, an eigenvalue did not converge */

/*  Further Details */
/*  =============== */

/*  Based on contributions by */
/*     Jeff Rutter, Computer Science Division, University of California */
/*     at Berkeley, USA */

/*  ===================================================================== */

/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    --d__;
    q_dim1 = *ldq;
    q_offset = 1 + q_dim1;
    q -= q_offset;
    --dlamda;
    --w;
    s_dim1 = *lds;
    s_offset = 1 + s_dim1;
    s -= s_offset;

    /* Function Body */
    *info = 0;

    if (*k < 0) {
	*info = -1;
    } else if (*kstart < 1 || *kstart > max(1,*k)) {
	*info = -2;
    } else if (max(1,*kstop) < *kstart || *kstop > max(1,*k)) {
	*info = -3;
    } else if (*n < *k) {
	*info = -4;
    } else if (*ldq < max(1,*k)) {
	*info = -7;
    } else if (*lds < max(1,*k)) {
	*info = -12;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DLAED9", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*k == 0) {
	return 0;
    }

/*     Modify values DLAMDA(i) to make sure all DLAMDA(i)-DLAMDA(j) can */
/*     be computed with high relative accuracy (barring over/underflow). */
/*     This is a problem on machines without a guard digit in */
/*     add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2). */
/*     The following code replaces DLAMDA(I) by 2*DLAMDA(I)-DLAMDA(I), */
/*     which on any of these machines zeros out the bottommost */
/*     bit of DLAMDA(I) if it is 1; this makes the subsequent */
/*     subtractions DLAMDA(I)-DLAMDA(J) unproblematic when cancellation */
/*     occurs. On binary machines with a guard digit (almost all */
/*     machines) it does not change DLAMDA(I) at all. On hexadecimal */
/*     and decimal machines with a guard digit, it slightly */
/*     changes the bottommost bits of DLAMDA(I). It does not account */
/*     for hexadecimal or decimal machines without guard digits */
/*     (we know of none). We use a subroutine call to compute */
/*     2*DLAMBDA(I) to prevent optimizing compilers from eliminating */
/*     this code. */

    i__1 = *n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	dlamda[i__] = dlamc3_(&dlamda[i__], &dlamda[i__]) - dlamda[i__];
/* L10: */
    }

    i__1 = *kstop;
    for (j = *kstart; j <= i__1; ++j) {
	dlaed4_(k, &j, &dlamda[1], &w[1], &q[j * q_dim1 + 1], rho, &d__[j], 
		info);

/*        If the zero finder fails, the computation is terminated. */

	if (*info != 0) {
	    goto L120;
	}
/* L20: */
    }

    if (*k == 1 || *k == 2) {
	i__1 = *k;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    i__2 = *k;
	    for (j = 1; j <= i__2; ++j) {
		s[j + i__ * s_dim1] = q[j + i__ * q_dim1];
/* L30: */
	    }
/* L40: */
	}
	goto L120;
    }

/*     Compute updated W. */

    dcopy_(k, &w[1], &c__1, &s[s_offset], &c__1);

/*     Initialize W(I) = Q(I,I) */

    i__1 = *ldq + 1;
    dcopy_(k, &q[q_offset], &i__1, &w[1], &c__1);
    i__1 = *k;
    for (j = 1; j <= i__1; ++j) {
	i__2 = j - 1;
	for (i__ = 1; i__ <= i__2; ++i__) {
	    w[i__] *= q[i__ + j * q_dim1] / (dlamda[i__] - dlamda[j]);
/* L50: */
	}
	i__2 = *k;
	for (i__ = j + 1; i__ <= i__2; ++i__) {
	    w[i__] *= q[i__ + j * q_dim1] / (dlamda[i__] - dlamda[j]);
/* L60: */
	}
/* L70: */
    }
    i__1 = *k;
    for (i__ = 1; i__ <= i__1; ++i__) {
	d__1 = sqrt(-w[i__]);
	w[i__] = d_sign(&d__1, &s[i__ + s_dim1]);
/* L80: */
    }

/*     Compute eigenvectors of the modified rank-1 modification. */

    i__1 = *k;
    for (j = 1; j <= i__1; ++j) {
	i__2 = *k;
	for (i__ = 1; i__ <= i__2; ++i__) {
	    q[i__ + j * q_dim1] = w[i__] / q[i__ + j * q_dim1];
/* L90: */
	}
	temp = dnrm2_(k, &q[j * q_dim1 + 1], &c__1);
	i__2 = *k;
	for (i__ = 1; i__ <= i__2; ++i__) {
	    s[i__ + j * s_dim1] = q[i__ + j * q_dim1] / temp;
/* L100: */
	}
/* L110: */
    }

L120:
    return 0;

/*     End of DLAED9 */

} /* dlaed9_ */