sorgbr.c 8.41 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/* sorgbr.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

13 14
#include "clapack.h"

15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
/* Table of constant values */

static integer c__1 = 1;
static integer c_n1 = -1;

/* Subroutine */ int sorgbr_(char *vect, integer *m, integer *n, integer *k, 
	real *a, integer *lda, real *tau, real *work, integer *lwork, integer 
	*info)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3;

    /* Local variables */
    integer i__, j, nb, mn;
    extern logical lsame_(char *, char *);
    integer iinfo;
    logical wantq;
    extern /* Subroutine */ int xerbla_(char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *);
    extern /* Subroutine */ int sorglq_(integer *, integer *, integer *, real 
	    *, integer *, real *, real *, integer *, integer *), sorgqr_(
	    integer *, integer *, integer *, real *, integer *, real *, real *
, integer *, integer *);
    integer lwkopt;
    logical lquery;


44
/*  -- LAPACK routine (version 3.2) -- */
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SORGBR generates one of the real orthogonal matrices Q or P**T */
/*  determined by SGEBRD when reducing a real matrix A to bidiagonal */
/*  form: A = Q * B * P**T.  Q and P**T are defined as products of */
/*  elementary reflectors H(i) or G(i) respectively. */

/*  If VECT = 'Q', A is assumed to have been an M-by-K matrix, and Q */
/*  is of order M: */
/*  if m >= k, Q = H(1) H(2) . . . H(k) and SORGBR returns the first n */
/*  columns of Q, where m >= n >= k; */
/*  if m < k, Q = H(1) H(2) . . . H(m-1) and SORGBR returns Q as an */
/*  M-by-M matrix. */

/*  If VECT = 'P', A is assumed to have been a K-by-N matrix, and P**T */
/*  is of order N: */
/*  if k < n, P**T = G(k) . . . G(2) G(1) and SORGBR returns the first m */
/*  rows of P**T, where n >= m >= k; */
/*  if k >= n, P**T = G(n-1) . . . G(2) G(1) and SORGBR returns P**T as */
/*  an N-by-N matrix. */

/*  Arguments */
/*  ========= */

/*  VECT    (input) CHARACTER*1 */
/*          Specifies whether the matrix Q or the matrix P**T is */
/*          required, as defined in the transformation applied by SGEBRD: */
/*          = 'Q':  generate Q; */
/*          = 'P':  generate P**T. */

/*  M       (input) INTEGER */
/*          The number of rows of the matrix Q or P**T to be returned. */
/*          M >= 0. */

/*  N       (input) INTEGER */
/*          The number of columns of the matrix Q or P**T to be returned. */
/*          N >= 0. */
/*          If VECT = 'Q', M >= N >= min(M,K); */
/*          if VECT = 'P', N >= M >= min(N,K). */

/*  K       (input) INTEGER */
/*          If VECT = 'Q', the number of columns in the original M-by-K */
/*          matrix reduced by SGEBRD. */
/*          If VECT = 'P', the number of rows in the original K-by-N */
/*          matrix reduced by SGEBRD. */
/*          K >= 0. */

/*  A       (input/output) REAL array, dimension (LDA,N) */
/*          On entry, the vectors which define the elementary reflectors, */
/*          as returned by SGEBRD. */
/*          On exit, the M-by-N matrix Q or P**T. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A. LDA >= max(1,M). */

/*  TAU     (input) REAL array, dimension */
/*                                (min(M,K)) if VECT = 'Q' */
/*                                (min(N,K)) if VECT = 'P' */
/*          TAU(i) must contain the scalar factor of the elementary */
/*          reflector H(i) or G(i), which determines Q or P**T, as */
/*          returned by SGEBRD in its array argument TAUQ or TAUP. */

/*  WORK    (workspace/output) REAL array, dimension (MAX(1,LWORK)) */
/*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */

/*  LWORK   (input) INTEGER */
/*          The dimension of the array WORK. LWORK >= max(1,min(M,N)). */
/*          For optimum performance LWORK >= min(M,N)*NB, where NB */
/*          is the optimal blocksize. */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the optimal size of the WORK array, returns */
/*          this value as the first entry of the WORK array, and no error */
/*          message related to LWORK is issued by XERBLA. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input arguments */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --tau;
    --work;

    /* Function Body */
    *info = 0;
    wantq = lsame_(vect, "Q");
    mn = min(*m,*n);
    lquery = *lwork == -1;
    if (! wantq && ! lsame_(vect, "P")) {
	*info = -1;
    } else if (*m < 0) {
	*info = -2;
    } else if (*n < 0 || wantq && (*n > *m || *n < min(*m,*k)) || ! wantq && (
	    *m > *n || *m < min(*n,*k))) {
	*info = -3;
    } else if (*k < 0) {
	*info = -4;
    } else if (*lda < max(1,*m)) {
	*info = -6;
    } else if (*lwork < max(1,mn) && ! lquery) {
	*info = -9;
    }

    if (*info == 0) {
	if (wantq) {
	    nb = ilaenv_(&c__1, "SORGQR", " ", m, n, k, &c_n1);
	} else {
	    nb = ilaenv_(&c__1, "SORGLQ", " ", m, n, k, &c_n1);
	}
	lwkopt = max(1,mn) * nb;
	work[1] = (real) lwkopt;
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("SORGBR", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    if (*m == 0 || *n == 0) {
	work[1] = 1.f;
	return 0;
    }

    if (wantq) {

/*        Form Q, determined by a call to SGEBRD to reduce an m-by-k */
/*        matrix */

	if (*m >= *k) {

/*           If m >= k, assume m >= n >= k */

	    sorgqr_(m, n, k, &a[a_offset], lda, &tau[1], &work[1], lwork, &
		    iinfo);

	} else {

/*           If m < k, assume m = n */

/*           Shift the vectors which define the elementary reflectors one */
/*           column to the right, and set the first row and column of Q */
/*           to those of the unit matrix */

	    for (j = *m; j >= 2; --j) {
		a[j * a_dim1 + 1] = 0.f;
		i__1 = *m;
		for (i__ = j + 1; i__ <= i__1; ++i__) {
		    a[i__ + j * a_dim1] = a[i__ + (j - 1) * a_dim1];
/* L10: */
		}
/* L20: */
	    }
	    a[a_dim1 + 1] = 1.f;
	    i__1 = *m;
	    for (i__ = 2; i__ <= i__1; ++i__) {
		a[i__ + a_dim1] = 0.f;
/* L30: */
	    }
	    if (*m > 1) {

/*              Form Q(2:m,2:m) */

		i__1 = *m - 1;
		i__2 = *m - 1;
		i__3 = *m - 1;
		sorgqr_(&i__1, &i__2, &i__3, &a[(a_dim1 << 1) + 2], lda, &tau[
			1], &work[1], lwork, &iinfo);
	    }
	}
    } else {

/*        Form P', determined by a call to SGEBRD to reduce a k-by-n */
/*        matrix */

	if (*k < *n) {

/*           If k < n, assume k <= m <= n */

	    sorglq_(m, n, k, &a[a_offset], lda, &tau[1], &work[1], lwork, &
		    iinfo);

	} else {

/*           If k >= n, assume m = n */

/*           Shift the vectors which define the elementary reflectors one */
/*           row downward, and set the first row and column of P' to */
/*           those of the unit matrix */

	    a[a_dim1 + 1] = 1.f;
	    i__1 = *n;
	    for (i__ = 2; i__ <= i__1; ++i__) {
		a[i__ + a_dim1] = 0.f;
/* L40: */
	    }
	    i__1 = *n;
	    for (j = 2; j <= i__1; ++j) {
		for (i__ = j - 1; i__ >= 2; --i__) {
		    a[i__ + j * a_dim1] = a[i__ - 1 + j * a_dim1];
/* L50: */
		}
		a[j * a_dim1 + 1] = 0.f;
/* L60: */
	    }
	    if (*n > 1) {

/*              Form P'(2:n,2:n) */

		i__1 = *n - 1;
		i__2 = *n - 1;
		i__3 = *n - 1;
		sorglq_(&i__1, &i__2, &i__3, &a[(a_dim1 << 1) + 2], lda, &tau[
			1], &work[1], lwork, &iinfo);
	    }
	}
    }
    work[1] = (real) lwkopt;
    return 0;

/*     End of SORGBR */

} /* sorgbr_ */