dlarrf.c 13 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/* dlarrf.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

13 14
#include "clapack.h"

15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
/* Table of constant values */

static integer c__1 = 1;

/* Subroutine */ int dlarrf_(integer *n, doublereal *d__, doublereal *l, 
	doublereal *ld, integer *clstrt, integer *clend, doublereal *w, 
	doublereal *wgap, doublereal *werr, doublereal *spdiam, doublereal *
	clgapl, doublereal *clgapr, doublereal *pivmin, doublereal *sigma, 
	doublereal *dplus, doublereal *lplus, doublereal *work, integer *info)
{
    /* System generated locals */
    integer i__1;
    doublereal d__1, d__2, d__3;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    integer i__;
    doublereal s, bestshift, smlgrowth, eps, tmp, max1, max2, rrr1, rrr2, 
	    znm2, growthbound, fail, fact, oldp;
    integer indx;
    doublereal prod;
    integer ktry;
    doublereal fail2, avgap, ldmax, rdmax;
    integer shift;
    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
	    doublereal *, integer *);
    logical dorrr1;
    extern doublereal dlamch_(char *);
    doublereal ldelta;
    logical nofail;
    doublereal mingap, lsigma, rdelta;
    extern logical disnan_(doublereal *);
    logical forcer;
    doublereal rsigma, clwdth;
    logical sawnan1, sawnan2, tryrrr1;


55
/*  -- LAPACK auxiliary routine (version 3.2) -- */
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */
/* * */
/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  Given the initial representation L D L^T and its cluster of close */
/*  eigenvalues (in a relative measure), W( CLSTRT ), W( CLSTRT+1 ), ... */
/*  W( CLEND ), DLARRF finds a new relatively robust representation */
/*  L D L^T - SIGMA I = L(+) D(+) L(+)^T such that at least one of the */
/*  eigenvalues of L(+) D(+) L(+)^T is relatively isolated. */

/*  Arguments */
/*  ========= */

/*  N       (input) INTEGER */
/*          The order of the matrix (subblock, if the matrix splitted). */

/*  D       (input) DOUBLE PRECISION array, dimension (N) */
/*          The N diagonal elements of the diagonal matrix D. */

/*  L       (input) DOUBLE PRECISION array, dimension (N-1) */
/*          The (N-1) subdiagonal elements of the unit bidiagonal */
/*          matrix L. */

/*  LD      (input) DOUBLE PRECISION array, dimension (N-1) */
/*          The (N-1) elements L(i)*D(i). */

/*  CLSTRT  (input) INTEGER */
/*          The index of the first eigenvalue in the cluster. */

/*  CLEND   (input) INTEGER */
/*          The index of the last eigenvalue in the cluster. */

/*  W       (input) DOUBLE PRECISION array, dimension >=  (CLEND-CLSTRT+1) */
/*          The eigenvalue APPROXIMATIONS of L D L^T in ascending order. */
/*          W( CLSTRT ) through W( CLEND ) form the cluster of relatively */
/*          close eigenalues. */

/*  WGAP    (input/output) DOUBLE PRECISION array, dimension >=  (CLEND-CLSTRT+1) */
/*          The separation from the right neighbor eigenvalue in W. */

/*  WERR    (input) DOUBLE PRECISION array, dimension >=  (CLEND-CLSTRT+1) */
/*          WERR contain the semiwidth of the uncertainty */
/*          interval of the corresponding eigenvalue APPROXIMATION in W */

/*  SPDIAM (input) estimate of the spectral diameter obtained from the */
/*          Gerschgorin intervals */

/*  CLGAPL, CLGAPR (input) absolute gap on each end of the cluster. */
/*          Set by the calling routine to protect against shifts too close */
/*          to eigenvalues outside the cluster. */

/*  PIVMIN  (input) DOUBLE PRECISION */
/*          The minimum pivot allowed in the Sturm sequence. */

/*  SIGMA   (output) DOUBLE PRECISION */
/*          The shift used to form L(+) D(+) L(+)^T. */

/*  DPLUS   (output) DOUBLE PRECISION array, dimension (N) */
/*          The N diagonal elements of the diagonal matrix D(+). */

/*  LPLUS   (output) DOUBLE PRECISION array, dimension (N-1) */
/*          The first (N-1) elements of LPLUS contain the subdiagonal */
/*          elements of the unit bidiagonal matrix L(+). */

/*  WORK    (workspace) DOUBLE PRECISION array, dimension (2*N) */
/*          Workspace. */

/*  Further Details */
/*  =============== */

/*  Based on contributions by */
/*     Beresford Parlett, University of California, Berkeley, USA */
/*     Jim Demmel, University of California, Berkeley, USA */
/*     Inderjit Dhillon, University of Texas, Austin, USA */
/*     Osni Marques, LBNL/NERSC, USA */
/*     Christof Voemel, University of California, Berkeley, USA */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

    /* Parameter adjustments */
    --work;
    --lplus;
    --dplus;
    --werr;
    --wgap;
    --w;
    --ld;
    --l;
    --d__;

    /* Function Body */
    *info = 0;
    fact = 2.;
    eps = dlamch_("Precision");
    shift = 0;
    forcer = FALSE_;
/*     Note that we cannot guarantee that for any of the shifts tried, */
/*     the factorization has a small or even moderate element growth. */
/*     There could be Ritz values at both ends of the cluster and despite */
/*     backing off, there are examples where all factorizations tried */
/*     (in IEEE mode, allowing zero pivots & infinities) have INFINITE */
/*     element growth. */
/*     For this reason, we should use PIVMIN in this subroutine so that at */
/*     least the L D L^T factorization exists. It can be checked afterwards */
/*     whether the element growth caused bad residuals/orthogonality. */
/*     Decide whether the code should accept the best among all */
/*     representations despite large element growth or signal INFO=1 */
    nofail = TRUE_;

/*     Compute the average gap length of the cluster */
    clwdth = (d__1 = w[*clend] - w[*clstrt], abs(d__1)) + werr[*clend] + werr[
	    *clstrt];
    avgap = clwdth / (doublereal) (*clend - *clstrt);
    mingap = min(*clgapl,*clgapr);
/*     Initial values for shifts to both ends of cluster */
/* Computing MIN */
    d__1 = w[*clstrt], d__2 = w[*clend];
    lsigma = min(d__1,d__2) - werr[*clstrt];
/* Computing MAX */
    d__1 = w[*clstrt], d__2 = w[*clend];
    rsigma = max(d__1,d__2) + werr[*clend];
/*     Use a small fudge to make sure that we really shift to the outside */
    lsigma -= abs(lsigma) * 4. * eps;
    rsigma += abs(rsigma) * 4. * eps;
/*     Compute upper bounds for how much to back off the initial shifts */
    ldmax = mingap * .25 + *pivmin * 2.;
    rdmax = mingap * .25 + *pivmin * 2.;
/* Computing MAX */
    d__1 = avgap, d__2 = wgap[*clstrt];
    ldelta = max(d__1,d__2) / fact;
/* Computing MAX */
    d__1 = avgap, d__2 = wgap[*clend - 1];
    rdelta = max(d__1,d__2) / fact;

/*     Initialize the record of the best representation found */

    s = dlamch_("S");
    smlgrowth = 1. / s;
    fail = (doublereal) (*n - 1) * mingap / (*spdiam * eps);
    fail2 = (doublereal) (*n - 1) * mingap / (*spdiam * sqrt(eps));
    bestshift = lsigma;

/*     while (KTRY <= KTRYMAX) */
    ktry = 0;
    growthbound = *spdiam * 8.;
L5:
    sawnan1 = FALSE_;
    sawnan2 = FALSE_;
/*     Ensure that we do not back off too much of the initial shifts */
    ldelta = min(ldmax,ldelta);
    rdelta = min(rdmax,rdelta);
/*     Compute the element growth when shifting to both ends of the cluster */
/*     accept the shift if there is no element growth at one of the two ends */
/*     Left end */
    s = -lsigma;
    dplus[1] = d__[1] + s;
    if (abs(dplus[1]) < *pivmin) {
	dplus[1] = -(*pivmin);
/*        Need to set SAWNAN1 because refined RRR test should not be used */
/*        in this case */
	sawnan1 = TRUE_;
    }
    max1 = abs(dplus[1]);
    i__1 = *n - 1;
    for (i__ = 1; i__ <= i__1; ++i__) {
	lplus[i__] = ld[i__] / dplus[i__];
	s = s * lplus[i__] * l[i__] - lsigma;
	dplus[i__ + 1] = d__[i__ + 1] + s;
	if ((d__1 = dplus[i__ + 1], abs(d__1)) < *pivmin) {
	    dplus[i__ + 1] = -(*pivmin);
/*           Need to set SAWNAN1 because refined RRR test should not be used */
/*           in this case */
	    sawnan1 = TRUE_;
	}
/* Computing MAX */
	d__2 = max1, d__3 = (d__1 = dplus[i__ + 1], abs(d__1));
	max1 = max(d__2,d__3);
/* L6: */
    }
    sawnan1 = sawnan1 || disnan_(&max1);
    if (forcer || max1 <= growthbound && ! sawnan1) {
	*sigma = lsigma;
	shift = 1;
	goto L100;
    }
/*     Right end */
    s = -rsigma;
    work[1] = d__[1] + s;
    if (abs(work[1]) < *pivmin) {
	work[1] = -(*pivmin);
/*        Need to set SAWNAN2 because refined RRR test should not be used */
/*        in this case */
	sawnan2 = TRUE_;
    }
    max2 = abs(work[1]);
    i__1 = *n - 1;
    for (i__ = 1; i__ <= i__1; ++i__) {
	work[*n + i__] = ld[i__] / work[i__];
	s = s * work[*n + i__] * l[i__] - rsigma;
	work[i__ + 1] = d__[i__ + 1] + s;
	if ((d__1 = work[i__ + 1], abs(d__1)) < *pivmin) {
	    work[i__ + 1] = -(*pivmin);
/*           Need to set SAWNAN2 because refined RRR test should not be used */
/*           in this case */
	    sawnan2 = TRUE_;
	}
/* Computing MAX */
	d__2 = max2, d__3 = (d__1 = work[i__ + 1], abs(d__1));
	max2 = max(d__2,d__3);
/* L7: */
    }
    sawnan2 = sawnan2 || disnan_(&max2);
    if (forcer || max2 <= growthbound && ! sawnan2) {
	*sigma = rsigma;
	shift = 2;
	goto L100;
    }
/*     If we are at this point, both shifts led to too much element growth */
/*     Record the better of the two shifts (provided it didn't lead to NaN) */
    if (sawnan1 && sawnan2) {
/*        both MAX1 and MAX2 are NaN */
	goto L50;
    } else {
	if (! sawnan1) {
	    indx = 1;
	    if (max1 <= smlgrowth) {
		smlgrowth = max1;
		bestshift = lsigma;
	    }
	}
	if (! sawnan2) {
	    if (sawnan1 || max2 <= max1) {
		indx = 2;
	    }
	    if (max2 <= smlgrowth) {
		smlgrowth = max2;
		bestshift = rsigma;
	    }
	}
    }
/*     If we are here, both the left and the right shift led to */
/*     element growth. If the element growth is moderate, then */
/*     we may still accept the representation, if it passes a */
/*     refined test for RRR. This test supposes that no NaN occurred. */
/*     Moreover, we use the refined RRR test only for isolated clusters. */
    if (clwdth < mingap / 128. && min(max1,max2) < fail2 && ! sawnan1 && ! 
	    sawnan2) {
	dorrr1 = TRUE_;
    } else {
	dorrr1 = FALSE_;
    }
    tryrrr1 = TRUE_;
    if (tryrrr1 && dorrr1) {
	if (indx == 1) {
	    tmp = (d__1 = dplus[*n], abs(d__1));
	    znm2 = 1.;
	    prod = 1.;
	    oldp = 1.;
	    for (i__ = *n - 1; i__ >= 1; --i__) {
		if (prod <= eps) {
		    prod = dplus[i__ + 1] * work[*n + i__ + 1] / (dplus[i__] *
			     work[*n + i__]) * oldp;
		} else {
		    prod *= (d__1 = work[*n + i__], abs(d__1));
		}
		oldp = prod;
/* Computing 2nd power */
		d__1 = prod;
		znm2 += d__1 * d__1;
/* Computing MAX */
		d__2 = tmp, d__3 = (d__1 = dplus[i__] * prod, abs(d__1));
		tmp = max(d__2,d__3);
/* L15: */
	    }
	    rrr1 = tmp / (*spdiam * sqrt(znm2));
	    if (rrr1 <= 8.) {
		*sigma = lsigma;
		shift = 1;
		goto L100;
	    }
	} else if (indx == 2) {
	    tmp = (d__1 = work[*n], abs(d__1));
	    znm2 = 1.;
	    prod = 1.;
	    oldp = 1.;
	    for (i__ = *n - 1; i__ >= 1; --i__) {
		if (prod <= eps) {
		    prod = work[i__ + 1] * lplus[i__ + 1] / (work[i__] * 
			    lplus[i__]) * oldp;
		} else {
		    prod *= (d__1 = lplus[i__], abs(d__1));
		}
		oldp = prod;
/* Computing 2nd power */
		d__1 = prod;
		znm2 += d__1 * d__1;
/* Computing MAX */
		d__2 = tmp, d__3 = (d__1 = work[i__] * prod, abs(d__1));
		tmp = max(d__2,d__3);
/* L16: */
	    }
	    rrr2 = tmp / (*spdiam * sqrt(znm2));
	    if (rrr2 <= 8.) {
		*sigma = rsigma;
		shift = 2;
		goto L100;
	    }
	}
    }
L50:
    if (ktry < 1) {
/*        If we are here, both shifts failed also the RRR test. */
/*        Back off to the outside */
/* Computing MAX */
	d__1 = lsigma - ldelta, d__2 = lsigma - ldmax;
	lsigma = max(d__1,d__2);
/* Computing MIN */
	d__1 = rsigma + rdelta, d__2 = rsigma + rdmax;
	rsigma = min(d__1,d__2);
	ldelta *= 2.;
	rdelta *= 2.;
	++ktry;
	goto L5;
    } else {
/*        None of the representations investigated satisfied our */
/*        criteria. Take the best one we found. */
	if (smlgrowth < fail || nofail) {
	    lsigma = bestshift;
	    rsigma = bestshift;
	    forcer = TRUE_;
	    goto L5;
	} else {
	    *info = 1;
	    return 0;
	}
    }
L100:
    if (shift == 1) {
    } else if (shift == 2) {
/*        store new L and D back into DPLUS, LPLUS */
	dcopy_(n, &work[1], &c__1, &dplus[1], &c__1);
	i__1 = *n - 1;
	dcopy_(&i__1, &work[*n + 1], &c__1, &lplus[1], &c__1);
    }
    return 0;

/*     End of DLARRF */

} /* dlarrf_ */