bgfg_gaussmix2.cpp 40.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                        Intel License Agreement
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

/*//Implementation of the Gaussian mixture model background subtraction from:
//
//"Improved adaptive Gausian mixture model for background subtraction"
//Z.Zivkovic 
//International Conference Pattern Recognition, UK, August, 2004
//http://www.zoranz.net/Publications/zivkovic2004ICPR.pdf
//The code is very fast and performs also shadow detection. 
//Number of Gausssian components is adapted per pixel.
//
// and
//
//"Efficient Adaptive Density Estimapion per Image Pixel for the Task of Background Subtraction"
//Z.Zivkovic, F. van der Heijden 
//Pattern Recognition Letters, vol. 27, no. 7, pages 773-780, 2006.
//
//The algorithm similar to the standard Stauffer&Grimson algorithm with
//additional selection of the number of the Gaussian components based on:
//
//"Recursive unsupervised learning of finite mixture models "
//Z.Zivkovic, F.van der Heijden 
//IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.26, no.5, pages 651-656, 2004
//http://www.zoranz.net/Publications/zivkovic2004PAMI.pdf
//
//
65 66 67 68
//Example usage with as cpp class
// BackgroundSubtractorMOG2 bg_model;
//For each new image the model is updates using: 
// bg_model(img, fgmask);
69
//
70
//Example usage as part of the CvBGStatModel:
71 72 73 74 75 76 77 78 79
// CvBGStatModel* bg_model = cvCreateGaussianBGModel2( first_frame );
//
// //update for each frame
// cvUpdateBGStatModel( tmp_frame, bg_model );//segmentation result is in bg_model->foreground
//
// //release at the program termination
// cvReleaseBGStatModel( &bg_model );
//
//Author: Z.Zivkovic, www.zoranz.net
80
//Date: 7-April-2011, Version:1.0
81 82
///////////*/

83
#include "precomp.hpp"
84

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102

/*
 Interface of Gaussian mixture algorithm from:
 
 "Improved adaptive Gausian mixture model for background subtraction"
 Z.Zivkovic
 International Conference Pattern Recognition, UK, August, 2004
 http://www.zoranz.net/Publications/zivkovic2004ICPR.pdf
 
 Advantages:
 -fast - number of Gausssian components is constantly adapted per pixel.
 -performs also shadow detection (see bgfg_segm_test.cpp example)
 
 */


#define CV_BG_MODEL_MOG2            3                 /* "Mixture of Gaussians 2".  */

103 104 105 106 107 108 109

/* default parameters of gaussian background detection algorithm */
#define CV_BGFG_MOG2_STD_THRESHOLD            4.0f     /* lambda=2.5 is 99% */
#define CV_BGFG_MOG2_WINDOW_SIZE              500      /* Learning rate; alpha = 1/CV_GBG_WINDOW_SIZE */
#define CV_BGFG_MOG2_BACKGROUND_THRESHOLD     0.9f     /* threshold sum of weights for background test */
#define CV_BGFG_MOG2_STD_THRESHOLD_GENERATE   3.0f     /* lambda=2.5 is 99% */
#define CV_BGFG_MOG2_NGAUSSIANS               5        /* = K = number of Gaussians in mixture */
110 111 112 113
#define CV_BGFG_MOG2_VAR_INIT                 15.0f    /* initial variance for new components*/
#define CV_BGFG_MOG2_VAR_MIN                    4.0f
#define CV_BGFG_MOG2_VAR_MAX                      5*CV_BGFG_MOG2_VAR_INIT
#define CV_BGFG_MOG2_MINAREA                  15.0f    /* for postfiltering */
114 115

/* additional parameters */
116
#define CV_BGFG_MOG2_CT                               0.05f     /* complexity reduction prior constant 0 - no reduction of number of components*/
117 118 119
#define CV_BGFG_MOG2_SHADOW_VALUE             127       /* value to use in the segmentation mask for shadows, sot 0 not to do shadow detection*/
#define CV_BGFG_MOG2_SHADOW_TAU               0.5f      /* Tau - shadow threshold, see the paper for explanation*/

120 121 122 123 124 125 126 127
typedef struct CvGaussBGStatModel2Params
{
    //image info
    int nWidth;
    int nHeight;
    int nND;//number of data dimensions (image channels)
    
    bool bPostFiltering;//defult 1 - do postfiltering - will make shadow detection results also give value 255 
128 129
    double  minArea; // for postfiltering
    
130
    bool bInit;//default 1, faster updates at start
131
    
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
    /////////////////////////
    //very important parameters - things you will change
    ////////////////////////
    float fAlphaT;
    //alpha - speed of update - if the time interval you want to average over is T
    //set alpha=1/T. It is also usefull at start to make T slowly increase
    //from 1 until the desired T
    float fTb;
    //Tb - threshold on the squared Mahalan. dist. to decide if it is well described
    //by the background model or not. Related to Cthr from the paper.
    //This does not influence the update of the background. A typical value could be 4 sigma
    //and that is Tb=4*4=16;
    
    /////////////////////////
    //less important parameters - things you might change but be carefull
    ////////////////////////
    float fTg;
    //Tg - threshold on the squared Mahalan. dist. to decide
    //when a sample is close to the existing components. If it is not close
    //to any a new component will be generated. I use 3 sigma => Tg=3*3=9.
    //Smaller Tg leads to more generated components and higher Tg might make
    //lead to small number of components but they can grow too large
    float fTB;//1-cf from the paper
    //TB - threshold when the component becomes significant enough to be included into
    //the background model. It is the TB=1-cf from the paper. So I use cf=0.1 => TB=0.
    //For alpha=0.001 it means that the mode should exist for approximately 105 frames before
    //it is considered foreground
    float fVarInit;
    float fVarMax;
    float fVarMin;
    //initial standard deviation  for the newly generated components.
    //It will will influence the speed of adaptation. A good guess should be made.
    //A simple way is to estimate the typical standard deviation from the images.
    //I used here 10 as a reasonable value
    float fCT;//CT - complexity reduction prior
    //this is related to the number of samples needed to accept that a component
    //actually exists. We use CT=0.05 of all the samples. By setting CT=0 you get
    //the standard Stauffer&Grimson algorithm (maybe not exact but very similar)
170
    
171 172
    //even less important parameters
    int nM;//max number of modes - const - 4 is usually enough
173
    
174 175 176 177 178 179 180 181 182 183 184 185 186
    //shadow detection parameters
    bool bShadowDetection;//default 1 - do shadow detection
    unsigned char nShadowDetection;//do shadow detection - insert this value as the detection result
    float fTau;
    // Tau - shadow threshold. The shadow is detected if the pixel is darker
    //version of the background. Tau is a threshold on how much darker the shadow can be.
    //Tau= 0.5 means that if pixel is more than 2 times darker then it is not shadow
    //See: Prati,Mikic,Trivedi,Cucchiarra,"Detecting Moving Shadows...",IEEE PAMI,2003.
} CvGaussBGStatModel2Params;

#define CV_BGFG_MOG2_NDMAX 3

typedef struct CvPBGMMGaussian
187
{
188 189 190 191 192 193 194 195 196 197
    float weight;
    float mean[CV_BGFG_MOG2_NDMAX];
    float variance;
}CvPBGMMGaussian;

typedef struct CvGaussBGStatModel2Data
{ 
    CvPBGMMGaussian* rGMM; //array for the mixture of Gaussians
    unsigned char* rnUsedModes;//number of Gaussian components per pixel (maximum 255)
} CvGaussBGStatModel2Data;
198 199 200

//only foreground image is updated
//no filtering included
201
typedef struct CvGaussBGModel2
202
{
203
    CV_BG_STAT_MODEL_FIELDS();
204
    CvGaussBGStatModel2Params params;
205 206 207 208
    CvGaussBGStatModel2Data   data;
    int                       countFrames;
}
CvGaussBGModel2;
209

210 211 212 213 214 215
CVAPI(CvBGStatModel*) cvCreateGaussianBGModel2( IplImage* first_frame,
                                                CvGaussBGStatModel2Params* params CV_DEFAULT(NULL) );
//shadow detection performed per pixel
// should work for rgb data, could be usefull for gray scale and depth data as well
//	See: Prati,Mikic,Trivedi,Cucchiarra,"Detecting Moving Shadows...",IEEE PAMI,2003.
CV_INLINE int _icvRemoveShadowGMM(float* data, int nD,
216
								unsigned char nModes, 
217
								CvPBGMMGaussian* pGMM,
218 219 220 221 222 223
								float m_fTb,
								float m_fTB,	
								float m_fTau)
{
	float tWeight = 0;
	float numerator, denominator;
224
	// check all the components  marked as background:
225 226
	for (int iModes=0;iModes<nModes;iModes++)
	{
227 228 229 230 231 232 233 234 235 236 237

		CvPBGMMGaussian g=pGMM[iModes];

		numerator = 0.0f;
		denominator = 0.0f;
		for (int iD=0;iD<nD;iD++)
		{
				numerator   += data[iD]  * g.mean[iD];
				denominator += g.mean[iD]* g.mean[iD];
		}

238 239 240
		// no division by zero allowed
		if (denominator == 0)
		{
241
				return 0;
242 243 244 245
		};
		float a = numerator / denominator;

		// if tau < a < 1 then also check the color distortion
246 247 248 249 250 251 252 253 254 255 256 257
		if ((a <= 1) && (a >= m_fTau))
		{

			float dist2a=0.0f;
			
			for (int iD=0;iD<nD;iD++)
			{
				float dD= a*g.mean[iD] - data[iD];
				dist2a += (dD*dD);
			}

			if (dist2a<m_fTb*g.variance*a*a)
258 259 260 261
			{
				return 2;
			}
		};
262 263

		tWeight += g.weight;
264 265
		if (tWeight > m_fTB)
		{
266
				return 0;
267 268 269 270 271
		};
	};
	return 0;
}

272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
//update GMM - the base update function performed per pixel
//
//"Efficient Adaptive Density Estimapion per Image Pixel for the Task of Background Subtraction"
//Z.Zivkovic, F. van der Heijden 
//Pattern Recognition Letters, vol. 27, no. 7, pages 773-780, 2006.
//
//The algorithm similar to the standard Stauffer&Grimson algorithm with
//additional selection of the number of the Gaussian components based on:
//
//"Recursive unsupervised learning of finite mixture models "
//Z.Zivkovic, F.van der Heijden 
//IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.26, no.5, pages 651-656, 2004
//http://www.zoranz.net/Publications/zivkovic2004PAMI.pdf

CV_INLINE int _icvUpdateGMM(float* data, int nD,
287
								unsigned char* pModesUsed, 
288
								CvPBGMMGaussian* pGMM,
289 290 291 292 293
								int m_nM,
								float m_fAlphaT,
								float m_fTb,
								float m_fTB,	
								float m_fTg,
294 295 296
								float m_fVarInit,
								float m_fVarMax,
								float m_fVarMin,
297 298
								float m_fPrune)
{
299 300 301
	//calculate distances to the modes (+ sort)
	//here we need to go in descending order!!!	
	bool bBackground=0;//return value -> true - the pixel classified as background
302

303 304
	//internal:
	bool bFitsPDF=0;//if it remains zero a new GMM mode will be added	
305
	float m_fOneMinAlpha=1-m_fAlphaT;
306
	unsigned char nModes=*pModesUsed;//current number of modes in GMM
307 308 309 310
	float totalWeight=0.0f;

	//////
	//go through all modes
311 312 313
	int iMode=0;
	CvPBGMMGaussian* pGauss=pGMM;
	for (;iMode<nModes;iMode++,pGauss++)
314
	{
315 316
		float weight = pGauss->weight;//need only weight if fit is found
		weight=m_fOneMinAlpha*weight+m_fPrune;
317 318 319 320 321

		////
		//fit not found yet
		if (!bFitsPDF)
		{
322 323
			//check if it belongs to some of the remaining modes
			float var=pGauss->variance;
324

325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
			//calculate difference and distance
			float dist2=0.0f;
#if (CV_BGFG_MOG2_NDMAX==1)
			float dData=pGauss->mean[0]-data[0];
			dist2=dData*dData;
#else			
			float dData[CV_BGFG_MOG2_NDMAX];

			for (int iD=0;iD<nD;iD++)
			{
				dData[iD]=pGauss->mean[iD]-data[iD];
				dist2+=dData[iD]*dData[iD];
			}
#endif		
			//background? - m_fTb - usually larger than m_fTg
			if ((totalWeight<m_fTB)&&(dist2<m_fTb*var))
341
					bBackground=1;
342

343
			//check fit
344
			if (dist2<m_fTg*var)
345 346
			{
				/////
347
				//belongs to the mode - bFitsPDF becomes 1
348 349
				bFitsPDF=1;

350 351 352
				//update distribution				
				
				//update weight
353
				weight+=m_fAlphaT;
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371

				float k = m_fAlphaT/weight;

				//update mean
#if (CV_BGFG_MOG2_NDMAX==1)
				pGauss->mean[0]-=k*dData;
#else				
				for (int iD=0;iD<nD;iD++)
				{
					pGauss->mean[iD]-=k*dData[iD];
				}
#endif

				//update variance
				float varnew = var + k*(dist2-var);
				//limit the variance				
				pGauss->variance = MIN(m_fVarMax,MAX(varnew,m_fVarMin));

372 373
				//sort
				//all other weights are at the same place and 
374 375
				//only the matched (iModes) is higher -> just find the new place for it				
				for (int iLocal = iMode;iLocal>0;iLocal--)
376
				{
377 378
					//check one up
					if (weight < (pGMM[iLocal-1].weight))
379 380 381 382 383
					{
						break;
					}
					else
					{
384 385 386 387 388
						//swap one up
						CvPBGMMGaussian temp = pGMM[iLocal];
						pGMM[iLocal] = pGMM[iLocal-1];
						pGMM[iLocal-1] = temp;
						pGauss--;
389 390
					}
				}
391
				//belongs to the mode - bFitsPDF becomes 1
392 393
				/////
			}
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
		}//!bFitsPDF)

		//check prune
		if (weight<-m_fPrune)
		{
			weight=0.0;
			nModes--;
		}

		pGauss->weight=weight;//update weight by the calculated value
		totalWeight+=weight;
	}
	//go through all modes
	//////

	//renormalize weights
	for (iMode = 0; iMode < nModes; iMode++)
	{
		pGMM[iMode].weight = pGMM[iMode].weight/totalWeight;
	}
	
	//make new mode if needed and exit
	if (!bFitsPDF)
	{
		if (nModes==m_nM)
		{
           //replace the weakest
			pGauss=pGMM+m_nM-1;
		}
		else
		{
           //add a new one
			pGauss=pGMM+nModes;
			nModes++;
		}

      	if (nModes==1)
		{
			pGauss->weight=1;
		}
		else
		{
			pGauss->weight=m_fAlphaT;

			//renormalize all weights
			for (iMode = 0; iMode < nModes-1; iMode++)
440
			{
441
				pGMM[iMode].weight *=m_fOneMinAlpha;
442 443
			}
		}
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507

		//init 
		memcpy(pGauss->mean,data,nD*sizeof(float));
		pGauss->variance=m_fVarInit;

		//sort
		//find the new place for it
		for (int iLocal = nModes-1;iLocal>0;iLocal--)
		{
					//check one up
					if (m_fAlphaT < (pGMM[iLocal-1].weight))
					{
						break;
					}
					else
					{
						//swap one up
						CvPBGMMGaussian temp = pGMM[iLocal];
						pGMM[iLocal] = pGMM[iLocal-1];
						pGMM[iLocal-1] = temp;
					}
		}
	}

	//set the number of modes
	*pModesUsed=nModes;

    return bBackground;
}

// a bit more efficient implementation for common case of 3 channel (rgb) images
CV_INLINE int _icvUpdateGMM_C3(float r,float g, float b,
								unsigned char* pModesUsed, 
								CvPBGMMGaussian* pGMM,
								int m_nM,
								float m_fAlphaT,
								float m_fTb,
								float m_fTB,	
								float m_fTg,
								float m_fVarInit,
								float m_fVarMax,
								float m_fVarMin,
								float m_fPrune)
{
	//calculate distances to the modes (+ sort)
	//here we need to go in descending order!!!	
	bool bBackground=0;//return value -> true - the pixel classified as background

	//internal:
	bool bFitsPDF=0;//if it remains zero a new GMM mode will be added	
	float m_fOneMinAlpha=1-m_fAlphaT;
	unsigned char nModes=*pModesUsed;//current number of modes in GMM
	float totalWeight=0.0f;

	//////
	//go through all modes
	int iMode=0;
	CvPBGMMGaussian* pGauss=pGMM;
	for (;iMode<nModes;iMode++,pGauss++)
	{
		float weight = pGauss->weight;//need only weight if fit is found
		weight=m_fOneMinAlpha*weight+m_fPrune;

		////
508
		//fit not found yet
509
		if (!bFitsPDF)
510
		{
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
			//check if it belongs to some of the remaining modes
			float var=pGauss->variance;

			//calculate difference and distance
			float muR = pGauss->mean[0];
			float muG = pGauss->mean[1];
			float muB = pGauss->mean[2];
		
			float dR=muR - r;
			float dG=muG - g;
			float dB=muB - b;

			float dist2=(dR*dR+dG*dG+dB*dB);		
			
			//background? - m_fTb - usually larger than m_fTg
			if ((totalWeight<m_fTB)&&(dist2<m_fTb*var))
					bBackground=1;

			//check fit
			if (dist2<m_fTg*var)
			{
				/////
				//belongs to the mode - bFitsPDF becomes 1
				bFitsPDF=1;

				//update distribution				
				
				//update weight
				weight+=m_fAlphaT;
				
				float k = m_fAlphaT/weight;

				//update mean
				pGauss->mean[0] = muR - k*(dR);
				pGauss->mean[1] = muG - k*(dG);
				pGauss->mean[2] = muB - k*(dB);

				//update variance
				float varnew = var + k*(dist2-var);
				//limit the variance				
				pGauss->variance = MIN(m_fVarMax,MAX(varnew,m_fVarMin));

				//sort
				//all other weights are at the same place and 
				//only the matched (iModes) is higher -> just find the new place for it				
				for (int iLocal = iMode;iLocal>0;iLocal--)
557
				{
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
					//check one up
					if (weight < (pGMM[iLocal-1].weight))
					{
						break;
					}
					else
					{
						//swap one up
						CvPBGMMGaussian temp = pGMM[iLocal];
						pGMM[iLocal] = pGMM[iLocal-1];
						pGMM[iLocal-1] = temp;
						pGauss--;
					}
				}
				//belongs to the mode - bFitsPDF becomes 1
				/////
			}	

		}//!bFitsPDF)
		
		//check prunning
		if (weight<-m_fPrune)
		{
581 582 583
					weight=0.0;
					nModes--;
		}
584 585

		pGauss->weight=weight;
586 587 588 589 590 591
		totalWeight+=weight;
	}
	//go through all modes
	//////

	//renormalize weights
592
	for (iMode = 0; iMode < nModes; iMode++)
593
	{
594
		pGMM[iMode].weight = pGMM[iMode].weight/totalWeight;
595 596 597 598 599 600 601 602
	}
	
	//make new mode if needed and exit
	if (!bFitsPDF)
	{
		if (nModes==m_nM)
		{
           //replace the weakest
603
			pGauss=pGMM+m_nM-1;
604 605 606 607
		}
		else
		{
           //add a new one
608
			pGauss=pGMM+nModes;
609 610 611 612
			nModes++;
		}

      	if (nModes==1)
613 614 615
		{
			pGauss->weight=1;
		}
616 617
		else
		{
618 619 620 621 622 623 624
			pGauss->weight=m_fAlphaT;

			//renormalize all weights
			for (iMode = 0; iMode < nModes-1; iMode++)
			{
				pGMM[iMode].weight *=m_fOneMinAlpha;
			}
625 626
		}

627 628 629 630 631 632
		//init 
		pGauss->mean[0]=r;
		pGauss->mean[1]=g;
		pGauss->mean[2]=b;

		pGauss->variance=m_fVarInit;
633 634 635

		//sort
		//find the new place for it
636
		for (int iLocal = nModes-1;iLocal>0;iLocal--)
637
		{
638 639 640
					//check one up
					if (m_fAlphaT < (pGMM[iLocal-1].weight))
					{
641
						break;
642 643 644 645 646 647 648 649
					}
					else
					{
						//swap one up
						CvPBGMMGaussian temp = pGMM[iLocal];
						pGMM[iLocal] = pGMM[iLocal-1];
						pGMM[iLocal-1] = temp;
					}
650 651 652 653 654 655 656 657 658
		}
	}

	//set the number of modes
	*pModesUsed=nModes;

    return bBackground;
}

659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
//the main function to update the background model
void icvUpdatePixelBackgroundGMM2( const CvArr* srcarr, CvArr* dstarr ,
										 CvPBGMMGaussian *pGMM,
										 unsigned char *pUsedModes,
										 //CvGaussBGStatModel2Params* pGMMPar,
										 int nM,
										 float fTb, 
										 float fTB, 
										 float fTg, 
										 float fVarInit,
										 float fVarMax,
										 float fVarMin,
										 float fCT,
										 float fTau,
										 bool bShadowDetection,
										 unsigned char  nShadowDetection,
										 float alpha)
{
	CvMat sstub, *src = cvGetMat(srcarr, &sstub);
    CvMat dstub, *dst = cvGetMat(dstarr, &dstub);
    CvSize size = cvGetMatSize(src);
	int nD=CV_MAT_CN(src->type);

	//reshape if possible
    if( CV_IS_MAT_CONT(src->type & dst->type) )
    {
        size.width *= size.height;
        size.height = 1;
    }

    int x, y;
	float data[CV_BGFG_MOG2_NDMAX];
	float prune=-alpha*fCT;

	//general nD

	if (nD!=3)
	{
	switch (CV_MAT_DEPTH(src->type))
	{
	case CV_8U:
		for( y = 0; y < size.height; y++ )
		{
			uchar* sptr = src->data.ptr + src->step*y;
			uchar* pDataOutput = dst->data.ptr + dst->step*y;
			for( x = 0; x < size.width; x++,
				pGMM+=nM,pUsedModes++,pDataOutput++,sptr+=nD)
			{
				//convert data
				for (int iD=0;iD<nD;iD++) data[iD]=float(sptr[iD]);
				//update GMM model
				int result = _icvUpdateGMM(data,nD,pUsedModes,pGMM,nM,alpha, fTb, fTB, fTg, fVarInit, fVarMax, fVarMin,prune);
				//detect shadows in the foreground
				if (bShadowDetection)
					if (result==0) result= _icvRemoveShadowGMM(data,nD,(*pUsedModes),pGMM,fTb,fTB,fTau);
				//generate output
				(* pDataOutput)= (result==1) ? 0 : (result==2) ? (nShadowDetection) : 255; 
			}
		}
		break;
	case CV_16S:
		for( y = 0; y < size.height; y++ )
		{
			short* sptr = src->data.s + src->step*y;
			uchar* pDataOutput = dst->data.ptr + dst->step*y;
			for( x = 0; x < size.width; x++,
				pGMM+=nM,pUsedModes++,pDataOutput++,sptr+=nD)
			{
				//convert data
				for (int iD=0;iD<nD;iD++) data[iD]=float(sptr[iD]);
				//update GMM model
				int result = _icvUpdateGMM(data,nD,pUsedModes,pGMM,nM,alpha, fTb, fTB, fTg, fVarInit, fVarMax, fVarMin,prune);
				//detect shadows in the foreground
				if (bShadowDetection)
					if (result==0) result= _icvRemoveShadowGMM(data,nD,(*pUsedModes),pGMM,fTb,fTB,fTau);
				//generate output
				(* pDataOutput)= (result==1) ? 0 : (result==2) ? (nShadowDetection) : 255; 
			}
		}
		break;
	case CV_16U:
		for( y = 0; y < size.height; y++ )
		{
			unsigned short* sptr = (unsigned short*) (src->data.s + src->step*y);
			uchar* pDataOutput = dst->data.ptr + dst->step*y;
			for( x = 0; x < size.width; x++,
				pGMM+=nM,pUsedModes++,pDataOutput++,sptr+=nD)
			{
				//convert data
				for (int iD=0;iD<nD;iD++) data[iD]=float(sptr[iD]);
				//update GMM model
				int result = _icvUpdateGMM(data,nD,pUsedModes,pGMM,nM,alpha, fTb, fTB, fTg, fVarInit, fVarMax, fVarMin,prune);
				//detect shadows in the foreground
				if (bShadowDetection)
					if (result==0) result= _icvRemoveShadowGMM(data,nD,(*pUsedModes),pGMM,fTb,fTB,fTau);
				//generate output
				(* pDataOutput)= (result==1) ? 0 : (result==2) ? (nShadowDetection) : 255; 
			}
		}
		break;
	case CV_32S:
		for( y = 0; y < size.height; y++ )
		{
			int* sptr = src->data.i + src->step*y;
			uchar* pDataOutput = dst->data.ptr + dst->step*y;
			for( x = 0; x < size.width; x++,
				pGMM+=nM,pUsedModes++,pDataOutput++,sptr+=nD)
			{
				//convert data
				for (int iD=0;iD<nD;iD++) data[iD]=float(sptr[iD]);
				//update GMM model
				int result = _icvUpdateGMM(data,nD,pUsedModes,pGMM,nM,alpha, fTb, fTB, fTg, fVarInit, fVarMax, fVarMin,prune);
				//detect shadows in the foreground
				if (bShadowDetection)
					if (result==0) result= _icvRemoveShadowGMM(data,nD,(*pUsedModes),pGMM,fTb,fTB,fTau);
				//generate output
				(* pDataOutput)= (result==1) ? 0 : (result==2) ? (nShadowDetection) : 255; 
			}
		}
		break;
	case CV_32F:
		for( y = 0; y < size.height; y++ )
		{
			float* sptr = src->data.fl + src->step*y;
			uchar* pDataOutput = dst->data.ptr + dst->step*y;
			for( x = 0; x < size.width; x++,
				pGMM+=nM,pUsedModes++,pDataOutput++,sptr+=nD)
			{
				//update GMM model
				int result = _icvUpdateGMM(sptr,nD,pUsedModes,pGMM,nM,alpha, fTb, fTB, fTg, fVarInit, fVarMax, fVarMin,prune);
				//detect shadows in the foreground
				if (bShadowDetection)
					if (result==0) result= _icvRemoveShadowGMM(data,nD,(*pUsedModes),pGMM,fTb,fTB,fTau);
				//generate output
				(* pDataOutput)= (result==1) ? 0 : (result==2) ? (nShadowDetection) : 255; 
			}
		}
		break;
	case CV_64F:
		for( y = 0; y < size.height; y++ )
		{
			double* sptr = src->data.db + src->step*y;
			uchar* pDataOutput = dst->data.ptr + dst->step*y;
			for( x = 0; x < size.width; x++,
				pGMM+=nM,pUsedModes++,pDataOutput++,sptr+=nD)
			{
				//convert data
				for (int iD=0;iD<nD;iD++) data[iD]=float(sptr[iD]);
				//update GMM model
				int result = _icvUpdateGMM(data,nD,pUsedModes,pGMM,nM,alpha, fTb, fTB, fTg, fVarInit, fVarMax, fVarMin,prune);
				//detect shadows in the foreground
				if (bShadowDetection)
					if (result==0) result= _icvRemoveShadowGMM(data,nD,(*pUsedModes),pGMM,fTb,fTB,fTau);
				//generate output
				(* pDataOutput)= (result==1) ? 0 : (result==2) ? (nShadowDetection) : 255; 
			}
		}
		break;
	}
	}else ///if (nD==3) - a bit faster
	{
	switch (CV_MAT_DEPTH(src->type))
	{
	case CV_8U:
		for( y = 0; y < size.height; y++ )
		{
			uchar* sptr = src->data.ptr + src->step*y;
			uchar* pDataOutput = dst->data.ptr + dst->step*y;
			for( x = 0; x < size.width; x++,
				pGMM+=nM,pUsedModes++,pDataOutput++,sptr+=nD)
			{
				//convert data
				data[0]=float(sptr[0]),data[1]=float(sptr[1]),data[2]=float(sptr[2]);
				//update GMM model
				int result = _icvUpdateGMM_C3(data[0],data[1],data[2],pUsedModes,pGMM,nM,alpha, fTb, fTB, fTg, fVarInit, fVarMax, fVarMin,prune);
				//detect shadows in the foreground
				if (bShadowDetection)
					if (result==0) result= _icvRemoveShadowGMM(data,nD,(*pUsedModes),pGMM,fTb,fTB,fTau);
				//generate output
				(* pDataOutput)= (result==1) ? 0 : (result==2) ? (nShadowDetection) : 255; 
			}
		}
		break;
	case CV_16S:
		for( y = 0; y < size.height; y++ )
		{
			short* sptr = src->data.s + src->step*y;
			uchar* pDataOutput = dst->data.ptr + dst->step*y;
			for( x = 0; x < size.width; x++,
				pGMM+=nM,pUsedModes++,pDataOutput++,sptr+=nD)
			{
				//convert data
				data[0]=float(sptr[0]),data[1]=float(sptr[1]),data[2]=float(sptr[2]);
				//update GMM model
				int result = _icvUpdateGMM_C3(data[0],data[1],data[2],pUsedModes,pGMM,nM,alpha, fTb, fTB, fTg, fVarInit, fVarMax, fVarMin,prune);
				//detect shadows in the foreground
				if (bShadowDetection)
					if (result==0) result= _icvRemoveShadowGMM(data,nD,(*pUsedModes),pGMM,fTb,fTB,fTau);
				//generate output
				(* pDataOutput)= (result==1) ? 0 : (result==2) ? (nShadowDetection) : 255; 
			}
		}
		break;
	case CV_16U:
		for( y = 0; y < size.height; y++ )
		{
			unsigned short* sptr = (unsigned short*) src->data.s + src->step*y;
			uchar* pDataOutput = dst->data.ptr + dst->step*y;
			for( x = 0; x < size.width; x++,
				pGMM+=nM,pUsedModes++,pDataOutput++,sptr+=nD)
			{
				//convert data
				data[0]=float(sptr[0]),data[1]=float(sptr[1]),data[2]=float(sptr[2]);
				//update GMM model
				int result = _icvUpdateGMM_C3(data[0],data[1],data[2],pUsedModes,pGMM,nM,alpha, fTb, fTB, fTg, fVarInit, fVarMax, fVarMin,prune);
				//detect shadows in the foreground
				if (bShadowDetection)
					if (result==0) result= _icvRemoveShadowGMM(data,nD,(*pUsedModes),pGMM,fTb,fTB,fTau);
				//generate output
				(* pDataOutput)= (result==1) ? 0 : (result==2) ? (nShadowDetection) : 255; 
			}
		}
		break;
	case CV_32S:
		for( y = 0; y < size.height; y++ )
		{
			int* sptr = src->data.i + src->step*y;
			uchar* pDataOutput = dst->data.ptr + dst->step*y;
			for( x = 0; x < size.width; x++,
				pGMM+=nM,pUsedModes++,pDataOutput++,sptr+=nD)
			{
				//convert data
				data[0]=float(sptr[0]),data[1]=float(sptr[1]),data[2]=float(sptr[2]);
				//update GMM model
				int result = _icvUpdateGMM_C3(data[0],data[1],data[2],pUsedModes,pGMM,nM,alpha, fTb, fTB, fTg, fVarInit, fVarMax, fVarMin,prune);
				//detect shadows in the foreground
				if (bShadowDetection)
					if (result==0) result= _icvRemoveShadowGMM(data,nD,(*pUsedModes),pGMM,fTb,fTB,fTau);
				//generate output
				(* pDataOutput)= (result==1) ? 0 : (result==2) ? (nShadowDetection) : 255; 
			}
		}
		break;
	case CV_32F:
		for( y = 0; y < size.height; y++ )
		{
			float* sptr = src->data.fl + src->step*y;
			uchar* pDataOutput = dst->data.ptr + dst->step*y;
			for( x = 0; x < size.width; x++,
				pGMM+=nM,pUsedModes++,pDataOutput++,sptr+=nD)
			{
				//update GMM model
				int result = _icvUpdateGMM_C3(sptr[0],sptr[1],sptr[2],pUsedModes,pGMM,nM,alpha, fTb, fTB, fTg, fVarInit, fVarMax, fVarMin,prune);
				//detect shadows in the foreground
				if (bShadowDetection)
					if (result==0) result= _icvRemoveShadowGMM(data,nD,(*pUsedModes),pGMM,fTb,fTB,fTau);
				//generate output
				(* pDataOutput)= (result==1) ? 0 : (result==2) ? (nShadowDetection) : 255; 
			}
		}
		break;
	case CV_64F:
		for( y = 0; y < size.height; y++ )
		{
			double* sptr = src->data.db + src->step*y;
			uchar* pDataOutput = dst->data.ptr + dst->step*y;
			for( x = 0; x < size.width; x++,
				pGMM+=nM,pUsedModes++,pDataOutput++,sptr+=nD)
			{
				//convert data
				data[0]=float(sptr[0]),data[1]=float(sptr[1]),data[2]=float(sptr[2]);
				//update GMM model
				int result = _icvUpdateGMM_C3(data[0],data[1],data[2],pUsedModes,pGMM,nM,alpha, fTb, fTB, fTg, fVarInit, fVarMax, fVarMin,prune);
				//detect shadows in the foreground
				if (bShadowDetection)
					if (result==0) result= _icvRemoveShadowGMM(data,nD,(*pUsedModes),pGMM,fTb,fTB,fTau);
				//generate output
				(* pDataOutput)= (result==1) ? 0 : (result==2) ? (nShadowDetection) : 255; 
			}
		}
		break;
	}
	}//a bit faster for nD=3; 
}



//////////////////////////////////////////////
//implementation as part of the CvBGStatModel
static void CV_CDECL icvReleaseGaussianBGModel2( CvGaussBGModel2** bg_model );
static int CV_CDECL icvUpdateGaussianBGModel2( IplImage* curr_frame, CvGaussBGModel2*  bg_model );


CV_IMPL CvBGStatModel*
cvCreateGaussianBGModel2( IplImage* first_frame, CvGaussBGStatModel2Params* parameters )
954
{
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
    CvGaussBGModel2* bg_model = 0;
	int w,h;
    
    CV_FUNCNAME( "cvCreateGaussianBGModel2" );
    
    __BEGIN__;

	CvGaussBGStatModel2Params params;
    
    if( !CV_IS_IMAGE(first_frame) )
        CV_ERROR( CV_StsBadArg, "Invalid or NULL first_frame parameter" );

	if( first_frame->nChannels>CV_BGFG_MOG2_NDMAX )
        CV_ERROR( CV_StsBadArg, "Maxumum number of channels in the image is excedded (change CV_BGFG_MOG2_MAXBANDS constant)!" );


	CV_CALL( bg_model = (CvGaussBGModel2*)cvAlloc( sizeof(*bg_model) ));
    memset( bg_model, 0, sizeof(*bg_model) );
    bg_model->type    = CV_BG_MODEL_MOG2;
    bg_model->release = (CvReleaseBGStatModel) icvReleaseGaussianBGModel2;
    bg_model->update  = (CvUpdateBGStatModel)  icvUpdateGaussianBGModel2;

    //init parameters	
    if( parameters == NULL )
      {                        
		/* These constants are defined in cvaux/include/cvaux.h: */
		params.bShadowDetection = 1;
		params.bPostFiltering=0;
		params.minArea=CV_BGFG_MOG2_MINAREA;

		//set parameters
		// K - max number of Gaussians per pixel
		params.nM = CV_BGFG_MOG2_NGAUSSIANS;//4;			
		// Tb - the threshold - n var
		//pGMM->fTb = 4*4;
		params.fTb = CV_BGFG_MOG2_STD_THRESHOLD*CV_BGFG_MOG2_STD_THRESHOLD;
		// Tbf - the threshold
		//pGMM->fTB = 0.9f;//1-cf from the paper 
		params.fTB = CV_BGFG_MOG2_BACKGROUND_THRESHOLD;
		// Tgenerate - the threshold
		params.fTg = CV_BGFG_MOG2_STD_THRESHOLD_GENERATE*CV_BGFG_MOG2_STD_THRESHOLD_GENERATE;//update the mode or generate new
		//pGMM->fSigma= 11.0f;//sigma for the new mode
		params.fVarInit = CV_BGFG_MOG2_VAR_INIT;
		params.fVarMax = CV_BGFG_MOG2_VAR_MAX;
		params.fVarMin = CV_BGFG_MOG2_VAR_MIN;
		// alpha - the learning factor
		params.fAlphaT = 1.0f/CV_BGFG_MOG2_WINDOW_SIZE;//0.003f;
		// complexity reduction prior constant
		params.fCT = CV_BGFG_MOG2_CT;//0.05f;

		//shadow
		// Shadow detection
		params.nShadowDetection = (unsigned char)CV_BGFG_MOG2_SHADOW_VALUE;//value 0 to turn off
		params.fTau = CV_BGFG_MOG2_SHADOW_TAU;//0.5f;// Tau - shadow threshold
    }
    else
    {
        params = *parameters;
    }

	bg_model->params = params;

	//image data 
	w = first_frame->width;
	h = first_frame->height;

	bg_model->params.nWidth = w;
	bg_model->params.nHeight = h;

	bg_model->params.nND = first_frame->nChannels;


	//allocate GMM data

	//GMM for each pixel
	bg_model->data.rGMM = (CvPBGMMGaussian*) malloc(w*h * params.nM * sizeof(CvPBGMMGaussian));
	//used modes per pixel
	bg_model->data.rnUsedModes = (unsigned char* ) malloc(w*h);
	memset(bg_model->data.rnUsedModes,0,w*h);//no modes used
  
    //prepare storages    
    CV_CALL( bg_model->background = cvCreateImage(cvSize(w,h), IPL_DEPTH_8U, first_frame->nChannels));
    CV_CALL( bg_model->foreground = cvCreateImage(cvSize(w,h), IPL_DEPTH_8U, 1));
    
	//for eventual filtering
    CV_CALL( bg_model->storage = cvCreateMemStorage());
	
	bg_model->countFrames = 0;

    __END__;
    
    if( cvGetErrStatus() < 0 )
    {
        CvBGStatModel* base_ptr = (CvBGStatModel*)bg_model;
        
        if( bg_model && bg_model->release )
            bg_model->release( &base_ptr );
        else
            cvFree( &bg_model );
        bg_model = 0;
    }
    
    return (CvBGStatModel*)bg_model;
1058 1059 1060
}


1061 1062
static void CV_CDECL
icvReleaseGaussianBGModel2( CvGaussBGModel2** _bg_model )
1063
{
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
    CV_FUNCNAME( "icvReleaseGaussianBGModel2" );

    __BEGIN__;
    
    if( !_bg_model )
        CV_ERROR( CV_StsNullPtr, "" );

    if( *_bg_model )
    {
        CvGaussBGModel2* bg_model = *_bg_model;

		free (bg_model->data.rGMM);
		free (bg_model->data.rnUsedModes);

        cvReleaseImage( &bg_model->background );
        cvReleaseImage( &bg_model->foreground );
        cvReleaseMemStorage(&bg_model->storage);
        memset( bg_model, 0, sizeof(*bg_model) );
        cvFree( _bg_model );
    }

    __END__;
}


static int CV_CDECL
icvUpdateGaussianBGModel2( IplImage* curr_frame, CvGaussBGModel2*  bg_model )
{ 
	//checks	
	if ((curr_frame->height!=bg_model->params.nHeight)||(curr_frame->width!=bg_model->params.nWidth)||(curr_frame->nChannels!=bg_model->params.nND))
		CV_Error( CV_StsBadSize, "the image not the same size as the reserved GMM background model");

	float alpha=bg_model->params.fAlphaT;
	bg_model->countFrames++;
	
	//faster initial updates - increase value of alpha
	if (bg_model->params.bInit){
		float alphaInit=(1.0f/(2*bg_model->countFrames+1));
		if (alphaInit>alpha)
		{
			alpha = alphaInit;
		}
		else
		{
			bg_model->params.bInit = 0;
		}
	}

	//update background
	//icvUpdatePixelBackgroundGMM2( curr_frame, bg_model->foreground, bg_model->data.rGMM,bg_model->data.rnUsedModes,&(bg_model->params),alpha);
	icvUpdatePixelBackgroundGMM2( curr_frame, bg_model->foreground, bg_model->data.rGMM,bg_model->data.rnUsedModes,
		bg_model->params.nM,
		bg_model->params.fTb,
		bg_model->params.fTB,
		bg_model->params.fTg,
		bg_model->params.fVarInit,
		bg_model->params.fVarMax,
		bg_model->params.fVarMin,
		bg_model->params.fCT,
		bg_model->params.fTau,
		bg_model->params.bShadowDetection,
		bg_model->params.nShadowDetection,
		alpha);

	//foreground filtering
	if (bg_model->params.bPostFiltering==1)
1130
	{
1131 1132
		int region_count = 0;
		CvSeq *first_seq = NULL, *prev_seq = NULL, *seq = NULL;
1133

1134 1135 1136 1137 1138 1139 1140 1141 1142

		//filter small regions
		cvClearMemStorage(bg_model->storage);

		cvMorphologyEx( bg_model->foreground, bg_model->foreground, 0, 0, CV_MOP_OPEN, 1 );
		cvMorphologyEx( bg_model->foreground, bg_model->foreground, 0, 0, CV_MOP_CLOSE, 1 );

		cvFindContours( bg_model->foreground, bg_model->storage, &first_seq, sizeof(CvContour), CV_RETR_LIST );
		for( seq = first_seq; seq; seq = seq->h_next )
1143
		{
1144 1145 1146 1147 1148 1149
			CvContour* cnt = (CvContour*)seq;
			if( cnt->rect.width * cnt->rect.height < bg_model->params.minArea )
			{
				//delete small contour
				prev_seq = seq->h_prev;
				if( prev_seq )
1150
				{
1151 1152
					prev_seq->h_next = seq->h_next;
					if( seq->h_next ) seq->h_next->h_prev = prev_seq;
1153
				}
1154
				else
1155
				{
1156 1157
					first_seq = seq->h_next;
					if( seq->h_next ) seq->h_next->h_prev = NULL;
1158
				}
1159 1160 1161 1162 1163
			}
			else
			{
				region_count++;
			}
1164
		}
1165 1166 1167 1168 1169
		bg_model->foreground_regions = first_seq;
		cvZero(bg_model->foreground);
		cvDrawContours(bg_model->foreground, first_seq, CV_RGB(0, 0, 255), CV_RGB(0, 0, 255), 10, -1);

		return region_count; 
1170
	}
1171 1172

	return 1;
1173 1174 1175
}


1176 1177
namespace cv
{
1178

1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
static const int defaultHistory2 = CV_BGFG_MOG2_WINDOW_SIZE;
static const float defaultVarThreshold2 = CV_BGFG_MOG2_STD_THRESHOLD*CV_BGFG_MOG2_STD_THRESHOLD;
static const int defaultNMixtures2 = CV_BGFG_MOG2_NGAUSSIANS;
static const float defaultBackgroundRatio2 = CV_BGFG_MOG2_BACKGROUND_THRESHOLD;
static const float defaultVarThresholdGen2 = CV_BGFG_MOG2_STD_THRESHOLD_GENERATE*CV_BGFG_MOG2_STD_THRESHOLD_GENERATE;
static const float defaultVarInit2 = CV_BGFG_MOG2_VAR_INIT;
static const float defaultVarMax2 = CV_BGFG_MOG2_VAR_MAX;
static const float defaultVarMin2 = CV_BGFG_MOG2_VAR_MIN;
static const float defaultfCT2 = CV_BGFG_MOG2_CT;
static const unsigned char defaultnShadowDetection2 = (unsigned char)CV_BGFG_MOG2_SHADOW_VALUE;
static const float defaultfTau = CV_BGFG_MOG2_SHADOW_TAU;


1192
BackgroundSubtractorMOG2::BackgroundSubtractorMOG2()
1193
{
1194 1195 1196 1197 1198 1199 1200
    frameSize = Size(0,0);
    frameType = 0;
    
    nframes = 0;
    history = defaultHistory2;
	varThreshold = defaultVarThreshold2;
	bShadowDetection = 1;
1201

1202 1203 1204 1205 1206
	nmixtures = defaultNMixtures2;   
	backgroundRatio = defaultBackgroundRatio2;
	fVarInit = defaultVarInit2;
	fVarMax  = defaultVarMax2;
	fVarMin = defaultVarMin2;
1207

1208 1209 1210 1211 1212
	varThresholdGen = defaultVarThresholdGen2;
	fCT = defaultfCT2;
	nShadowDetection =  defaultnShadowDetection2;
	fTau = defaultfTau;
}
1213
    
1214
BackgroundSubtractorMOG2::BackgroundSubtractorMOG2(int _history,  float _varThreshold, bool _bShadowDetection)
1215
{
1216 1217
    frameSize = Size(0,0);
    frameType = 0;
1218
    
1219 1220 1221 1222
    nframes = 0;
    history = _history > 0 ? _history : defaultHistory2;
	varThreshold = (_varThreshold>0)? _varThreshold : defaultVarThreshold2;
	bShadowDetection = _bShadowDetection;
1223

1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
	nmixtures = defaultNMixtures2;   
	backgroundRatio = defaultBackgroundRatio2;
	fVarInit = defaultVarInit2;
	fVarMax  = defaultVarMax2;
	fVarMin = defaultVarMin2;

	varThresholdGen = defaultVarThresholdGen2;
	fCT = defaultfCT2;
	nShadowDetection =  defaultnShadowDetection2;
	fTau = defaultfTau;
}
1235 1236
    
BackgroundSubtractorMOG2::~BackgroundSubtractorMOG2()
1237
{
1238
}
1239

1240 1241

void BackgroundSubtractorMOG2::initialize(Size _frameSize, int _frameType)
1242
{
1243 1244 1245
    frameSize = _frameSize;
    frameType = _frameType;
    nframes = 0;
1246
    
1247 1248
    int nchannels = CV_MAT_CN(frameType);
	CV_Assert( nchannels <= CV_BGFG_MOG2_NDMAX );
1249
    
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
    // for each gaussian mixture of each pixel bg model we store ...
    // the mixture weight (w),
    // the mean (nchannels values) and
    // the covariance
    bgmodel.create( 1, frameSize.height*frameSize.width*nmixtures*(2 + CV_BGFG_MOG2_NDMAX), CV_32F );
	//make the array for keeping track of the used modes per pixel - all zeros at start
	bgmodelUsedModes.create(frameSize,CV_8U);
    bgmodelUsedModes = Scalar::all(0);
}

1260
void BackgroundSubtractorMOG2::operator()(InputArray _image, OutputArray _fgmask, double learningRate)
1261 1262 1263
{
    Mat image = _image.getMat();
    bool needToInitialize = nframes == 0 || learningRate >= 1 || image.size() != frameSize || image.type() != frameType;
1264
    
1265 1266
    if( needToInitialize )
        initialize(image.size(), image.type());
1267
    
1268 1269
    _fgmask.create( image.size(), CV_8U );
    Mat fgmask = _fgmask.getMat();
1270
    
1271 1272 1273 1274
    ++nframes;
    learningRate = learningRate >= 0 && nframes > 1 ? learningRate : 1./min( 2*nframes, history );
    CV_Assert(learningRate >= 0);
    CvMat _cimage = image, _cfgmask = fgmask;
1275
    
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
	if (learningRate > 0) 
		icvUpdatePixelBackgroundGMM2( &_cimage, &_cfgmask, 
		(CvPBGMMGaussian*) bgmodel.data,
		bgmodelUsedModes.data,
		nmixtures,//nM
		varThreshold,//fTb
		backgroundRatio,//fTB
		varThresholdGen,//fTg,
		fVarInit,
		fVarMax,
		fVarMin,
		fCT,
		fTau,
		bShadowDetection,
		nShadowDetection,
		float(learningRate));
1292 1293
}

1294 1295
void BackgroundSubtractorMOG2::getBackgroundImage(OutputArray backgroundImage) const
{
1296 1297 1298 1299
#if _MSC_VER >= 1200
    #pragma warning( push )
    #pragma warning( disable : 4127 )  
#endif
1300
    CV_Assert(CV_BGFG_MOG2_NDMAX == 3);
1301 1302 1303
#if _MSC_VER >= 1200
    #pragma warning( pop )
#endif
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
    Mat meanBackground(frameSize, CV_8UC3, Scalar::all(0));

    int firstGaussianIdx = 0;
    CvPBGMMGaussian* pGMM = (CvPBGMMGaussian*)bgmodel.data;
    for(int row=0; row<meanBackground.rows; row++)
    {
        for(int col=0; col<meanBackground.cols; col++)
        {
            int nModes = static_cast<int>(bgmodelUsedModes.at<uchar>(row, col));
            double meanVal[CV_BGFG_MOG2_NDMAX] = {0.0, 0.0, 0.0};

            double totalWeight = 0.0;
            for(int gaussianIdx = firstGaussianIdx; gaussianIdx < firstGaussianIdx + nModes; gaussianIdx++)
            {
                CvPBGMMGaussian gaussian = pGMM[gaussianIdx];
                totalWeight += gaussian.weight;

                for(int chIdx = 0; chIdx < CV_BGFG_MOG2_NDMAX; chIdx++)
                {
                    meanVal[chIdx] += gaussian.weight * gaussian.mean[chIdx];
                }

                if(totalWeight > backgroundRatio)
                    break;
            }

1330
            Vec3f val = Vec3f((float)meanVal[0], (float)meanVal[1], (float)meanVal[2]) * (float)(1.0 / totalWeight);
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
            meanBackground.at<Vec3b>(row, col) = Vec3b(val);
            firstGaussianIdx += nmixtures;
        }
    }

    switch(CV_MAT_CN(frameType))
    {
        case 1:
        {
            vector<Mat> channels;
            split(meanBackground, channels);
            channels[0].copyTo(backgroundImage);
            break;
        }

        case 3:
        {
            meanBackground.copyTo(backgroundImage);
            break;
        }

        default:
1353
            CV_Error(CV_StsUnsupportedFormat, "");
1354 1355 1356
    }
}

1357 1358 1359
}

/* End of file. */