em.cpp 21.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                        Intel License Agreement
//                For Open Source Computer Vision Library
//
// Copyright( C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
//(including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort(including negligence or otherwise) arising in any way out of
// the use of this software, even ifadvised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"

44
namespace cv
45 46
{

Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
47
const double minEigenValue = DBL_EPSILON;
48 49

///////////////////////////////////////////////////////////////////////////////////////////////////////
50

Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
51
EM::EM(int _nclusters, int _covMatType, const TermCriteria& _termCrit)
52
{
53 54
    nclusters = _nclusters;
    covMatType = _covMatType;
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
55 56
    maxIters = (_termCrit.type & TermCriteria::MAX_ITER) ? _termCrit.maxCount : DEFAULT_MAX_ITERS;
    epsilon = (_termCrit.type & TermCriteria::EPS) ? _termCrit.epsilon : 0;
57 58
}

59
EM::~EM()
60
{
61
    //clear();
62 63
}

64
void EM::clear()
65
{
66 67 68 69
    trainSamples.release();
    trainProbs.release();
    trainLogLikelihoods.release();
    trainLabels.release();
70

71 72 73
    weights.release();
    means.release();
    covs.clear();
74

75 76 77
    covsEigenValues.clear();
    invCovsEigenValues.clear();
    covsRotateMats.clear();
78

79 80
    logWeightDivDet.release();
}
81

82 83
    
bool EM::train(InputArray samples,
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
84
               OutputArray logLikelihoods,
85
               OutputArray labels,
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
86
               OutputArray probs)
87 88 89
{
    Mat samplesMat = samples.getMat();
    setTrainData(START_AUTO_STEP, samplesMat, 0, 0, 0, 0);
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
90
    return doTrain(START_AUTO_STEP, logLikelihoods, labels, probs);
91 92
}

93 94 95 96
bool EM::trainE(InputArray samples,
                InputArray _means0,
                InputArray _covs0,
                InputArray _weights0,
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
97
                OutputArray logLikelihoods,
98
                OutputArray labels,
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
99
                OutputArray probs)
100
{
101 102 103 104 105 106 107 108
    Mat samplesMat = samples.getMat();
    vector<Mat> covs0;
    _covs0.getMatVector(covs0);
    
    Mat means0 = _means0.getMat(), weights0 = _weights0.getMat();

    setTrainData(START_E_STEP, samplesMat, 0, !_means0.empty() ? &means0 : 0,
                 !_covs0.empty() ? &covs0 : 0, _weights0.empty() ? &weights0 : 0);
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
109
    return doTrain(START_E_STEP, logLikelihoods, labels, probs);
110
}
111

112 113
bool EM::trainM(InputArray samples,
                InputArray _probs0,
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
114
                OutputArray logLikelihoods,
115
                OutputArray labels,
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
116
                OutputArray probs)
117 118 119 120 121
{
    Mat samplesMat = samples.getMat();
    Mat probs0 = _probs0.getMat();
    
    setTrainData(START_M_STEP, samplesMat, !_probs0.empty() ? &probs0 : 0, 0, 0, 0);
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
122
    return doTrain(START_M_STEP, logLikelihoods, labels, probs);
123
}
124

125
    
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
126
Vec2d EM::predict(InputArray _sample, OutputArray _probs) const
127 128 129
{
    Mat sample = _sample.getMat();
    CV_Assert(isTrained());
130

131 132
    CV_Assert(!sample.empty());
    if(sample.type() != CV_64FC1)
133
    {
134 135 136
        Mat tmp;
        sample.convertTo(tmp, CV_64FC1);
        sample = tmp;
137
    }
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
138
    sample.reshape(1, 1);
139

140 141
    Mat probs;
    if( _probs.needed() )
142
    {
143 144
        _probs.create(1, nclusters, CV_64FC1);
        probs = _probs.getMat();
145 146
    }

Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
147
    return computeProbabilities(sample, !probs.empty() ? &probs : 0);
148 149
}

150
bool EM::isTrained() const
151
{
152
    return !means.empty();
153 154 155
}


156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
static
void checkTrainData(int startStep, const Mat& samples,
                    int nclusters, int covMatType, const Mat* probs, const Mat* means,
                    const vector<Mat>* covs, const Mat* weights)
{
    // Check samples.
    CV_Assert(!samples.empty());
    CV_Assert(samples.channels() == 1);

    int nsamples = samples.rows;
    int dim = samples.cols;

    // Check training params.
    CV_Assert(nclusters > 0);
    CV_Assert(nclusters <= nsamples);
    CV_Assert(startStep == EM::START_AUTO_STEP ||
              startStep == EM::START_E_STEP ||
              startStep == EM::START_M_STEP);
    CV_Assert(covMatType == EM::COV_MAT_GENERIC ||
              covMatType == EM::COV_MAT_DIAGONAL ||
              covMatType == EM::COV_MAT_SPHERICAL);

    CV_Assert(!probs ||
        (!probs->empty() &&
         probs->rows == nsamples && probs->cols == nclusters &&
         (probs->type() == CV_32FC1 || probs->type() == CV_64FC1)));

    CV_Assert(!weights ||
        (!weights->empty() &&
         (weights->cols == 1 || weights->rows == 1) && static_cast<int>(weights->total()) == nclusters &&
         (weights->type() == CV_32FC1 || weights->type() == CV_64FC1)));

    CV_Assert(!means ||
        (!means->empty() &&
         means->rows == nclusters && means->cols == dim &&
         means->channels() == 1));

    CV_Assert(!covs ||
        (!covs->empty() &&
         static_cast<int>(covs->size()) == nclusters));
    if(covs)
197
    {
198 199 200 201 202 203
        const Size covSize(dim, dim);
        for(size_t i = 0; i < covs->size(); i++)
        {
            const Mat& m = (*covs)[i];
            CV_Assert(!m.empty() && m.size() == covSize && (m.channels() == 1));
        }
204 205
    }

206
    if(startStep == EM::START_E_STEP)
207
    {
208
        CV_Assert(means);
209
    }
210
    else if(startStep == EM::START_M_STEP)
211
    {
212
        CV_Assert(probs);
213 214 215
    }
}

216 217
static
void preprocessSampleData(const Mat& src, Mat& dst, int dstType, bool isAlwaysClone)
218
{
219 220 221 222 223
    if(src.type() == dstType && !isAlwaysClone)
        dst = src;
    else
        src.convertTo(dst, dstType);
}
224

225 226 227 228
static
void preprocessProbability(Mat& probs)
{
    max(probs, 0., probs);
229

230 231 232 233
    const double uniformProbability = (double)(1./probs.cols);
    for(int y = 0; y < probs.rows; y++)
    {
        Mat sampleProbs = probs.row(y);
234

235 236 237 238 239 240 241
        double maxVal = 0;
        minMaxLoc(sampleProbs, 0, &maxVal);
        if(maxVal < FLT_EPSILON)
            sampleProbs.setTo(uniformProbability);
        else
            normalize(sampleProbs, sampleProbs, 1, 0, NORM_L1);
    }
242
}
243

244 245 246 247 248
void EM::setTrainData(int startStep, const Mat& samples,
                      const Mat* probs0,
                      const Mat* means0,
                      const vector<Mat>* covs0,
                      const Mat* weights0)
249
{
250
    clear();
251

252
    checkTrainData(startStep, samples, nclusters, covMatType, probs0, means0, covs0, weights0);
253

254 255 256
    bool isKMeansInit = (startStep == EM::START_AUTO_STEP) || (startStep == EM::START_E_STEP && (covs0 == 0 || weights0 == 0));
    // Set checked data
    preprocessSampleData(samples, trainSamples, isKMeansInit ? CV_32FC1 : CV_64FC1, false);
257

258 259
    // set probs
    if(probs0 && startStep == EM::START_M_STEP)
260
    {
261 262
        preprocessSampleData(*probs0, trainProbs, CV_64FC1, true);
        preprocessProbability(trainProbs);
263 264
    }

265 266
    // set weights
    if(weights0 && (startStep == EM::START_E_STEP && covs0))
267
    {
268 269 270
        weights0->convertTo(weights, CV_64FC1);
        weights.reshape(1,1);
        preprocessProbability(weights);
271 272
    }

273 274 275
    // set means
    if(means0 && (startStep == EM::START_E_STEP/* || startStep == EM::START_AUTO_STEP*/))
        means0->convertTo(means, isKMeansInit ? CV_32FC1 : CV_64FC1);
276

277 278
    // set covs
    if(covs0 && (startStep == EM::START_E_STEP && weights0))
279
    {
280 281 282
        covs.resize(nclusters);
        for(size_t i = 0; i < covs0->size(); i++)
            (*covs0)[i].convertTo(covs[i], CV_64FC1);
283 284 285
    }
}

286
void EM::decomposeCovs()
287
{
288 289 290 291 292 293 294 295
    CV_Assert(!covs.empty());
    covsEigenValues.resize(nclusters);
    if(covMatType == EM::COV_MAT_GENERIC)
        covsRotateMats.resize(nclusters);
    invCovsEigenValues.resize(nclusters);
    for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++)
    {
        CV_Assert(!covs[clusterIndex].empty());
296

297
        SVD svd(covs[clusterIndex], SVD::MODIFY_A + SVD::FULL_UV);
298

299
        if(covMatType == EM::COV_MAT_SPHERICAL)
300
        {
301 302
            double maxSingularVal = svd.w.at<double>(0);
            covsEigenValues[clusterIndex] = Mat(1, 1, CV_64FC1, Scalar(maxSingularVal));
303
        }
304
        else if(covMatType == EM::COV_MAT_DIAGONAL)
305
        {
306
            covsEigenValues[clusterIndex] = svd.w;
307
        }
308 309 310 311 312 313 314
        else //EM::COV_MAT_GENERIC
        {
            covsEigenValues[clusterIndex] = svd.w;
            covsRotateMats[clusterIndex] = svd.u;
        }
        max(covsEigenValues[clusterIndex], minEigenValue, covsEigenValues[clusterIndex]);
        invCovsEigenValues[clusterIndex] = 1./covsEigenValues[clusterIndex];
315 316
    }
}
317

318
void EM::clusterTrainSamples()
319
{
320
    int nsamples = trainSamples.rows;
321

322
    // Cluster samples, compute/update means
323

324 325 326 327 328 329 330 331 332 333 334 335 336
    // Convert samples and means to 32F, because kmeans requires this type.
    Mat trainSamplesFlt, meansFlt;
    if(trainSamples.type() != CV_32FC1)
        trainSamples.convertTo(trainSamplesFlt, CV_32FC1);
    else
        trainSamplesFlt = trainSamples;
    if(!means.empty())
    {
        if(means.type() != CV_32FC1)
            means.convertTo(meansFlt, CV_32FC1);
        else
            meansFlt = means;
    }
337

338 339
    Mat labels;
    kmeans(trainSamplesFlt, nclusters, labels,  TermCriteria(TermCriteria::COUNT, means.empty() ? 10 : 1, 0.5), 10, KMEANS_PP_CENTERS, meansFlt);
340

341 342 343 344 345 346 347 348 349
    // Convert samples and means back to 64F.
    CV_Assert(meansFlt.type() == CV_32FC1);
    if(trainSamples.type() != CV_64FC1)
    {
        Mat trainSamplesBuffer;
        trainSamplesFlt.convertTo(trainSamplesBuffer, CV_64FC1);
        trainSamples = trainSamplesBuffer;
    }
    meansFlt.convertTo(means, CV_64FC1);
350

351 352 353 354
    // Compute weights and covs
    weights = Mat(1, nclusters, CV_64FC1, Scalar(0));
    covs.resize(nclusters);
    for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++)
355
    {
356 357
        Mat clusterSamples;
        for(int sampleIndex = 0; sampleIndex < nsamples; sampleIndex++)
358
        {
359
            if(labels.at<int>(sampleIndex) == clusterIndex)
360
            {
361 362
                const Mat sample = trainSamples.row(sampleIndex);
                clusterSamples.push_back(sample);
363 364
            }
        }
365
        CV_Assert(!clusterSamples.empty());
366

367 368 369
        calcCovarMatrix(clusterSamples, covs[clusterIndex], means.row(clusterIndex),
            CV_COVAR_NORMAL + CV_COVAR_ROWS + CV_COVAR_USE_AVG + CV_COVAR_SCALE, CV_64FC1);
        weights.at<double>(clusterIndex) = static_cast<double>(clusterSamples.rows)/static_cast<double>(nsamples);
370 371
    }

372
    decomposeCovs();
373 374
}

375
void EM::computeLogWeightDivDet()
376
{
377
    CV_Assert(!covsEigenValues.empty());
378

379 380 381
    Mat logWeights;
    cv::max(weights, DBL_MIN, weights);
    log(weights, logWeights);
382

383 384
    logWeightDivDet.create(1, nclusters, CV_64FC1);
    // note: logWeightDivDet = log(weight_k) - 0.5 * log(|det(cov_k)|)
385

386
    for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++)
387
    {
388 389 390
        double logDetCov = 0.;
        for(int di = 0; di < covsEigenValues[clusterIndex].cols; di++)
            logDetCov += std::log(covsEigenValues[clusterIndex].at<double>(covMatType != EM::COV_MAT_SPHERICAL ? di : 0));
391

392 393 394
        logWeightDivDet.at<double>(clusterIndex) = logWeights.at<double>(clusterIndex) - 0.5 * logDetCov;
    }
}
395

Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
396
bool EM::doTrain(int startStep, OutputArray logLikelihoods, OutputArray labels, OutputArray probs)
397 398 399 400
{
    int dim = trainSamples.cols;
    // Precompute the empty initial train data in the cases of EM::START_E_STEP and START_AUTO_STEP
    if(startStep != EM::START_M_STEP)
401
    {
402
        if(covs.empty())
403
        {
404 405
            CV_Assert(weights.empty());
            clusterTrainSamples();
406 407 408
        }
    }

409 410 411 412 413
    if(!covs.empty() && covsEigenValues.empty() )
    {
        CV_Assert(invCovsEigenValues.empty());
        decomposeCovs();
    }
414

415 416
    if(startStep == EM::START_M_STEP)
        mStep();
417

418 419 420 421 422
    double trainLogLikelihood, prevTrainLogLikelihood = 0.;
    for(int iter = 0; ; iter++)
    {
        eStep();
        trainLogLikelihood = sum(trainLogLikelihoods)[0];
423

424 425
        if(iter >= maxIters - 1)
            break;
426

427 428 429 430 431
        double trainLogLikelihoodDelta = trainLogLikelihood - prevTrainLogLikelihood;
        if( iter != 0 &&
            (trainLogLikelihoodDelta < -DBL_EPSILON ||
             trainLogLikelihoodDelta < epsilon * std::fabs(trainLogLikelihood)))
            break;
432

433
        mStep();
434

435
        prevTrainLogLikelihood = trainLogLikelihood;
436
    }
437 438

    if( trainLogLikelihood <= -DBL_MAX/10000. )
439
    {
440 441
        clear();
        return false;
442 443
    }

444 445 446
    // postprocess covs
    covs.resize(nclusters);
    for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++)
447
    {
448
        if(covMatType == EM::COV_MAT_SPHERICAL)
449
        {
450 451
            covs[clusterIndex].create(dim, dim, CV_64FC1);
            setIdentity(covs[clusterIndex], Scalar(covsEigenValues[clusterIndex].at<double>(0)));
452
        }
453
        else if(covMatType == EM::COV_MAT_DIAGONAL)
454
        {
455
            covs[clusterIndex] = Mat::diag(covsEigenValues[clusterIndex]);
456 457
        }
    }
458 459 460 461 462 463 464 465 466 467 468 469 470 471
    
    if(labels.needed())
        trainLabels.copyTo(labels);
    if(probs.needed())
        trainProbs.copyTo(probs);
    if(logLikelihoods.needed())
        trainLogLikelihoods.copyTo(logLikelihoods);
    
    trainSamples.release();
    trainProbs.release();
    trainLabels.release();
    trainLogLikelihoods.release();

    return true;
472 473
}

Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
474
Vec2d EM::computeProbabilities(const Mat& sample, Mat* probs) const
475
{
476 477 478 479 480
    // L_ik = log(weight_k) - 0.5 * log(|det(cov_k)|) - 0.5 *(x_i - mean_k)' cov_k^(-1) (x_i - mean_k)]
    // q = arg(max_k(L_ik))
    // probs_ik = exp(L_ik - L_iq) / (1 + sum_j!=q (exp(L_ij - L_iq))
    // see Alex Smola's blog http://blog.smola.org/page/2 for
    // details on the log-sum-exp trick
481

482 483 484 485
    CV_Assert(!means.empty());
    CV_Assert(sample.type() == CV_64FC1);
    CV_Assert(sample.rows == 1);
    CV_Assert(sample.cols == means.cols);
486

487
    int dim = sample.cols;
488

489
    Mat L(1, nclusters, CV_64FC1);
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
490
    int label = 0;
491
    for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++)
492
    {
493
        const Mat centeredSample = sample - means.row(clusterIndex);
494

495 496
        Mat rotatedCenteredSample = covMatType != EM::COV_MAT_GENERIC ?
                centeredSample : centeredSample * covsRotateMats[clusterIndex];
497

498 499
        double Lval = 0;
        for(int di = 0; di < dim; di++)
500
        {
501 502 503
            double w = invCovsEigenValues[clusterIndex].at<double>(covMatType != EM::COV_MAT_SPHERICAL ? di : 0);
            double val = rotatedCenteredSample.at<double>(di);
            Lval += w * val * val;
504
        }
505
        CV_DbgAssert(!logWeightDivDet.empty());
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
506
        L.at<double>(clusterIndex) = logWeightDivDet.at<double>(clusterIndex) - 0.5 * Lval;
507

Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
508
        if(L.at<double>(clusterIndex) > L.at<double>(label))
509 510
            label = clusterIndex;
    }
511

512 513 514 515 516
    double maxLVal = L.at<double>(label);
    Mat expL_Lmax = L; // exp(L_ij - L_iq)
    for(int i = 0; i < L.cols; i++)
        expL_Lmax.at<double>(i) = std::exp(L.at<double>(i) - maxLVal);
    double expDiffSum = sum(expL_Lmax)[0]; // sum_j(exp(L_ij - L_iq))
517

518 519 520 521 522 523
    if(probs)
    {
        probs->create(1, nclusters, CV_64FC1);
        double factor = 1./expDiffSum;
        expL_Lmax *= factor;
        expL_Lmax.copyTo(*probs);
524 525
    }

Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
526 527 528 529 530
    Vec2d res;
    res[0] = std::log(expDiffSum)  + maxLVal - 0.5 * dim * CV_LOG2PI;
    res[1] = label;

    return res;
531 532
}

533
void EM::eStep()
534
{
535 536 537 538
    // Compute probs_ik from means_k, covs_k and weights_k.
    trainProbs.create(trainSamples.rows, nclusters, CV_64FC1);
    trainLabels.create(trainSamples.rows, 1, CV_32SC1);
    trainLogLikelihoods.create(trainSamples.rows, 1, CV_64FC1);
539

540
    computeLogWeightDivDet();
541

542 543
    CV_DbgAssert(trainSamples.type() == CV_64FC1);
    CV_DbgAssert(means.type() == CV_64FC1);
544

545
    for(int sampleIndex = 0; sampleIndex < trainSamples.rows; sampleIndex++)
546
    {
547
        Mat sampleProbs = trainProbs.row(sampleIndex);
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
548 549 550
        Vec2d res = computeProbabilities(trainSamples.row(sampleIndex), &sampleProbs);
        trainLogLikelihoods.at<double>(sampleIndex) = res[0];
        trainLabels.at<int>(sampleIndex) = static_cast<int>(res[1]);
551
    }
552
}
553

554 555
void EM::mStep()
{
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
556 557
    // Update means_k, covs_k and weights_k from probs_ik
    int dim = trainSamples.cols;
558

Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
559 560 561
    // Update weights
    // not normalized first
    reduce(trainProbs, weights, 0, CV_REDUCE_SUM);
562

Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
563 564 565
    // Update means
    means.create(nclusters, dim, CV_64FC1);
    means = Scalar(0);
566

Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
567 568 569 570 571 572 573
    const double minPosWeight = trainSamples.rows * DBL_EPSILON;
    double minWeight = DBL_MAX;
    int minWeightClusterIndex = -1;
    for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++)
    {
        if(weights.at<double>(clusterIndex) <= minPosWeight)
            continue;
574

Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
575
        if(weights.at<double>(clusterIndex) < minWeight)
576
        {
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
577 578
            minWeight = weights.at<double>(clusterIndex);
            minWeightClusterIndex = clusterIndex;
579 580
        }

Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
        Mat clusterMean = means.row(clusterIndex);
        for(int sampleIndex = 0; sampleIndex < trainSamples.rows; sampleIndex++)
            clusterMean += trainProbs.at<double>(sampleIndex, clusterIndex) * trainSamples.row(sampleIndex);
        clusterMean /= weights.at<double>(clusterIndex);
    }

    // Update covsEigenValues and invCovsEigenValues
    covs.resize(nclusters);
    covsEigenValues.resize(nclusters);
    if(covMatType == EM::COV_MAT_GENERIC)
        covsRotateMats.resize(nclusters);
    invCovsEigenValues.resize(nclusters);
    for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++)
    {
        if(weights.at<double>(clusterIndex) <= minPosWeight)
            continue;

        if(covMatType != EM::COV_MAT_SPHERICAL)
            covsEigenValues[clusterIndex].create(1, dim, CV_64FC1);
        else
            covsEigenValues[clusterIndex].create(1, 1, CV_64FC1);

603
        if(covMatType == EM::COV_MAT_GENERIC)
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
604
            covs[clusterIndex].create(dim, dim, CV_64FC1);
605

Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
606 607
        Mat clusterCov = covMatType != EM::COV_MAT_GENERIC ?
            covsEigenValues[clusterIndex] : covs[clusterIndex];
608

Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
609
        clusterCov = Scalar(0);
610

Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
611 612 613 614
        Mat centeredSample;
        for(int sampleIndex = 0; sampleIndex < trainSamples.rows; sampleIndex++)
        {
            centeredSample = trainSamples.row(sampleIndex) - means.row(clusterIndex);
615

Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
616 617 618
            if(covMatType == EM::COV_MAT_GENERIC)
                clusterCov += trainProbs.at<double>(sampleIndex, clusterIndex) * centeredSample.t() * centeredSample;
            else
619
            {
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
620 621
                double p = trainProbs.at<double>(sampleIndex, clusterIndex);
                for(int di = 0; di < dim; di++ )
622
                {
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
623 624
                    double val = centeredSample.at<double>(di);
                    clusterCov.at<double>(covMatType != EM::COV_MAT_SPHERICAL ? di : 0) += p*val*val;
625
                }
626
            }
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
627
        }
628

Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
629 630
        if(covMatType == EM::COV_MAT_SPHERICAL)
            clusterCov /= dim;
631

Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
632
        clusterCov /= weights.at<double>(clusterIndex);
633

Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
634 635 636 637 638 639 640
        // Update covsRotateMats for EM::COV_MAT_GENERIC only
        if(covMatType == EM::COV_MAT_GENERIC)
        {
            SVD svd(covs[clusterIndex], SVD::MODIFY_A + SVD::FULL_UV);
            covsEigenValues[clusterIndex] = svd.w;
            covsRotateMats[clusterIndex] = svd.u;
        }
641

Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
642
        max(covsEigenValues[clusterIndex], minEigenValue, covsEigenValues[clusterIndex]);
643

Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
644 645 646
        // update invCovsEigenValues
        invCovsEigenValues[clusterIndex] = 1./covsEigenValues[clusterIndex];
    }
647

Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
648 649 650 651 652 653 654 655 656 657 658 659
    for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++)
    {
        if(weights.at<double>(clusterIndex) <= minPosWeight)
        {
            Mat clusterMean = means.row(clusterIndex);
            means.row(minWeightClusterIndex).copyTo(clusterMean);
            covs[minWeightClusterIndex].copyTo(covs[clusterIndex]);
            covsEigenValues[minWeightClusterIndex].copyTo(covsEigenValues[clusterIndex]);
            if(covMatType == EM::COV_MAT_GENERIC)
                covsRotateMats[minWeightClusterIndex].copyTo(covsRotateMats[clusterIndex]);
            invCovsEigenValues[minWeightClusterIndex].copyTo(invCovsEigenValues[clusterIndex]);
        }
660
    }
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
661 662 663

    // Normalize weights
    weights /= trainSamples.rows;
664 665
}

666
void EM::read(const FileNode& fn)
667
{
668
    Algorithm::read(fn);
669

670 671
    decomposeCovs();
    computeLogWeightDivDet();
672 673
}

674
} // namespace cv
675 676

/* End of file. */