ssyrk.c 9.65 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/* ssyrk.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

13 14
#include "clapack.h"

15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
/* Subroutine */ int ssyrk_(char *uplo, char *trans, integer *n, integer *k, 
	real *alpha, real *a, integer *lda, real *beta, real *c__, integer *
	ldc)
{
    /* System generated locals */
    integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3;

    /* Local variables */
    integer i__, j, l, info;
    real temp;
    extern logical lsame_(char *, char *);
    integer nrowa;
    logical upper;
    extern /* Subroutine */ int xerbla_(char *, integer *);

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SSYRK  performs one of the symmetric rank k operations */

/*     C := alpha*A*A' + beta*C, */

/*  or */

/*     C := alpha*A'*A + beta*C, */

/*  where  alpha and beta  are scalars, C is an  n by n  symmetric matrix */
/*  and  A  is an  n by k  matrix in the first case and a  k by n  matrix */
/*  in the second case. */

/*  Arguments */
/*  ========== */

/*  UPLO   - CHARACTER*1. */
/*           On  entry,   UPLO  specifies  whether  the  upper  or  lower */
/*           triangular  part  of the  array  C  is to be  referenced  as */
/*           follows: */

/*              UPLO = 'U' or 'u'   Only the  upper triangular part of  C */
/*                                  is to be referenced. */

/*              UPLO = 'L' or 'l'   Only the  lower triangular part of  C */
/*                                  is to be referenced. */

/*           Unchanged on exit. */

/*  TRANS  - CHARACTER*1. */
/*           On entry,  TRANS  specifies the operation to be performed as */
/*           follows: */

/*              TRANS = 'N' or 'n'   C := alpha*A*A' + beta*C. */

/*              TRANS = 'T' or 't'   C := alpha*A'*A + beta*C. */

/*              TRANS = 'C' or 'c'   C := alpha*A'*A + beta*C. */

/*           Unchanged on exit. */

/*  N      - INTEGER. */
/*           On entry,  N specifies the order of the matrix C.  N must be */
/*           at least zero. */
/*           Unchanged on exit. */

/*  K      - INTEGER. */
/*           On entry with  TRANS = 'N' or 'n',  K  specifies  the number */
/*           of  columns   of  the   matrix   A,   and  on   entry   with */
/*           TRANS = 'T' or 't' or 'C' or 'c',  K  specifies  the  number */
/*           of rows of the matrix  A.  K must be at least zero. */
/*           Unchanged on exit. */

/*  ALPHA  - REAL            . */
/*           On entry, ALPHA specifies the scalar alpha. */
/*           Unchanged on exit. */

/*  A      - REAL             array of DIMENSION ( LDA, ka ), where ka is */
/*           k  when  TRANS = 'N' or 'n',  and is  n  otherwise. */
/*           Before entry with  TRANS = 'N' or 'n',  the  leading  n by k */
/*           part of the array  A  must contain the matrix  A,  otherwise */
/*           the leading  k by n  part of the array  A  must contain  the */
/*           matrix A. */
/*           Unchanged on exit. */

/*  LDA    - INTEGER. */
/*           On entry, LDA specifies the first dimension of A as declared */
/*           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n' */
/*           then  LDA must be at least  max( 1, n ), otherwise  LDA must */
/*           be at least  max( 1, k ). */
/*           Unchanged on exit. */

/*  BETA   - REAL            . */
/*           On entry, BETA specifies the scalar beta. */
/*           Unchanged on exit. */

/*  C      - REAL             array of DIMENSION ( LDC, n ). */
/*           Before entry  with  UPLO = 'U' or 'u',  the leading  n by n */
/*           upper triangular part of the array C must contain the upper */
/*           triangular part  of the  symmetric matrix  and the strictly */
/*           lower triangular part of C is not referenced.  On exit, the */
/*           upper triangular part of the array  C is overwritten by the */
/*           upper triangular part of the updated matrix. */
/*           Before entry  with  UPLO = 'L' or 'l',  the leading  n by n */
/*           lower triangular part of the array C must contain the lower */
/*           triangular part  of the  symmetric matrix  and the strictly */
/*           upper triangular part of C is not referenced.  On exit, the */
/*           lower triangular part of the array  C is overwritten by the */
/*           lower triangular part of the updated matrix. */

/*  LDC    - INTEGER. */
/*           On entry, LDC specifies the first dimension of C as declared */
/*           in  the  calling  (sub)  program.   LDC  must  be  at  least */
/*           max( 1, n ). */
/*           Unchanged on exit. */


/*  Level 3 Blas routine. */

/*  -- Written on 8-February-1989. */
/*     Jack Dongarra, Argonne National Laboratory. */
/*     Iain Duff, AERE Harwell. */
/*     Jeremy Du Croz, Numerical Algorithms Group Ltd. */
/*     Sven Hammarling, Numerical Algorithms Group Ltd. */


/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Parameters .. */
/*     .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    c_dim1 = *ldc;
    c_offset = 1 + c_dim1;
    c__ -= c_offset;

    /* Function Body */
    if (lsame_(trans, "N")) {
	nrowa = *n;
    } else {
	nrowa = *k;
    }
    upper = lsame_(uplo, "U");

    info = 0;
    if (! upper && ! lsame_(uplo, "L")) {
	info = 1;
    } else if (! lsame_(trans, "N") && ! lsame_(trans, 
	    "T") && ! lsame_(trans, "C")) {
	info = 2;
    } else if (*n < 0) {
	info = 3;
    } else if (*k < 0) {
	info = 4;
    } else if (*lda < max(1,nrowa)) {
	info = 7;
    } else if (*ldc < max(1,*n)) {
	info = 10;
    }
    if (info != 0) {
	xerbla_("SSYRK ", &info);
	return 0;
    }

/*     Quick return if possible. */

    if (*n == 0 || (*alpha == 0.f || *k == 0) && *beta == 1.f) {
	return 0;
    }

/*     And when  alpha.eq.zero. */

    if (*alpha == 0.f) {
	if (upper) {
	    if (*beta == 0.f) {
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    i__2 = j;
		    for (i__ = 1; i__ <= i__2; ++i__) {
			c__[i__ + j * c_dim1] = 0.f;
/* L10: */
		    }
/* L20: */
		}
	    } else {
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    i__2 = j;
		    for (i__ = 1; i__ <= i__2; ++i__) {
			c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
/* L30: */
		    }
/* L40: */
		}
	    }
	} else {
	    if (*beta == 0.f) {
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    i__2 = *n;
		    for (i__ = j; i__ <= i__2; ++i__) {
			c__[i__ + j * c_dim1] = 0.f;
/* L50: */
		    }
/* L60: */
		}
	    } else {
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    i__2 = *n;
		    for (i__ = j; i__ <= i__2; ++i__) {
			c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
/* L70: */
		    }
/* L80: */
		}
	    }
	}
	return 0;
    }

/*     Start the operations. */

    if (lsame_(trans, "N")) {

/*        Form  C := alpha*A*A' + beta*C. */

	if (upper) {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		if (*beta == 0.f) {
		    i__2 = j;
		    for (i__ = 1; i__ <= i__2; ++i__) {
			c__[i__ + j * c_dim1] = 0.f;
/* L90: */
		    }
		} else if (*beta != 1.f) {
		    i__2 = j;
		    for (i__ = 1; i__ <= i__2; ++i__) {
			c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
/* L100: */
		    }
		}
		i__2 = *k;
		for (l = 1; l <= i__2; ++l) {
		    if (a[j + l * a_dim1] != 0.f) {
			temp = *alpha * a[j + l * a_dim1];
			i__3 = j;
			for (i__ = 1; i__ <= i__3; ++i__) {
			    c__[i__ + j * c_dim1] += temp * a[i__ + l * 
				    a_dim1];
/* L110: */
			}
		    }
/* L120: */
		}
/* L130: */
	    }
	} else {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		if (*beta == 0.f) {
		    i__2 = *n;
		    for (i__ = j; i__ <= i__2; ++i__) {
			c__[i__ + j * c_dim1] = 0.f;
/* L140: */
		    }
		} else if (*beta != 1.f) {
		    i__2 = *n;
		    for (i__ = j; i__ <= i__2; ++i__) {
			c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
/* L150: */
		    }
		}
		i__2 = *k;
		for (l = 1; l <= i__2; ++l) {
		    if (a[j + l * a_dim1] != 0.f) {
			temp = *alpha * a[j + l * a_dim1];
			i__3 = *n;
			for (i__ = j; i__ <= i__3; ++i__) {
			    c__[i__ + j * c_dim1] += temp * a[i__ + l * 
				    a_dim1];
/* L160: */
			}
		    }
/* L170: */
		}
/* L180: */
	    }
	}
    } else {

/*        Form  C := alpha*A'*A + beta*C. */

	if (upper) {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = j;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    temp = 0.f;
		    i__3 = *k;
		    for (l = 1; l <= i__3; ++l) {
			temp += a[l + i__ * a_dim1] * a[l + j * a_dim1];
/* L190: */
		    }
		    if (*beta == 0.f) {
			c__[i__ + j * c_dim1] = *alpha * temp;
		    } else {
			c__[i__ + j * c_dim1] = *alpha * temp + *beta * c__[
				i__ + j * c_dim1];
		    }
/* L200: */
		}
/* L210: */
	    }
	} else {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = *n;
		for (i__ = j; i__ <= i__2; ++i__) {
		    temp = 0.f;
		    i__3 = *k;
		    for (l = 1; l <= i__3; ++l) {
			temp += a[l + i__ * a_dim1] * a[l + j * a_dim1];
/* L220: */
		    }
		    if (*beta == 0.f) {
			c__[i__ + j * c_dim1] = *alpha * temp;
		    } else {
			c__[i__ + j * c_dim1] = *alpha * temp + *beta * c__[
				i__ + j * c_dim1];
		    }
/* L230: */
		}
/* L240: */
	    }
	}
    }

    return 0;

/*     End of SSYRK . */

} /* ssyrk_ */