sgebrd.c 10.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/* sgebrd.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

13 14
#include "clapack.h"

15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
/* Table of constant values */

static integer c__1 = 1;
static integer c_n1 = -1;
static integer c__3 = 3;
static integer c__2 = 2;
static real c_b21 = -1.f;
static real c_b22 = 1.f;

/* Subroutine */ int sgebrd_(integer *m, integer *n, real *a, integer *lda, 
	real *d__, real *e, real *tauq, real *taup, real *work, integer *
	lwork, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3, i__4;

    /* Local variables */
    integer i__, j, nb, nx;
    real ws;
    integer nbmin, iinfo;
    extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *, 
	    integer *, real *, real *, integer *, real *, integer *, real *, 
	    real *, integer *);
    integer minmn;
    extern /* Subroutine */ int sgebd2_(integer *, integer *, real *, integer 
	    *, real *, real *, real *, real *, real *, integer *), slabrd_(
	    integer *, integer *, integer *, real *, integer *, real *, real *
, real *, real *, real *, integer *, real *, integer *), xerbla_(
	    char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *);
    integer ldwrkx, ldwrky, lwkopt;
    logical lquery;


51
/*  -- LAPACK routine (version 3.2) -- */
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SGEBRD reduces a general real M-by-N matrix A to upper or lower */
/*  bidiagonal form B by an orthogonal transformation: Q**T * A * P = B. */

/*  If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal. */

/*  Arguments */
/*  ========= */

/*  M       (input) INTEGER */
/*          The number of rows in the matrix A.  M >= 0. */

/*  N       (input) INTEGER */
/*          The number of columns in the matrix A.  N >= 0. */

/*  A       (input/output) REAL array, dimension (LDA,N) */
/*          On entry, the M-by-N general matrix to be reduced. */
/*          On exit, */
/*          if m >= n, the diagonal and the first superdiagonal are */
/*            overwritten with the upper bidiagonal matrix B; the */
/*            elements below the diagonal, with the array TAUQ, represent */
/*            the orthogonal matrix Q as a product of elementary */
/*            reflectors, and the elements above the first superdiagonal, */
/*            with the array TAUP, represent the orthogonal matrix P as */
/*            a product of elementary reflectors; */
/*          if m < n, the diagonal and the first subdiagonal are */
/*            overwritten with the lower bidiagonal matrix B; the */
/*            elements below the first subdiagonal, with the array TAUQ, */
/*            represent the orthogonal matrix Q as a product of */
/*            elementary reflectors, and the elements above the diagonal, */
/*            with the array TAUP, represent the orthogonal matrix P as */
/*            a product of elementary reflectors. */
/*          See Further Details. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,M). */

/*  D       (output) REAL array, dimension (min(M,N)) */
/*          The diagonal elements of the bidiagonal matrix B: */
/*          D(i) = A(i,i). */

/*  E       (output) REAL array, dimension (min(M,N)-1) */
/*          The off-diagonal elements of the bidiagonal matrix B: */
/*          if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1; */
/*          if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1. */

/*  TAUQ    (output) REAL array dimension (min(M,N)) */
/*          The scalar factors of the elementary reflectors which */
/*          represent the orthogonal matrix Q. See Further Details. */

/*  TAUP    (output) REAL array, dimension (min(M,N)) */
/*          The scalar factors of the elementary reflectors which */
/*          represent the orthogonal matrix P. See Further Details. */

/*  WORK    (workspace/output) REAL array, dimension (MAX(1,LWORK)) */
/*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */

/*  LWORK   (input) INTEGER */
/*          The length of the array WORK.  LWORK >= max(1,M,N). */
/*          For optimum performance LWORK >= (M+N)*NB, where NB */
/*          is the optimal blocksize. */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the optimal size of the WORK array, returns */
/*          this value as the first entry of the WORK array, and no error */
/*          message related to LWORK is issued by XERBLA. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value. */

/*  Further Details */
/*  =============== */

/*  The matrices Q and P are represented as products of elementary */
/*  reflectors: */

/*  If m >= n, */

/*     Q = H(1) H(2) . . . H(n)  and  P = G(1) G(2) . . . G(n-1) */

/*  Each H(i) and G(i) has the form: */

/*     H(i) = I - tauq * v * v'  and G(i) = I - taup * u * u' */

/*  where tauq and taup are real scalars, and v and u are real vectors; */
/*  v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in A(i+1:m,i); */
/*  u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in A(i,i+2:n); */
/*  tauq is stored in TAUQ(i) and taup in TAUP(i). */

/*  If m < n, */

/*     Q = H(1) H(2) . . . H(m-1)  and  P = G(1) G(2) . . . G(m) */

/*  Each H(i) and G(i) has the form: */

/*     H(i) = I - tauq * v * v'  and G(i) = I - taup * u * u' */

/*  where tauq and taup are real scalars, and v and u are real vectors; */
/*  v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i); */
/*  u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n); */
/*  tauq is stored in TAUQ(i) and taup in TAUP(i). */

/*  The contents of A on exit are illustrated by the following examples: */

/*  m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n): */

/*    (  d   e   u1  u1  u1 )           (  d   u1  u1  u1  u1  u1 ) */
/*    (  v1  d   e   u2  u2 )           (  e   d   u2  u2  u2  u2 ) */
/*    (  v1  v2  d   e   u3 )           (  v1  e   d   u3  u3  u3 ) */
/*    (  v1  v2  v3  d   e  )           (  v1  v2  e   d   u4  u4 ) */
/*    (  v1  v2  v3  v4  d  )           (  v1  v2  v3  e   d   u5 ) */
/*    (  v1  v2  v3  v4  v5 ) */

/*  where d and e denote diagonal and off-diagonal elements of B, vi */
/*  denotes an element of the vector defining H(i), and ui an element of */
/*  the vector defining G(i). */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --d__;
    --e;
    --tauq;
    --taup;
    --work;

    /* Function Body */
    *info = 0;
/* Computing MAX */
    i__1 = 1, i__2 = ilaenv_(&c__1, "SGEBRD", " ", m, n, &c_n1, &c_n1);
    nb = max(i__1,i__2);
    lwkopt = (*m + *n) * nb;
    work[1] = (real) lwkopt;
    lquery = *lwork == -1;
    if (*m < 0) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*lda < max(1,*m)) {
	*info = -4;
    } else /* if(complicated condition) */ {
/* Computing MAX */
	i__1 = max(1,*m);
	if (*lwork < max(i__1,*n) && ! lquery) {
	    *info = -10;
	}
    }
    if (*info < 0) {
	i__1 = -(*info);
	xerbla_("SGEBRD", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    minmn = min(*m,*n);
    if (minmn == 0) {
	work[1] = 1.f;
	return 0;
    }

    ws = (real) max(*m,*n);
    ldwrkx = *m;
    ldwrky = *n;

    if (nb > 1 && nb < minmn) {

/*        Set the crossover point NX. */

/* Computing MAX */
	i__1 = nb, i__2 = ilaenv_(&c__3, "SGEBRD", " ", m, n, &c_n1, &c_n1);
	nx = max(i__1,i__2);

/*        Determine when to switch from blocked to unblocked code. */

	if (nx < minmn) {
	    ws = (real) ((*m + *n) * nb);
	    if ((real) (*lwork) < ws) {

/*              Not enough work space for the optimal NB, consider using */
/*              a smaller block size. */

		nbmin = ilaenv_(&c__2, "SGEBRD", " ", m, n, &c_n1, &c_n1);
		if (*lwork >= (*m + *n) * nbmin) {
		    nb = *lwork / (*m + *n);
		} else {
		    nb = 1;
		    nx = minmn;
		}
	    }
	}
    } else {
	nx = minmn;
    }

    i__1 = minmn - nx;
    i__2 = nb;
    for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {

/*        Reduce rows and columns i:i+nb-1 to bidiagonal form and return */
/*        the matrices X and Y which are needed to update the unreduced */
/*        part of the matrix */

	i__3 = *m - i__ + 1;
	i__4 = *n - i__ + 1;
	slabrd_(&i__3, &i__4, &nb, &a[i__ + i__ * a_dim1], lda, &d__[i__], &e[
		i__], &tauq[i__], &taup[i__], &work[1], &ldwrkx, &work[ldwrkx 
		* nb + 1], &ldwrky);

/*        Update the trailing submatrix A(i+nb:m,i+nb:n), using an update */
/*        of the form  A := A - V*Y' - X*U' */

	i__3 = *m - i__ - nb + 1;
	i__4 = *n - i__ - nb + 1;
	sgemm_("No transpose", "Transpose", &i__3, &i__4, &nb, &c_b21, &a[i__ 
		+ nb + i__ * a_dim1], lda, &work[ldwrkx * nb + nb + 1], &
		ldwrky, &c_b22, &a[i__ + nb + (i__ + nb) * a_dim1], lda);
	i__3 = *m - i__ - nb + 1;
	i__4 = *n - i__ - nb + 1;
	sgemm_("No transpose", "No transpose", &i__3, &i__4, &nb, &c_b21, &
		work[nb + 1], &ldwrkx, &a[i__ + (i__ + nb) * a_dim1], lda, &
		c_b22, &a[i__ + nb + (i__ + nb) * a_dim1], lda);

/*        Copy diagonal and off-diagonal elements of B back into A */

	if (*m >= *n) {
	    i__3 = i__ + nb - 1;
	    for (j = i__; j <= i__3; ++j) {
		a[j + j * a_dim1] = d__[j];
		a[j + (j + 1) * a_dim1] = e[j];
/* L10: */
	    }
	} else {
	    i__3 = i__ + nb - 1;
	    for (j = i__; j <= i__3; ++j) {
		a[j + j * a_dim1] = d__[j];
		a[j + 1 + j * a_dim1] = e[j];
/* L20: */
	    }
	}
/* L30: */
    }

/*     Use unblocked code to reduce the remainder of the matrix */

    i__2 = *m - i__ + 1;
    i__1 = *n - i__ + 1;
    sgebd2_(&i__2, &i__1, &a[i__ + i__ * a_dim1], lda, &d__[i__], &e[i__], &
	    tauq[i__], &taup[i__], &work[1], &iinfo);
    work[1] = ws;
    return 0;

/*     End of SGEBRD */

} /* sgebrd_ */