dstebz.c 21 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/* dstebz.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

13 14
#include "clapack.h"

15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
/* Table of constant values */

static integer c__1 = 1;
static integer c_n1 = -1;
static integer c__3 = 3;
static integer c__2 = 2;
static integer c__0 = 0;

/* Subroutine */ int dstebz_(char *range, char *order, integer *n, doublereal 
	*vl, doublereal *vu, integer *il, integer *iu, doublereal *abstol, 
	doublereal *d__, doublereal *e, integer *m, integer *nsplit, 
	doublereal *w, integer *iblock, integer *isplit, doublereal *work, 
	integer *iwork, integer *info)
{
    /* System generated locals */
    integer i__1, i__2, i__3;
    doublereal d__1, d__2, d__3, d__4, d__5;

    /* Builtin functions */
    double sqrt(doublereal), log(doublereal);

    /* Local variables */
    integer j, ib, jb, ie, je, nb;
    doublereal gl;
    integer im, in;
    doublereal gu;
    integer iw;
    doublereal wl, wu;
    integer nwl;
    doublereal ulp, wlu, wul;
    integer nwu;
    doublereal tmp1, tmp2;
    integer iend, ioff, iout, itmp1, jdisc;
    extern logical lsame_(char *, char *);
    integer iinfo;
    doublereal atoli;
    integer iwoff;
    doublereal bnorm;
    integer itmax;
    doublereal wkill, rtoli, tnorm;
    extern doublereal dlamch_(char *);
    integer ibegin;
    extern /* Subroutine */ int dlaebz_(integer *, integer *, integer *, 
	    integer *, integer *, integer *, doublereal *, doublereal *, 
	    doublereal *, doublereal *, doublereal *, doublereal *, integer *, 
	     doublereal *, doublereal *, integer *, integer *, doublereal *, 
	    integer *, integer *);
    integer irange, idiscl;
    doublereal safemn;
    integer idumma[1];
    extern /* Subroutine */ int xerbla_(char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *);
    integer idiscu, iorder;
    logical ncnvrg;
    doublereal pivmin;
    logical toofew;


75
/*  -- LAPACK routine (version 3.2) -- */
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */
/*     8-18-00:  Increase FUDGE factor for T3E (eca) */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DSTEBZ computes the eigenvalues of a symmetric tridiagonal */
/*  matrix T.  The user may ask for all eigenvalues, all eigenvalues */
/*  in the half-open interval (VL, VU], or the IL-th through IU-th */
/*  eigenvalues. */

/*  To avoid overflow, the matrix must be scaled so that its */
/*  largest element is no greater than overflow**(1/2) * */
/*  underflow**(1/4) in absolute value, and for greatest */
/*  accuracy, it should not be much smaller than that. */

/*  See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal */
/*  Matrix", Report CS41, Computer Science Dept., Stanford */
/*  University, July 21, 1966. */

/*  Arguments */
/*  ========= */

/*  RANGE   (input) CHARACTER*1 */
/*          = 'A': ("All")   all eigenvalues will be found. */
/*          = 'V': ("Value") all eigenvalues in the half-open interval */
/*                           (VL, VU] will be found. */
/*          = 'I': ("Index") the IL-th through IU-th eigenvalues (of the */
/*                           entire matrix) will be found. */

/*  ORDER   (input) CHARACTER*1 */
/*          = 'B': ("By Block") the eigenvalues will be grouped by */
/*                              split-off block (see IBLOCK, ISPLIT) and */
/*                              ordered from smallest to largest within */
/*                              the block. */
/*          = 'E': ("Entire matrix") */
/*                              the eigenvalues for the entire matrix */
/*                              will be ordered from smallest to */
/*                              largest. */

/*  N       (input) INTEGER */
/*          The order of the tridiagonal matrix T.  N >= 0. */

/*  VL      (input) DOUBLE PRECISION */
/*  VU      (input) DOUBLE PRECISION */
/*          If RANGE='V', the lower and upper bounds of the interval to */
/*          be searched for eigenvalues.  Eigenvalues less than or equal */
/*          to VL, or greater than VU, will not be returned.  VL < VU. */
/*          Not referenced if RANGE = 'A' or 'I'. */

/*  IL      (input) INTEGER */
/*  IU      (input) INTEGER */
/*          If RANGE='I', the indices (in ascending order) of the */
/*          smallest and largest eigenvalues to be returned. */
/*          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
/*          Not referenced if RANGE = 'A' or 'V'. */

/*  ABSTOL  (input) DOUBLE PRECISION */
/*          The absolute tolerance for the eigenvalues.  An eigenvalue */
/*          (or cluster) is considered to be located if it has been */
/*          determined to lie in an interval whose width is ABSTOL or */
/*          less.  If ABSTOL is less than or equal to zero, then ULP*|T| */
/*          will be used, where |T| means the 1-norm of T. */

/*          Eigenvalues will be computed most accurately when ABSTOL is */
/*          set to twice the underflow threshold 2*DLAMCH('S'), not zero. */

/*  D       (input) DOUBLE PRECISION array, dimension (N) */
/*          The n diagonal elements of the tridiagonal matrix T. */

/*  E       (input) DOUBLE PRECISION array, dimension (N-1) */
/*          The (n-1) off-diagonal elements of the tridiagonal matrix T. */

/*  M       (output) INTEGER */
/*          The actual number of eigenvalues found. 0 <= M <= N. */
/*          (See also the description of INFO=2,3.) */

/*  NSPLIT  (output) INTEGER */
/*          The number of diagonal blocks in the matrix T. */
/*          1 <= NSPLIT <= N. */

/*  W       (output) DOUBLE PRECISION array, dimension (N) */
/*          On exit, the first M elements of W will contain the */
/*          eigenvalues.  (DSTEBZ may use the remaining N-M elements as */
/*          workspace.) */

/*  IBLOCK  (output) INTEGER array, dimension (N) */
/*          At each row/column j where E(j) is zero or small, the */
/*          matrix T is considered to split into a block diagonal */
/*          matrix.  On exit, if INFO = 0, IBLOCK(i) specifies to which */
/*          block (from 1 to the number of blocks) the eigenvalue W(i) */
/*          belongs.  (DSTEBZ may use the remaining N-M elements as */
/*          workspace.) */

/*  ISPLIT  (output) INTEGER array, dimension (N) */
/*          The splitting points, at which T breaks up into submatrices. */
/*          The first submatrix consists of rows/columns 1 to ISPLIT(1), */
/*          the second of rows/columns ISPLIT(1)+1 through ISPLIT(2), */
/*          etc., and the NSPLIT-th consists of rows/columns */
/*          ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N. */
/*          (Only the first NSPLIT elements will actually be used, but */
/*          since the user cannot know a priori what value NSPLIT will */
/*          have, N words must be reserved for ISPLIT.) */

/*  WORK    (workspace) DOUBLE PRECISION array, dimension (4*N) */

/*  IWORK   (workspace) INTEGER array, dimension (3*N) */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  some or all of the eigenvalues failed to converge or */
/*                were not computed: */
/*                =1 or 3: Bisection failed to converge for some */
/*                        eigenvalues; these eigenvalues are flagged by a */
/*                        negative block number.  The effect is that the */
/*                        eigenvalues may not be as accurate as the */
/*                        absolute and relative tolerances.  This is */
/*                        generally caused by unexpectedly inaccurate */
/*                        arithmetic. */
/*                =2 or 3: RANGE='I' only: Not all of the eigenvalues */
/*                        IL:IU were found. */
/*                        Effect: M < IU+1-IL */
/*                        Cause:  non-monotonic arithmetic, causing the */
/*                                Sturm sequence to be non-monotonic. */
/*                        Cure:   recalculate, using RANGE='A', and pick */
/*                                out eigenvalues IL:IU.  In some cases, */
/*                                increasing the PARAMETER "FUDGE" may */
/*                                make things work. */
/*                = 4:    RANGE='I', and the Gershgorin interval */
/*                        initially used was too small.  No eigenvalues */
/*                        were computed. */
/*                        Probable cause: your machine has sloppy */
/*                                        floating-point arithmetic. */
/*                        Cure: Increase the PARAMETER "FUDGE", */
/*                              recompile, and try again. */

/*  Internal Parameters */
/*  =================== */

/*  RELFAC  DOUBLE PRECISION, default = 2.0e0 */
/*          The relative tolerance.  An interval (a,b] lies within */
/*          "relative tolerance" if  b-a < RELFAC*ulp*max(|a|,|b|), */
/*          where "ulp" is the machine precision (distance from 1 to */
/*          the next larger floating point number.) */

/*  FUDGE   DOUBLE PRECISION, default = 2 */
/*          A "fudge factor" to widen the Gershgorin intervals.  Ideally, */
/*          a value of 1 should work, but on machines with sloppy */
/*          arithmetic, this needs to be larger.  The default for */
/*          publicly released versions should be large enough to handle */
/*          the worst machine around.  Note that this has no effect */
/*          on accuracy of the solution. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

    /* Parameter adjustments */
    --iwork;
    --work;
    --isplit;
    --iblock;
    --w;
    --e;
    --d__;

    /* Function Body */
    *info = 0;

/*     Decode RANGE */

    if (lsame_(range, "A")) {
	irange = 1;
    } else if (lsame_(range, "V")) {
	irange = 2;
    } else if (lsame_(range, "I")) {
	irange = 3;
    } else {
	irange = 0;
    }

/*     Decode ORDER */

    if (lsame_(order, "B")) {
	iorder = 2;
    } else if (lsame_(order, "E")) {
	iorder = 1;
    } else {
	iorder = 0;
    }

/*     Check for Errors */

    if (irange <= 0) {
	*info = -1;
    } else if (iorder <= 0) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (irange == 2) {
	if (*vl >= *vu) {
	    *info = -5;
	}
    } else if (irange == 3 && (*il < 1 || *il > max(1,*n))) {
	*info = -6;
    } else if (irange == 3 && (*iu < min(*n,*il) || *iu > *n)) {
	*info = -7;
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DSTEBZ", &i__1);
	return 0;
    }

/*     Initialize error flags */

    *info = 0;
    ncnvrg = FALSE_;
    toofew = FALSE_;

/*     Quick return if possible */

    *m = 0;
    if (*n == 0) {
	return 0;
    }

/*     Simplifications: */

    if (irange == 3 && *il == 1 && *iu == *n) {
	irange = 1;
    }

/*     Get machine constants */
/*     NB is the minimum vector length for vector bisection, or 0 */
/*     if only scalar is to be done. */

    safemn = dlamch_("S");
    ulp = dlamch_("P");
    rtoli = ulp * 2.;
    nb = ilaenv_(&c__1, "DSTEBZ", " ", n, &c_n1, &c_n1, &c_n1);
    if (nb <= 1) {
	nb = 0;
    }

/*     Special Case when N=1 */

    if (*n == 1) {
	*nsplit = 1;
	isplit[1] = 1;
	if (irange == 2 && (*vl >= d__[1] || *vu < d__[1])) {
	    *m = 0;
	} else {
	    w[1] = d__[1];
	    iblock[1] = 1;
	    *m = 1;
	}
	return 0;
    }

/*     Compute Splitting Points */

    *nsplit = 1;
    work[*n] = 0.;
    pivmin = 1.;

/* DIR$ NOVECTOR */
    i__1 = *n;
    for (j = 2; j <= i__1; ++j) {
/* Computing 2nd power */
	d__1 = e[j - 1];
	tmp1 = d__1 * d__1;
/* Computing 2nd power */
	d__2 = ulp;
	if ((d__1 = d__[j] * d__[j - 1], abs(d__1)) * (d__2 * d__2) + safemn 
		> tmp1) {
	    isplit[*nsplit] = j - 1;
	    ++(*nsplit);
	    work[j - 1] = 0.;
	} else {
	    work[j - 1] = tmp1;
	    pivmin = max(pivmin,tmp1);
	}
/* L10: */
    }
    isplit[*nsplit] = *n;
    pivmin *= safemn;

/*     Compute Interval and ATOLI */

    if (irange == 3) {

/*        RANGE='I': Compute the interval containing eigenvalues */
/*                   IL through IU. */

/*        Compute Gershgorin interval for entire (split) matrix */
/*        and use it as the initial interval */

	gu = d__[1];
	gl = d__[1];
	tmp1 = 0.;

	i__1 = *n - 1;
	for (j = 1; j <= i__1; ++j) {
	    tmp2 = sqrt(work[j]);
/* Computing MAX */
	    d__1 = gu, d__2 = d__[j] + tmp1 + tmp2;
	    gu = max(d__1,d__2);
/* Computing MIN */
	    d__1 = gl, d__2 = d__[j] - tmp1 - tmp2;
	    gl = min(d__1,d__2);
	    tmp1 = tmp2;
/* L20: */
	}

/* Computing MAX */
	d__1 = gu, d__2 = d__[*n] + tmp1;
	gu = max(d__1,d__2);
/* Computing MIN */
	d__1 = gl, d__2 = d__[*n] - tmp1;
	gl = min(d__1,d__2);
/* Computing MAX */
	d__1 = abs(gl), d__2 = abs(gu);
	tnorm = max(d__1,d__2);
	gl = gl - tnorm * 2.1 * ulp * *n - pivmin * 4.2000000000000002;
	gu = gu + tnorm * 2.1 * ulp * *n + pivmin * 2.1;

/*        Compute Iteration parameters */

	itmax = (integer) ((log(tnorm + pivmin) - log(pivmin)) / log(2.)) + 2;
	if (*abstol <= 0.) {
	    atoli = ulp * tnorm;
	} else {
	    atoli = *abstol;
	}

	work[*n + 1] = gl;
	work[*n + 2] = gl;
	work[*n + 3] = gu;
	work[*n + 4] = gu;
	work[*n + 5] = gl;
	work[*n + 6] = gu;
	iwork[1] = -1;
	iwork[2] = -1;
	iwork[3] = *n + 1;
	iwork[4] = *n + 1;
	iwork[5] = *il - 1;
	iwork[6] = *iu;

	dlaebz_(&c__3, &itmax, n, &c__2, &c__2, &nb, &atoli, &rtoli, &pivmin, 
		&d__[1], &e[1], &work[1], &iwork[5], &work[*n + 1], &work[*n 
		+ 5], &iout, &iwork[1], &w[1], &iblock[1], &iinfo);

	if (iwork[6] == *iu) {
	    wl = work[*n + 1];
	    wlu = work[*n + 3];
	    nwl = iwork[1];
	    wu = work[*n + 4];
	    wul = work[*n + 2];
	    nwu = iwork[4];
	} else {
	    wl = work[*n + 2];
	    wlu = work[*n + 4];
	    nwl = iwork[2];
	    wu = work[*n + 3];
	    wul = work[*n + 1];
	    nwu = iwork[3];
	}

	if (nwl < 0 || nwl >= *n || nwu < 1 || nwu > *n) {
	    *info = 4;
	    return 0;
	}
    } else {

/*        RANGE='A' or 'V' -- Set ATOLI */

/* Computing MAX */
	d__3 = abs(d__[1]) + abs(e[1]), d__4 = (d__1 = d__[*n], abs(d__1)) + (
		d__2 = e[*n - 1], abs(d__2));
	tnorm = max(d__3,d__4);

	i__1 = *n - 1;
	for (j = 2; j <= i__1; ++j) {
/* Computing MAX */
	    d__4 = tnorm, d__5 = (d__1 = d__[j], abs(d__1)) + (d__2 = e[j - 1]
		    , abs(d__2)) + (d__3 = e[j], abs(d__3));
	    tnorm = max(d__4,d__5);
/* L30: */
	}

	if (*abstol <= 0.) {
	    atoli = ulp * tnorm;
	} else {
	    atoli = *abstol;
	}

	if (irange == 2) {
	    wl = *vl;
	    wu = *vu;
	} else {
	    wl = 0.;
	    wu = 0.;
	}
    }

/*     Find Eigenvalues -- Loop Over Blocks and recompute NWL and NWU. */
/*     NWL accumulates the number of eigenvalues .le. WL, */
/*     NWU accumulates the number of eigenvalues .le. WU */

    *m = 0;
    iend = 0;
    *info = 0;
    nwl = 0;
    nwu = 0;

    i__1 = *nsplit;
    for (jb = 1; jb <= i__1; ++jb) {
	ioff = iend;
	ibegin = ioff + 1;
	iend = isplit[jb];
	in = iend - ioff;

	if (in == 1) {

/*           Special Case -- IN=1 */

	    if (irange == 1 || wl >= d__[ibegin] - pivmin) {
		++nwl;
	    }
	    if (irange == 1 || wu >= d__[ibegin] - pivmin) {
		++nwu;
	    }
	    if (irange == 1 || wl < d__[ibegin] - pivmin && wu >= d__[ibegin] 
		    - pivmin) {
		++(*m);
		w[*m] = d__[ibegin];
		iblock[*m] = jb;
	    }
	} else {

/*           General Case -- IN > 1 */

/*           Compute Gershgorin Interval */
/*           and use it as the initial interval */

	    gu = d__[ibegin];
	    gl = d__[ibegin];
	    tmp1 = 0.;

	    i__2 = iend - 1;
	    for (j = ibegin; j <= i__2; ++j) {
		tmp2 = (d__1 = e[j], abs(d__1));
/* Computing MAX */
		d__1 = gu, d__2 = d__[j] + tmp1 + tmp2;
		gu = max(d__1,d__2);
/* Computing MIN */
		d__1 = gl, d__2 = d__[j] - tmp1 - tmp2;
		gl = min(d__1,d__2);
		tmp1 = tmp2;
/* L40: */
	    }

/* Computing MAX */
	    d__1 = gu, d__2 = d__[iend] + tmp1;
	    gu = max(d__1,d__2);
/* Computing MIN */
	    d__1 = gl, d__2 = d__[iend] - tmp1;
	    gl = min(d__1,d__2);
/* Computing MAX */
	    d__1 = abs(gl), d__2 = abs(gu);
	    bnorm = max(d__1,d__2);
	    gl = gl - bnorm * 2.1 * ulp * in - pivmin * 2.1;
	    gu = gu + bnorm * 2.1 * ulp * in + pivmin * 2.1;

/*           Compute ATOLI for the current submatrix */

	    if (*abstol <= 0.) {
/* Computing MAX */
		d__1 = abs(gl), d__2 = abs(gu);
		atoli = ulp * max(d__1,d__2);
	    } else {
		atoli = *abstol;
	    }

	    if (irange > 1) {
		if (gu < wl) {
		    nwl += in;
		    nwu += in;
		    goto L70;
		}
		gl = max(gl,wl);
		gu = min(gu,wu);
		if (gl >= gu) {
		    goto L70;
		}
	    }

/*           Set Up Initial Interval */

	    work[*n + 1] = gl;
	    work[*n + in + 1] = gu;
	    dlaebz_(&c__1, &c__0, &in, &in, &c__1, &nb, &atoli, &rtoli, &
		    pivmin, &d__[ibegin], &e[ibegin], &work[ibegin], idumma, &
		    work[*n + 1], &work[*n + (in << 1) + 1], &im, &iwork[1], &
		    w[*m + 1], &iblock[*m + 1], &iinfo);

	    nwl += iwork[1];
	    nwu += iwork[in + 1];
	    iwoff = *m - iwork[1];

/*           Compute Eigenvalues */

	    itmax = (integer) ((log(gu - gl + pivmin) - log(pivmin)) / log(2.)
		    ) + 2;
	    dlaebz_(&c__2, &itmax, &in, &in, &c__1, &nb, &atoli, &rtoli, &
		    pivmin, &d__[ibegin], &e[ibegin], &work[ibegin], idumma, &
		    work[*n + 1], &work[*n + (in << 1) + 1], &iout, &iwork[1], 
		     &w[*m + 1], &iblock[*m + 1], &iinfo);

/*           Copy Eigenvalues Into W and IBLOCK */
/*           Use -JB for block number for unconverged eigenvalues. */

	    i__2 = iout;
	    for (j = 1; j <= i__2; ++j) {
		tmp1 = (work[j + *n] + work[j + in + *n]) * .5;

/*              Flag non-convergence. */

		if (j > iout - iinfo) {
		    ncnvrg = TRUE_;
		    ib = -jb;
		} else {
		    ib = jb;
		}
		i__3 = iwork[j + in] + iwoff;
		for (je = iwork[j] + 1 + iwoff; je <= i__3; ++je) {
		    w[je] = tmp1;
		    iblock[je] = ib;
/* L50: */
		}
/* L60: */
	    }

	    *m += im;
	}
L70:
	;
    }

/*     If RANGE='I', then (WL,WU) contains eigenvalues NWL+1,...,NWU */
/*     If NWL+1 < IL or NWU > IU, discard extra eigenvalues. */

    if (irange == 3) {
	im = 0;
	idiscl = *il - 1 - nwl;
	idiscu = nwu - *iu;

	if (idiscl > 0 || idiscu > 0) {
	    i__1 = *m;
	    for (je = 1; je <= i__1; ++je) {
		if (w[je] <= wlu && idiscl > 0) {
		    --idiscl;
		} else if (w[je] >= wul && idiscu > 0) {
		    --idiscu;
		} else {
		    ++im;
		    w[im] = w[je];
		    iblock[im] = iblock[je];
		}
/* L80: */
	    }
	    *m = im;
	}
	if (idiscl > 0 || idiscu > 0) {

/*           Code to deal with effects of bad arithmetic: */
/*           Some low eigenvalues to be discarded are not in (WL,WLU], */
/*           or high eigenvalues to be discarded are not in (WUL,WU] */
/*           so just kill off the smallest IDISCL/largest IDISCU */
/*           eigenvalues, by simply finding the smallest/largest */
/*           eigenvalue(s). */

/*           (If N(w) is monotone non-decreasing, this should never */
/*               happen.) */

	    if (idiscl > 0) {
		wkill = wu;
		i__1 = idiscl;
		for (jdisc = 1; jdisc <= i__1; ++jdisc) {
		    iw = 0;
		    i__2 = *m;
		    for (je = 1; je <= i__2; ++je) {
			if (iblock[je] != 0 && (w[je] < wkill || iw == 0)) {
			    iw = je;
			    wkill = w[je];
			}
/* L90: */
		    }
		    iblock[iw] = 0;
/* L100: */
		}
	    }
	    if (idiscu > 0) {

		wkill = wl;
		i__1 = idiscu;
		for (jdisc = 1; jdisc <= i__1; ++jdisc) {
		    iw = 0;
		    i__2 = *m;
		    for (je = 1; je <= i__2; ++je) {
			if (iblock[je] != 0 && (w[je] > wkill || iw == 0)) {
			    iw = je;
			    wkill = w[je];
			}
/* L110: */
		    }
		    iblock[iw] = 0;
/* L120: */
		}
	    }
	    im = 0;
	    i__1 = *m;
	    for (je = 1; je <= i__1; ++je) {
		if (iblock[je] != 0) {
		    ++im;
		    w[im] = w[je];
		    iblock[im] = iblock[je];
		}
/* L130: */
	    }
	    *m = im;
	}
	if (idiscl < 0 || idiscu < 0) {
	    toofew = TRUE_;
	}
    }

/*     If ORDER='B', do nothing -- the eigenvalues are already sorted */
/*        by block. */
/*     If ORDER='E', sort the eigenvalues from smallest to largest */

    if (iorder == 1 && *nsplit > 1) {
	i__1 = *m - 1;
	for (je = 1; je <= i__1; ++je) {
	    ie = 0;
	    tmp1 = w[je];
	    i__2 = *m;
	    for (j = je + 1; j <= i__2; ++j) {
		if (w[j] < tmp1) {
		    ie = j;
		    tmp1 = w[j];
		}
/* L140: */
	    }

	    if (ie != 0) {
		itmp1 = iblock[ie];
		w[ie] = w[je];
		iblock[ie] = iblock[je];
		w[je] = tmp1;
		iblock[je] = itmp1;
	    }
/* L150: */
	}
    }

    *info = 0;
    if (ncnvrg) {
	++(*info);
    }
    if (toofew) {
	*info += 2;
    }
    return 0;

/*     End of DSTEBZ */

} /* dstebz_ */