ts_func.cpp 89.5 KB
Newer Older
1 2 3 4
#include "precomp.hpp"
#include <float.h>
#include <limits.h>

5 6 7 8
#ifdef HAVE_TEGRA_OPTIMIZATION
#include "tegra.hpp"
#endif

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
using namespace cv;

namespace cvtest
{

const char* getTypeName( int type )
{
    static const char* type_names[] = { "8u", "8s", "16u", "16s", "32s", "32f", "64f", "ptr" };
    return type_names[CV_MAT_DEPTH(type)];
}

int typeByName( const char* name )
{
    int i;
    for( i = 0; i < CV_DEPTH_MAX; i++ )
        if( strcmp(name, getTypeName(i)) == 0 )
            return i;
    return -1;
}

string vec2str( const string& sep, const int* v, size_t nelems )
{
    char buf[32];
    string result = "";
    for( size_t i = 0; i < nelems; i++ )
    {
        sprintf(buf, "%d", v[i]);
        result += string(buf);
        if( i < nelems - 1 )
            result += sep;
    }
    return result;
}
42 43


44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
Size randomSize(RNG& rng, double maxSizeLog)
{
    double width_log = rng.uniform(0., maxSizeLog);
    double height_log = rng.uniform(0., maxSizeLog - width_log);
    if( (unsigned)rng % 2 != 0 )
        std::swap(width_log, height_log);
    Size sz;
    sz.width = cvRound(exp(width_log));
    sz.height = cvRound(exp(height_log));
    return sz;
}

void randomSize(RNG& rng, int minDims, int maxDims, double maxSizeLog, vector<int>& sz)
{
    int i, dims = rng.uniform(minDims, maxDims+1);
    sz.resize(dims);
    for( i = 0; i < dims; i++ )
    {
        double v = rng.uniform(0., maxSizeLog);
        maxSizeLog -= v;
        sz[i] = cvRound(exp(v));
    }
    for( i = 0; i < dims; i++ )
    {
        int j = rng.uniform(0, dims);
        int k = rng.uniform(0, dims);
        std::swap(sz[j], sz[k]);
    }
}

int randomType(RNG& rng, int typeMask, int minChannels, int maxChannels)
{
    int channels = rng.uniform(minChannels, maxChannels+1);
    int depth = 0;
78
    CV_Assert((typeMask & _OutputArray::DEPTH_MASK_ALL) != 0);
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
    for(;;)
    {
        depth = rng.uniform(CV_8U, CV_64F+1);
        if( ((1 << depth) & typeMask) != 0 )
            break;
    }
    return CV_MAKETYPE(depth, channels);
}

double getMinVal(int depth)
{
    depth = CV_MAT_DEPTH(depth);
    double val = depth == CV_8U ? 0 : depth == CV_8S ? SCHAR_MIN : depth == CV_16U ? 0 :
    depth == CV_16S ? SHRT_MIN : depth == CV_32S ? INT_MIN :
    depth == CV_32F ? -FLT_MAX : depth == CV_64F ? -DBL_MAX : -1;
    CV_Assert(val != -1);
    return val;
}

double getMaxVal(int depth)
{
    depth = CV_MAT_DEPTH(depth);
    double val = depth == CV_8U ? UCHAR_MAX : depth == CV_8S ? SCHAR_MAX : depth == CV_16U ? USHRT_MAX :
    depth == CV_16S ? SHRT_MAX : depth == CV_32S ? INT_MAX :
    depth == CV_32F ? FLT_MAX : depth == CV_64F ? DBL_MAX : -1;
    CV_Assert(val != -1);
    return val;
106 107
}

108 109 110 111 112 113 114 115
Mat randomMat(RNG& rng, Size size, int type, double minVal, double maxVal, bool useRoi)
{
    Size size0 = size;
    if( useRoi )
    {
        size0.width += std::max(rng.uniform(0, 10) - 5, 0);
        size0.height += std::max(rng.uniform(0, 10) - 5, 0);
    }
116

117
    Mat m(size0, type);
118

119
    rng.fill(m, RNG::UNIFORM, minVal, maxVal);
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
    if( size0 == size )
        return m;
    return m(Rect((size0.width-size.width)/2, (size0.height-size.height)/2, size.width, size.height));
}

Mat randomMat(RNG& rng, const vector<int>& size, int type, double minVal, double maxVal, bool useRoi)
{
    int i, dims = (int)size.size();
    vector<int> size0(dims);
    vector<Range> r(dims);
    bool eqsize = true;
    for( i = 0; i < dims; i++ )
    {
        size0[i] = size[i];
        r[i] = Range::all();
        if( useRoi )
        {
            size0[i] += std::max(rng.uniform(0, 5) - 2, 0);
            r[i] = Range((size0[i] - size[i])/2, (size0[i] - size[i])/2 + size[i]);
        }
        eqsize = eqsize && size[i] == size0[i];
    }
142

143
    Mat m(dims, &size0[0], type);
144

145
    rng.fill(m, RNG::UNIFORM, minVal, maxVal);
146 147 148 149
    if( eqsize )
        return m;
    return m(&r[0]);
}
150

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
void add(const Mat& _a, double alpha, const Mat& _b, double beta,
        Scalar gamma, Mat& c, int ctype, bool calcAbs)
{
    Mat a = _a, b = _b;
    if( a.empty() || alpha == 0 )
    {
        // both alpha and beta can be 0, but at least one of a and b must be non-empty array,
        // otherwise we do not know the size of the output (and may be type of the output, when ctype<0)
        CV_Assert( !a.empty() || !b.empty() );
        if( !b.empty() )
        {
            a = b;
            alpha = beta;
            b = Mat();
            beta = 0;
        }
    }
    if( b.empty() || beta == 0 )
    {
        b = Mat();
        beta = 0;
    }
    else
        CV_Assert(a.size == b.size);
175

176 177 178 179 180 181
    if( ctype < 0 )
        ctype = a.depth();
    ctype = CV_MAKETYPE(CV_MAT_DEPTH(ctype), a.channels());
    c.create(a.dims, &a.size[0], ctype);
    const Mat *arrays[] = {&a, &b, &c, 0};
    Mat planes[3], buf[3];
182

183
    NAryMatIterator it(arrays, planes);
184
    size_t i, nplanes = it.nplanes;
185
    int cn=a.channels();
186
    int total = (int)planes[0].total(), maxsize = std::min(12*12*std::max(12/cn, 1), total);
187

188
    CV_Assert(planes[0].rows == 1);
189
    buf[0].create(1, maxsize, CV_64FC(cn));
190 191 192
    if(!b.empty())
        buf[1].create(1, maxsize, CV_64FC(cn));
    buf[2].create(1, maxsize, CV_64FC(cn));
193
    scalarToRawData(gamma, buf[2].ptr(), CV_64FC(cn), (int)(maxsize*cn));
194

195 196
    for( i = 0; i < nplanes; i++, ++it)
    {
197
        for( int j = 0; j < total; j += maxsize )
198
        {
199 200 201 202
            int j2 = std::min(j + maxsize, total);
            Mat apart0 = planes[0].colRange(j, j2);
            Mat cpart0 = planes[2].colRange(j, j2);
            Mat apart = buf[0].colRange(0, j2 - j);
203

204 205
            apart0.convertTo(apart, apart.type(), alpha);
            size_t k, n = (j2 - j)*cn;
206 207
            double* aptr = apart.ptr<double>();
            const double* gptr = buf[2].ptr<double>();
208

209 210 211 212 213 214 215 216 217 218
            if( b.empty() )
            {
                for( k = 0; k < n; k++ )
                    aptr[k] += gptr[k];
            }
            else
            {
                Mat bpart0 = planes[1].colRange((int)j, (int)j2);
                Mat bpart = buf[1].colRange(0, (int)(j2 - j));
                bpart0.convertTo(bpart, bpart.type(), beta);
219
                const double* bptr = bpart.ptr<double>();
220

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
                for( k = 0; k < n; k++ )
                    aptr[k] += bptr[k] + gptr[k];
            }
            if( calcAbs )
                for( k = 0; k < n; k++ )
                    aptr[k] = fabs(aptr[k]);
            apart.convertTo(cpart0, cpart0.type(), 1, 0);
        }
    }
}


template<typename _Tp1, typename _Tp2> inline void
convert_(const _Tp1* src, _Tp2* dst, size_t total, double alpha, double beta)
{
    size_t i;
    if( alpha == 1 && beta == 0 )
        for( i = 0; i < total; i++ )
            dst[i] = saturate_cast<_Tp2>(src[i]);
    else if( beta == 0 )
        for( i = 0; i < total; i++ )
            dst[i] = saturate_cast<_Tp2>(src[i]*alpha);
    else
        for( i = 0; i < total; i++ )
            dst[i] = saturate_cast<_Tp2>(src[i]*alpha + beta);
}

template<typename _Tp> inline void
convertTo(const _Tp* src, void* dst, int dtype, size_t total, double alpha, double beta)
{
    switch( CV_MAT_DEPTH(dtype) )
    {
    case CV_8U:
        convert_(src, (uchar*)dst, total, alpha, beta);
        break;
    case CV_8S:
        convert_(src, (schar*)dst, total, alpha, beta);
        break;
    case CV_16U:
        convert_(src, (ushort*)dst, total, alpha, beta);
        break;
    case CV_16S:
        convert_(src, (short*)dst, total, alpha, beta);
        break;
    case CV_32S:
        convert_(src, (int*)dst, total, alpha, beta);
        break;
    case CV_32F:
        convert_(src, (float*)dst, total, alpha, beta);
        break;
    case CV_64F:
        convert_(src, (double*)dst, total, alpha, beta);
        break;
    default:
        CV_Assert(0);
    }
}
278

279
void convert(const Mat& src, cv::OutputArray _dst, int dtype, double alpha, double beta)
280
{
281 282
    if (dtype < 0) dtype = _dst.depth();

283
    dtype = CV_MAKETYPE(CV_MAT_DEPTH(dtype), src.channels());
284 285
    _dst.create(src.dims, &src.size[0], dtype);
    Mat dst = _dst.getMat();
286 287 288 289 290 291 292 293 294 295
    if( alpha == 0 )
    {
        set( dst, Scalar::all(beta) );
        return;
    }
    if( dtype == src.type() && alpha == 1 && beta == 0 )
    {
        copy( src, dst );
        return;
    }
296

297 298
    const Mat *arrays[]={&src, &dst, 0};
    Mat planes[2];
299

300 301
    NAryMatIterator it(arrays, planes);
    size_t total = planes[0].total()*planes[0].channels();
302
    size_t i, nplanes = it.nplanes;
303

304 305
    for( i = 0; i < nplanes; i++, ++it)
    {
306 307
        const uchar* sptr = planes[0].ptr();
        uchar* dptr = planes[1].ptr();
308

309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
        switch( src.depth() )
        {
        case CV_8U:
            convertTo((const uchar*)sptr, dptr, dtype, total, alpha, beta);
            break;
        case CV_8S:
            convertTo((const schar*)sptr, dptr, dtype, total, alpha, beta);
            break;
        case CV_16U:
            convertTo((const ushort*)sptr, dptr, dtype, total, alpha, beta);
            break;
        case CV_16S:
            convertTo((const short*)sptr, dptr, dtype, total, alpha, beta);
            break;
        case CV_32S:
            convertTo((const int*)sptr, dptr, dtype, total, alpha, beta);
            break;
        case CV_32F:
            convertTo((const float*)sptr, dptr, dtype, total, alpha, beta);
            break;
        case CV_64F:
            convertTo((const double*)sptr, dptr, dtype, total, alpha, beta);
            break;
        }
    }
}
335 336


337 338 339
void copy(const Mat& src, Mat& dst, const Mat& mask, bool invertMask)
{
    dst.create(src.dims, &src.size[0], src.type());
340

341 342 343 344 345
    if(mask.empty())
    {
        const Mat* arrays[] = {&src, &dst, 0};
        Mat planes[2];
        NAryMatIterator it(arrays, planes);
346
        size_t i, nplanes = it.nplanes;
347
        size_t planeSize = planes[0].total()*src.elemSize();
348

349
        for( i = 0; i < nplanes; i++, ++it )
350
            memcpy(planes[1].ptr(), planes[0].ptr(), planeSize);
351

352 353
        return;
    }
354

355
    CV_Assert( src.size == mask.size && mask.type() == CV_8U );
356

357 358
    const Mat *arrays[]={&src, &dst, &mask, 0};
    Mat planes[3];
359

360 361
    NAryMatIterator it(arrays, planes);
    size_t j, k, elemSize = src.elemSize(), total = planes[0].total();
362
    size_t i, nplanes = it.nplanes;
363

364 365
    for( i = 0; i < nplanes; i++, ++it)
    {
366 367 368
        const uchar* sptr = planes[0].ptr();
        uchar* dptr = planes[1].ptr();
        const uchar* mptr = planes[2].ptr();
369

370 371 372 373 374 375 376 377 378
        for( j = 0; j < total; j++, sptr += elemSize, dptr += elemSize )
        {
            if( (mptr[j] != 0) ^ invertMask )
                for( k = 0; k < elemSize; k++ )
                    dptr[k] = sptr[k];
        }
    }
}

379

380 381 382 383 384
void set(Mat& dst, const Scalar& gamma, const Mat& mask)
{
    double buf[12];
    scalarToRawData(gamma, &buf, dst.type(), dst.channels());
    const uchar* gptr = (const uchar*)&buf[0];
385

386 387 388 389 390
    if(mask.empty())
    {
        const Mat* arrays[] = {&dst, 0};
        Mat plane;
        NAryMatIterator it(arrays, &plane);
391
        size_t i, nplanes = it.nplanes;
392
        size_t j, k, elemSize = dst.elemSize(), planeSize = plane.total()*elemSize;
393

394 395 396 397
        for( k = 1; k < elemSize; k++ )
            if( gptr[k] != gptr[0] )
                break;
        bool uniform = k >= elemSize;
398

399 400
        for( i = 0; i < nplanes; i++, ++it )
        {
401
            uchar* dptr = plane.ptr();
402 403 404 405 406 407 408 409 410
            if( uniform )
                memset( dptr, gptr[0], planeSize );
            else if( i == 0 )
            {
                for( j = 0; j < planeSize; j += elemSize, dptr += elemSize )
                    for( k = 0; k < elemSize; k++ )
                        dptr[k] = gptr[k];
            }
            else
411
                memcpy(dptr, dst.ptr(), planeSize);
412 413 414
        }
        return;
    }
415

416
    CV_Assert( dst.size == mask.size && mask.type() == CV_8U );
417

418 419
    const Mat *arrays[]={&dst, &mask, 0};
    Mat planes[2];
420

421 422
    NAryMatIterator it(arrays, planes);
    size_t j, k, elemSize = dst.elemSize(), total = planes[0].total();
423
    size_t i, nplanes = it.nplanes;
424

425 426
    for( i = 0; i < nplanes; i++, ++it)
    {
427 428
        uchar* dptr = planes[0].ptr();
        const uchar* mptr = planes[1].ptr();
429

430 431 432 433 434 435 436 437 438 439 440 441 442 443
        for( j = 0; j < total; j++, dptr += elemSize )
        {
            if( mptr[j] )
                for( k = 0; k < elemSize; k++ )
                    dptr[k] = gptr[k];
        }
    }
}


void insert(const Mat& src, Mat& dst, int coi)
{
    CV_Assert( dst.size == src.size && src.depth() == dst.depth() &&
              0 <= coi && coi < dst.channels() );
444

445 446 447
    const Mat* arrays[] = {&src, &dst, 0};
    Mat planes[2];
    NAryMatIterator it(arrays, planes);
448
    size_t i, nplanes = it.nplanes;
449
    size_t j, k, size0 = src.elemSize(), size1 = dst.elemSize(), total = planes[0].total();
450

451 452
    for( i = 0; i < nplanes; i++, ++it )
    {
453 454
        const uchar* sptr = planes[0].ptr();
        uchar* dptr = planes[1].ptr() + coi*size0;
455

456 457 458 459 460 461 462 463
        for( j = 0; j < total; j++, sptr += size0, dptr += size1 )
        {
            for( k = 0; k < size0; k++ )
                dptr[k] = sptr[k];
        }
    }
}

464

465 466 467 468
void extract(const Mat& src, Mat& dst, int coi)
{
    dst.create( src.dims, &src.size[0], src.depth() );
    CV_Assert( 0 <= coi && coi < src.channels() );
469

470 471 472
    const Mat* arrays[] = {&src, &dst, 0};
    Mat planes[2];
    NAryMatIterator it(arrays, planes);
473
    size_t i, nplanes = it.nplanes;
474
    size_t j, k, size0 = src.elemSize(), size1 = dst.elemSize(), total = planes[0].total();
475

476 477
    for( i = 0; i < nplanes; i++, ++it )
    {
478 479
        const uchar* sptr = planes[0].ptr() + coi*size1;
        uchar* dptr = planes[1].ptr();
480

481 482 483 484 485 486 487
        for( j = 0; j < total; j++, sptr += size0, dptr += size1 )
        {
            for( k = 0; k < size1; k++ )
                dptr[k] = sptr[k];
        }
    }
}
488 489


490 491 492 493 494
void transpose(const Mat& src, Mat& dst)
{
    CV_Assert(src.dims == 2);
    dst.create(src.cols, src.rows, src.type());
    int i, j, k, esz = (int)src.elemSize();
495

496 497 498 499
    for( i = 0; i < dst.rows; i++ )
    {
        const uchar* sptr = src.ptr(0) + i*esz;
        uchar* dptr = dst.ptr(i);
500

501 502 503 504 505 506 507 508
        for( j = 0; j < dst.cols; j++, sptr += src.step[0], dptr += esz )
        {
            for( k = 0; k < esz; k++ )
                dptr[k] = sptr[k];
        }
    }
}

509

510 511 512 513 514 515 516 517 518 519 520
template<typename _Tp> static void
randUniInt_(RNG& rng, _Tp* data, size_t total, int cn, const Scalar& scale, const Scalar& delta)
{
    for( size_t i = 0; i < total; i += cn )
        for( int k = 0; k < cn; k++ )
        {
            int val = cvFloor( randInt(rng)*scale[k] + delta[k] );
            data[i + k] = saturate_cast<_Tp>(val);
        }
}

521

522 523 524 525 526 527 528 529 530 531 532
template<typename _Tp> static void
randUniFlt_(RNG& rng, _Tp* data, size_t total, int cn, const Scalar& scale, const Scalar& delta)
{
    for( size_t i = 0; i < total; i += cn )
        for( int k = 0; k < cn; k++ )
        {
            double val = randReal(rng)*scale[k] + delta[k];
            data[i + k] = saturate_cast<_Tp>(val);
        }
}

533

534 535 536 537 538
void randUni( RNG& rng, Mat& a, const Scalar& param0, const Scalar& param1 )
{
    Scalar scale = param0;
    Scalar delta = param1;
    double C = a.depth() < CV_32F ? 1./(65536.*65536.) : 1.;
539

540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
    for( int k = 0; k < 4; k++ )
    {
        double s = scale.val[k] - delta.val[k];
        if( s >= 0 )
            scale.val[k] = s;
        else
        {
            delta.val[k] = scale.val[k];
            scale.val[k] = -s;
        }
        scale.val[k] *= C;
    }

    const Mat *arrays[]={&a, 0};
    Mat plane;
555

556
    NAryMatIterator it(arrays, &plane);
557
    size_t i, nplanes = it.nplanes;
558
    int depth = a.depth(), cn = a.channels();
559
    size_t total = plane.total()*cn;
560

561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
    for( i = 0; i < nplanes; i++, ++it )
    {
        switch( depth )
        {
        case CV_8U:
            randUniInt_(rng, plane.ptr<uchar>(), total, cn, scale, delta);
            break;
        case CV_8S:
            randUniInt_(rng, plane.ptr<schar>(), total, cn, scale, delta);
            break;
        case CV_16U:
            randUniInt_(rng, plane.ptr<ushort>(), total, cn, scale, delta);
            break;
        case CV_16S:
            randUniInt_(rng, plane.ptr<short>(), total, cn, scale, delta);
            break;
        case CV_32S:
            randUniInt_(rng, plane.ptr<int>(), total, cn, scale, delta);
            break;
        case CV_32F:
            randUniFlt_(rng, plane.ptr<float>(), total, cn, scale, delta);
            break;
        case CV_64F:
            randUniFlt_(rng, plane.ptr<double>(), total, cn, scale, delta);
            break;
        default:
            CV_Assert(0);
        }
    }
}
591 592


593 594 595 596 597
template<typename _Tp> static void
erode_(const Mat& src, Mat& dst, const vector<int>& ofsvec)
{
    int width = dst.cols*src.channels(), n = (int)ofsvec.size();
    const int* ofs = &ofsvec[0];
598

599 600 601 602
    for( int y = 0; y < dst.rows; y++ )
    {
        const _Tp* sptr = src.ptr<_Tp>(y);
        _Tp* dptr = dst.ptr<_Tp>(y);
603

604 605 606 607 608 609 610 611 612 613
        for( int x = 0; x < width; x++ )
        {
            _Tp result = sptr[x + ofs[0]];
            for( int i = 1; i < n; i++ )
                result = std::min(result, sptr[x + ofs[i]]);
            dptr[x] = result;
        }
    }
}

614

615 616 617 618 619
template<typename _Tp> static void
dilate_(const Mat& src, Mat& dst, const vector<int>& ofsvec)
{
    int width = dst.cols*src.channels(), n = (int)ofsvec.size();
    const int* ofs = &ofsvec[0];
620

621 622 623 624
    for( int y = 0; y < dst.rows; y++ )
    {
        const _Tp* sptr = src.ptr<_Tp>(y);
        _Tp* dptr = dst.ptr<_Tp>(y);
625

626 627 628 629 630 631 632 633 634
        for( int x = 0; x < width; x++ )
        {
            _Tp result = sptr[x + ofs[0]];
            for( int i = 1; i < n; i++ )
                result = std::max(result, sptr[x + ofs[i]]);
            dptr[x] = result;
        }
    }
}
635 636


637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
void erode(const Mat& _src, Mat& dst, const Mat& _kernel, Point anchor,
           int borderType, const Scalar& _borderValue)
{
    //if( _src.type() == CV_16UC3 && _src.size() == Size(1, 2) )
    //    putchar('*');
    Mat kernel = _kernel, src;
    Scalar borderValue = _borderValue;
    if( kernel.empty() )
        kernel = Mat::ones(3, 3, CV_8U);
    else
    {
        CV_Assert( kernel.type() == CV_8U );
    }
    if( anchor == Point(-1,-1) )
        anchor = Point(kernel.cols/2, kernel.rows/2);
652
    if( borderType == BORDER_CONSTANT )
653 654 655 656 657
        borderValue = getMaxVal(src.depth());
    copyMakeBorder(_src, src, anchor.y, kernel.rows - anchor.y - 1,
                   anchor.x, kernel.cols - anchor.x - 1,
                   borderType, borderValue);
    dst.create( _src.size(), src.type() );
658

659 660 661 662 663 664 665 666
    vector<int> ofs;
    int step = (int)(src.step/src.elemSize1()), cn = src.channels();
    for( int i = 0; i < kernel.rows; i++ )
        for( int j = 0; j < kernel.cols; j++ )
            if( kernel.at<uchar>(i, j) != 0 )
                ofs.push_back(i*step + j*cn);
    if( ofs.empty() )
        ofs.push_back(anchor.y*step + anchor.x*cn);
667

668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
    switch( src.depth() )
    {
    case CV_8U:
        erode_<uchar>(src, dst, ofs);
        break;
    case CV_8S:
        erode_<schar>(src, dst, ofs);
        break;
    case CV_16U:
        erode_<ushort>(src, dst, ofs);
        break;
    case CV_16S:
        erode_<short>(src, dst, ofs);
        break;
    case CV_32S:
        erode_<int>(src, dst, ofs);
        break;
    case CV_32F:
        erode_<float>(src, dst, ofs);
        break;
    case CV_64F:
        erode_<double>(src, dst, ofs);
        break;
    default:
        CV_Assert(0);
    }
}

void dilate(const Mat& _src, Mat& dst, const Mat& _kernel, Point anchor,
            int borderType, const Scalar& _borderValue)
{
    Mat kernel = _kernel, src;
    Scalar borderValue = _borderValue;
    if( kernel.empty() )
        kernel = Mat::ones(3, 3, CV_8U);
    else
    {
        CV_Assert( kernel.type() == CV_8U );
    }
    if( anchor == Point(-1,-1) )
        anchor = Point(kernel.cols/2, kernel.rows/2);
709
    if( borderType == BORDER_CONSTANT )
710 711 712 713 714
        borderValue = getMinVal(src.depth());
    copyMakeBorder(_src, src, anchor.y, kernel.rows - anchor.y - 1,
                   anchor.x, kernel.cols - anchor.x - 1,
                   borderType, borderValue);
    dst.create( _src.size(), src.type() );
715

716 717 718 719 720 721 722 723
    vector<int> ofs;
    int step = (int)(src.step/src.elemSize1()), cn = src.channels();
    for( int i = 0; i < kernel.rows; i++ )
        for( int j = 0; j < kernel.cols; j++ )
            if( kernel.at<uchar>(i, j) != 0 )
                ofs.push_back(i*step + j*cn);
    if( ofs.empty() )
        ofs.push_back(anchor.y*step + anchor.x*cn);
724

725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
    switch( src.depth() )
    {
    case CV_8U:
        dilate_<uchar>(src, dst, ofs);
        break;
    case CV_8S:
        dilate_<schar>(src, dst, ofs);
        break;
    case CV_16U:
        dilate_<ushort>(src, dst, ofs);
        break;
    case CV_16S:
        dilate_<short>(src, dst, ofs);
        break;
    case CV_32S:
        dilate_<int>(src, dst, ofs);
        break;
    case CV_32F:
        dilate_<float>(src, dst, ofs);
        break;
    case CV_64F:
        dilate_<double>(src, dst, ofs);
        break;
    default:
        CV_Assert(0);
    }
751 752
}

753 754 755 756 757 758 759

template<typename _Tp> static void
filter2D_(const Mat& src, Mat& dst, const vector<int>& ofsvec, const vector<double>& coeffvec)
{
    const int* ofs = &ofsvec[0];
    const double* coeff = &coeffvec[0];
    int width = dst.cols*dst.channels(), ncoeffs = (int)ofsvec.size();
760

761 762 763 764
    for( int y = 0; y < dst.rows; y++ )
    {
        const _Tp* sptr = src.ptr<_Tp>(y);
        double* dptr = dst.ptr<double>(y);
765

766 767 768 769 770 771 772 773 774
        for( int x = 0; x < width; x++ )
        {
            double s = 0;
            for( int i = 0; i < ncoeffs; i++ )
                s += sptr[x + ofs[i]]*coeff[i];
            dptr[x] = s;
        }
    }
}
775 776


777 778 779 780 781 782 783 784
void filter2D(const Mat& _src, Mat& dst, int ddepth, const Mat& kernel,
              Point anchor, double delta, int borderType, const Scalar& _borderValue)
{
    Mat src, _dst;
    Scalar borderValue = _borderValue;
    CV_Assert( kernel.type() == CV_32F || kernel.type() == CV_64F );
    if( anchor == Point(-1,-1) )
        anchor = Point(kernel.cols/2, kernel.rows/2);
785
    if( borderType == BORDER_CONSTANT )
786 787 788 789 790
        borderValue = getMinVal(src.depth());
    copyMakeBorder(_src, src, anchor.y, kernel.rows - anchor.y - 1,
                   anchor.x, kernel.cols - anchor.x - 1,
                   borderType, borderValue);
    _dst.create( _src.size(), CV_MAKETYPE(CV_64F, src.channels()) );
791

792 793 794 795
    vector<int> ofs;
    vector<double> coeff(kernel.rows*kernel.cols);
    Mat cmat(kernel.rows, kernel.cols, CV_64F, &coeff[0]);
    convert(kernel, cmat, cmat.type());
796

797 798 799 800
    int step = (int)(src.step/src.elemSize1()), cn = src.channels();
    for( int i = 0; i < kernel.rows; i++ )
        for( int j = 0; j < kernel.cols; j++ )
                ofs.push_back(i*step + j*cn);
801

802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
    switch( src.depth() )
    {
    case CV_8U:
        filter2D_<uchar>(src, _dst, ofs, coeff);
        break;
    case CV_8S:
        filter2D_<schar>(src, _dst, ofs, coeff);
        break;
    case CV_16U:
        filter2D_<ushort>(src, _dst, ofs, coeff);
        break;
    case CV_16S:
        filter2D_<short>(src, _dst, ofs, coeff);
        break;
    case CV_32S:
        filter2D_<int>(src, _dst, ofs, coeff);
        break;
    case CV_32F:
        filter2D_<float>(src, _dst, ofs, coeff);
        break;
    case CV_64F:
        filter2D_<double>(src, _dst, ofs, coeff);
        break;
    default:
        CV_Assert(0);
    }
828

829 830 831 832 833 834 835 836
    convert(_dst, dst, ddepth, 1, delta);
}


static int borderInterpolate( int p, int len, int borderType )
{
    if( (unsigned)p < (unsigned)len )
        ;
837
    else if( borderType == BORDER_REPLICATE )
838
        p = p < 0 ? 0 : len - 1;
839
    else if( borderType == BORDER_REFLECT || borderType == BORDER_REFLECT_101 )
840
    {
841
        int delta = borderType == BORDER_REFLECT_101;
842 843 844 845 846 847 848 849 850 851 852
        if( len == 1 )
            return 0;
        do
        {
            if( p < 0 )
                p = -p - 1 + delta;
            else
                p = len - 1 - (p - len) - delta;
        }
        while( (unsigned)p >= (unsigned)len );
    }
853
    else if( borderType == BORDER_WRAP )
854 855 856 857 858 859
    {
        if( p < 0 )
            p -= ((p-len+1)/len)*len;
        if( p >= len )
            p %= len;
    }
860
    else if( borderType == BORDER_CONSTANT )
861 862
        p = -1;
    else
863
        CV_Error( Error::StsBadArg, "Unknown/unsupported border type" );
864
    return p;
865 866
}

867 868 869 870 871 872 873

void copyMakeBorder(const Mat& src, Mat& dst, int top, int bottom, int left, int right,
                    int borderType, const Scalar& borderValue)
{
    dst.create(src.rows + top + bottom, src.cols + left + right, src.type());
    int i, j, k, esz = (int)src.elemSize();
    int width = src.cols*esz, width1 = dst.cols*esz;
874

875
    if( borderType == BORDER_CONSTANT )
876 877 878 879
    {
        vector<uchar> valvec((src.cols + left + right)*esz);
        uchar* val = &valvec[0];
        scalarToRawData(borderValue, val, src.type(), (src.cols + left + right)*src.channels());
880

881 882 883 884 885 886 887 888 889 890 891 892 893 894
        left *= esz;
        right *= esz;
        for( i = 0; i < src.rows; i++ )
        {
            const uchar* sptr = src.ptr(i);
            uchar* dptr = dst.ptr(i + top) + left;
            for( j = 0; j < left; j++ )
                dptr[j - left] = val[j];
            if( dptr != sptr )
                for( j = 0; j < width; j++ )
                    dptr[j] = sptr[j];
            for( j = 0; j < right; j++ )
                dptr[j + width] = val[j];
        }
895

896 897 898 899 900 901
        for( i = 0; i < top; i++ )
        {
            uchar* dptr = dst.ptr(i);
            for( j = 0; j < width1; j++ )
                dptr[j] = val[j];
        }
902

903 904 905 906 907 908 909 910 911
        for( i = 0; i < bottom; i++ )
        {
            uchar* dptr = dst.ptr(i + top + src.rows);
            for( j = 0; j < width1; j++ )
                dptr[j] = val[j];
        }
    }
    else
    {
912
        vector<int> tabvec((left + right)*esz + 1);
913 914 915 916 917 918 919 920 921 922 923 924 925 926
        int* ltab = &tabvec[0];
        int* rtab = &tabvec[left*esz];
        for( i = 0; i < left; i++ )
        {
            j = borderInterpolate(i - left, src.cols, borderType)*esz;
            for( k = 0; k < esz; k++ )
                ltab[i*esz + k] = j + k;
        }
        for( i = 0; i < right; i++ )
        {
            j = borderInterpolate(src.cols + i, src.cols, borderType)*esz;
            for( k = 0; k < esz; k++ )
                rtab[i*esz + k] = j + k;
        }
927

928 929 930 931 932 933
        left *= esz;
        right *= esz;
        for( i = 0; i < src.rows; i++ )
        {
            const uchar* sptr = src.ptr(i);
            uchar* dptr = dst.ptr(i + top);
934

935 936 937 938 939 940 941 942 943 944
            for( j = 0; j < left; j++ )
                dptr[j] = sptr[ltab[j]];
            if( dptr + left != sptr )
            {
                for( j = 0; j < width; j++ )
                    dptr[j + left] = sptr[j];
            }
            for( j = 0; j < right; j++ )
                dptr[j + left + width] = sptr[rtab[j]];
        }
945

946 947 948 949 950
        for( i = 0; i < top; i++ )
        {
            j = borderInterpolate(i - top, src.rows, borderType);
            const uchar* sptr = dst.ptr(j + top);
            uchar* dptr = dst.ptr(i);
951

952 953 954
            for( k = 0; k < width1; k++ )
                dptr[k] = sptr[k];
        }
955

956 957 958 959 960
        for( i = 0; i < bottom; i++ )
        {
            j = borderInterpolate(i + src.rows, src.rows, borderType);
            const uchar* sptr = dst.ptr(j + top);
            uchar* dptr = dst.ptr(i + top + src.rows);
961

962 963 964 965 966
            for( k = 0; k < width1; k++ )
                dptr[k] = sptr[k];
        }
    }
}
967

968 969 970 971 972 973 974 975 976

template<typename _Tp> static void
minMaxLoc_(const _Tp* src, size_t total, size_t startidx,
           double* _minval, double* _maxval,
           size_t* _minpos, size_t* _maxpos,
           const uchar* mask)
{
    _Tp maxval = saturate_cast<_Tp>(*_maxval), minval = saturate_cast<_Tp>(*_minval);
    size_t minpos = *_minpos, maxpos = *_maxpos;
977

978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
    if( !mask )
    {
        for( size_t i = 0; i < total; i++ )
        {
            _Tp val = src[i];
            if( minval > val )
            {
                minval = val;
                minpos = startidx + i;
            }
            if( maxval < val )
            {
                maxval = val;
                maxpos = startidx + i;
            }
        }
    }
    else
    {
        for( size_t i = 0; i < total; i++ )
        {
            _Tp val = src[i];
            if( minval > val && mask[i] )
            {
                minval = val;
                minpos = startidx + i;
            }
            if( maxval < val && mask[i] )
            {
                maxval = val;
                maxpos = startidx + i;
            }
        }
    }
1012

1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
    *_maxval = maxval;
    *_minval = minval;
    *_maxpos = maxpos;
    *_minpos = minpos;
}


static void setpos( const Mat& mtx, vector<int>& pos, size_t idx )
{
    pos.resize(mtx.dims);
    if( idx > 0 )
    {
        idx--;
        for( int i = mtx.dims-1; i >= 0; i-- )
        {
            int sz = mtx.size[i]*(i == mtx.dims-1 ? mtx.channels() : 1);
1029
            pos[i] = (int)(idx % sz);
1030 1031 1032 1033 1034 1035 1036 1037 1038
            idx /= sz;
        }
    }
    else
    {
        for( int i = mtx.dims-1; i >= 0; i-- )
            pos[i] = -1;
    }
}
1039

1040 1041 1042 1043 1044 1045 1046
void minMaxLoc(const Mat& src, double* _minval, double* _maxval,
               vector<int>* _minloc, vector<int>* _maxloc,
               const Mat& mask)
{
    CV_Assert( src.channels() == 1 );
    const Mat *arrays[]={&src, &mask, 0};
    Mat planes[2];
1047

1048 1049
    NAryMatIterator it(arrays, planes);
    size_t startidx = 1, total = planes[0].total();
1050
    size_t i, nplanes = it.nplanes;
1051
    int depth = src.depth();
1052 1053 1054
    double maxval = depth < CV_32F ? INT_MIN : depth == CV_32F ? -FLT_MAX : -DBL_MAX;
    double minval = depth < CV_32F ? INT_MAX : depth == CV_32F ? FLT_MAX : DBL_MAX;
    size_t maxidx = 0, minidx = 0;
1055

1056 1057
    for( i = 0; i < nplanes; i++, ++it, startidx += total )
    {
1058 1059
        const uchar* sptr = planes[0].ptr();
        const uchar* mptr = planes[1].ptr();
1060

1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
        switch( depth )
        {
        case CV_8U:
            minMaxLoc_((const uchar*)sptr, total, startidx,
                       &minval, &maxval, &minidx, &maxidx, mptr);
            break;
        case CV_8S:
            minMaxLoc_((const schar*)sptr, total, startidx,
                       &minval, &maxval, &minidx, &maxidx, mptr);
            break;
        case CV_16U:
            minMaxLoc_((const ushort*)sptr, total, startidx,
                       &minval, &maxval, &minidx, &maxidx, mptr);
            break;
        case CV_16S:
            minMaxLoc_((const short*)sptr, total, startidx,
                       &minval, &maxval, &minidx, &maxidx, mptr);
            break;
        case CV_32S:
            minMaxLoc_((const int*)sptr, total, startidx,
                       &minval, &maxval, &minidx, &maxidx, mptr);
            break;
        case CV_32F:
            minMaxLoc_((const float*)sptr, total, startidx,
                       &minval, &maxval, &minidx, &maxidx, mptr);
            break;
        case CV_64F:
            minMaxLoc_((const double*)sptr, total, startidx,
                       &minval, &maxval, &minidx, &maxidx, mptr);
            break;
        default:
            CV_Assert(0);
        }
    }
1095

1096 1097
    if( minidx == 0 )
        minval = maxval = 0;
1098

1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
    if( _maxval )
        *_maxval = maxval;
    if( _minval )
        *_minval = minval;
    if( _maxloc )
        setpos( src, *_maxloc, maxidx );
    if( _minloc )
        setpos( src, *_minloc, minidx );
}

1109

1110 1111 1112 1113 1114 1115
static int
normHamming(const uchar* src, size_t total, int cellSize)
{
    int result = 0;
    int mask = cellSize == 1 ? 1 : cellSize == 2 ? 3 : cellSize == 4 ? 15 : -1;
    CV_Assert( mask >= 0 );
1116

1117 1118 1119 1120 1121 1122 1123 1124
    for( size_t i = 0; i < total; i++ )
    {
        unsigned a = src[i];
        for( ; a != 0; a >>= cellSize )
            result += (a & mask) != 0;
    }
    return result;
}
1125 1126


1127 1128 1129 1130 1131 1132 1133
template<typename _Tp> static double
norm_(const _Tp* src, size_t total, int cn, int normType, double startval, const uchar* mask)
{
    size_t i;
    double result = startval;
    if( !mask )
        total *= cn;
1134

1135 1136 1137 1138
    if( normType == NORM_INF )
    {
        if( !mask )
            for( i = 0; i < total; i++ )
1139
                result = std::max(result, (double)std::abs(0+src[i]));// trick with 0 used to quiet gcc warning
1140 1141 1142 1143 1144
        else
            for( int c = 0; c < cn; c++ )
            {
                for( i = 0; i < total; i++ )
                    if( mask[i] )
1145
                        result = std::max(result, (double)std::abs(0+src[i*cn + c]));
1146 1147 1148 1149 1150 1151
            }
    }
    else if( normType == NORM_L1 )
    {
        if( !mask )
            for( i = 0; i < total; i++ )
1152
                result += std::abs(0+src[i]);
1153 1154 1155 1156 1157
        else
            for( int c = 0; c < cn; c++ )
            {
                for( i = 0; i < total; i++ )
                    if( mask[i] )
1158
                        result += std::abs(0+src[i*cn + c]);
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
            }
    }
    else
    {
        if( !mask )
            for( i = 0; i < total; i++ )
            {
                double v = src[i];
                result += v*v;
            }
        else
            for( int c = 0; c < cn; c++ )
            {
                for( i = 0; i < total; i++ )
                    if( mask[i] )
                    {
                        double v = src[i*cn + c];
                        result += v*v;
                    }
            }
    }
    return result;
}


template<typename _Tp> static double
norm_(const _Tp* src1, const _Tp* src2, size_t total, int cn, int normType, double startval, const uchar* mask)
{
    size_t i;
    double result = startval;
    if( !mask )
        total *= cn;
1191

1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
    if( normType == NORM_INF )
    {
        if( !mask )
            for( i = 0; i < total; i++ )
                result = std::max(result, (double)std::abs(src1[i] - src2[i]));
        else
            for( int c = 0; c < cn; c++ )
            {
                for( i = 0; i < total; i++ )
                    if( mask[i] )
                        result = std::max(result, (double)std::abs(src1[i*cn + c] - src2[i*cn + c]));
            }
    }
    else if( normType == NORM_L1 )
    {
        if( !mask )
            for( i = 0; i < total; i++ )
                result += std::abs(src1[i] - src2[i]);
        else
            for( int c = 0; c < cn; c++ )
            {
                for( i = 0; i < total; i++ )
                    if( mask[i] )
                        result += std::abs(src1[i*cn + c] - src2[i*cn + c]);
            }
    }
    else
    {
        if( !mask )
            for( i = 0; i < total; i++ )
            {
                double v = src1[i] - src2[i];
                result += v*v;
            }
        else
            for( int c = 0; c < cn; c++ )
            {
                for( i = 0; i < total; i++ )
                    if( mask[i] )
                    {
                        double v = src1[i*cn + c] - src2[i*cn + c];
                        result += v*v;
                    }
            }
    }
    return result;
}
1239 1240


1241
double norm(InputArray _src, int normType, InputArray _mask)
1242
{
1243
    Mat src = _src.getMat(), mask = _mask.getMat();
1244 1245 1246 1247 1248 1249
    if( normType == NORM_HAMMING || normType == NORM_HAMMING2 )
    {
        if( !mask.empty() )
        {
            Mat temp;
            bitwise_and(src, mask, temp);
1250
            return cvtest::norm(temp, normType, Mat());
1251
        }
1252

1253
        CV_Assert( src.depth() == CV_8U );
1254

1255 1256
        const Mat *arrays[]={&src, 0};
        Mat planes[1];
1257

1258 1259 1260 1261 1262
        NAryMatIterator it(arrays, planes);
        size_t total = planes[0].total();
        size_t i, nplanes = it.nplanes;
        double result = 0;
        int cellSize = normType == NORM_HAMMING ? 1 : 2;
1263

1264
        for( i = 0; i < nplanes; i++, ++it )
1265
            result += normHamming(planes[0].ptr(), total, cellSize);
1266 1267
        return result;
    }
1268 1269
    int normType0 = normType;
    normType = normType == NORM_L2SQR ? NORM_L2 : normType;
1270

1271 1272
    CV_Assert( mask.empty() || (src.size == mask.size && mask.type() == CV_8U) );
    CV_Assert( normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2 );
1273

1274 1275
    const Mat *arrays[]={&src, &mask, 0};
    Mat planes[2];
1276

1277 1278
    NAryMatIterator it(arrays, planes);
    size_t total = planes[0].total();
1279 1280
    size_t i, nplanes = it.nplanes;
    int depth = src.depth(), cn = planes[0].channels();
1281
    double result = 0;
1282

1283 1284
    for( i = 0; i < nplanes; i++, ++it )
    {
1285 1286
        const uchar* sptr = planes[0].ptr();
        const uchar* mptr = planes[1].ptr();
1287

1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
        switch( depth )
        {
        case CV_8U:
            result = norm_((const uchar*)sptr, total, cn, normType, result, mptr);
            break;
        case CV_8S:
            result = norm_((const schar*)sptr, total, cn, normType, result, mptr);
            break;
        case CV_16U:
            result = norm_((const ushort*)sptr, total, cn, normType, result, mptr);
            break;
        case CV_16S:
            result = norm_((const short*)sptr, total, cn, normType, result, mptr);
            break;
        case CV_32S:
            result = norm_((const int*)sptr, total, cn, normType, result, mptr);
            break;
        case CV_32F:
            result = norm_((const float*)sptr, total, cn, normType, result, mptr);
            break;
        case CV_64F:
            result = norm_((const double*)sptr, total, cn, normType, result, mptr);
            break;
        default:
1312
            CV_Error(Error::StsUnsupportedFormat, "");
1313 1314
        };
    }
1315
    if( normType0 == NORM_L2 )
1316 1317 1318 1319
        result = sqrt(result);
    return result;
}

1320

1321
double norm(InputArray _src1, InputArray _src2, int normType, InputArray _mask)
1322
{
1323 1324 1325 1326
    Mat src1 = _src1.getMat(), src2 = _src2.getMat(), mask = _mask.getMat();
    bool isRelative = (normType & NORM_RELATIVE) != 0;
    normType &= ~NORM_RELATIVE;

1327 1328 1329 1330 1331 1332
    if( normType == NORM_HAMMING || normType == NORM_HAMMING2 )
    {
        Mat temp;
        bitwise_xor(src1, src2, temp);
        if( !mask.empty() )
            bitwise_and(temp, mask, temp);
1333

1334
        CV_Assert( temp.depth() == CV_8U );
1335

1336 1337
        const Mat *arrays[]={&temp, 0};
        Mat planes[1];
1338

1339 1340 1341 1342 1343
        NAryMatIterator it(arrays, planes);
        size_t total = planes[0].total();
        size_t i, nplanes = it.nplanes;
        double result = 0;
        int cellSize = normType == NORM_HAMMING ? 1 : 2;
1344

1345
        for( i = 0; i < nplanes; i++, ++it )
1346
            result += normHamming(planes[0].ptr(), total, cellSize);
1347 1348
        return result;
    }
1349 1350
    int normType0 = normType;
    normType = normType == NORM_L2SQR ? NORM_L2 : normType;
1351

1352 1353 1354 1355 1356
    CV_Assert( src1.type() == src2.type() && src1.size == src2.size );
    CV_Assert( mask.empty() || (src1.size == mask.size && mask.type() == CV_8U) );
    CV_Assert( normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2 );
    const Mat *arrays[]={&src1, &src2, &mask, 0};
    Mat planes[3];
1357

1358 1359
    NAryMatIterator it(arrays, planes);
    size_t total = planes[0].total();
1360
    size_t i, nplanes = it.nplanes;
1361
    int depth = src1.depth(), cn = planes[0].channels();
1362
    double result = 0;
1363

1364 1365
    for( i = 0; i < nplanes; i++, ++it )
    {
1366 1367 1368
        const uchar* sptr1 = planes[0].ptr();
        const uchar* sptr2 = planes[1].ptr();
        const uchar* mptr = planes[2].ptr();
1369

1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
        switch( depth )
        {
        case CV_8U:
            result = norm_((const uchar*)sptr1, (const uchar*)sptr2, total, cn, normType, result, mptr);
            break;
        case CV_8S:
            result = norm_((const schar*)sptr1, (const schar*)sptr2, total, cn, normType, result, mptr);
            break;
        case CV_16U:
            result = norm_((const ushort*)sptr1, (const ushort*)sptr2, total, cn, normType, result, mptr);
            break;
        case CV_16S:
            result = norm_((const short*)sptr1, (const short*)sptr2, total, cn, normType, result, mptr);
            break;
        case CV_32S:
            result = norm_((const int*)sptr1, (const int*)sptr2, total, cn, normType, result, mptr);
            break;
        case CV_32F:
            result = norm_((const float*)sptr1, (const float*)sptr2, total, cn, normType, result, mptr);
            break;
        case CV_64F:
            result = norm_((const double*)sptr1, (const double*)sptr2, total, cn, normType, result, mptr);
            break;
        default:
1394
            CV_Error(Error::StsUnsupportedFormat, "");
1395 1396
        };
    }
1397
    if( normType0 == NORM_L2 )
1398
        result = sqrt(result);
1399
    return isRelative ? result / (cvtest::norm(src2, normType) + DBL_EPSILON) : result;
1400 1401
}

Ilya Lavrenov's avatar
Ilya Lavrenov committed
1402 1403 1404 1405 1406 1407
double PSNR(InputArray _src1, InputArray _src2)
{
    CV_Assert( _src1.depth() == CV_8U );
    double diff = std::sqrt(cvtest::norm(_src1, _src2, NORM_L2SQR)/(_src1.total()*_src1.channels()));
    return 20*log10(255./(diff+DBL_EPSILON));
}
1408

1409 1410 1411 1412 1413 1414 1415 1416
template<typename _Tp> static double
crossCorr_(const _Tp* src1, const _Tp* src2, size_t total)
{
    double result = 0;
    for( size_t i = 0; i < total; i++ )
        result += (double)src1[i]*src2[i];
    return result;
}
1417

1418 1419 1420 1421 1422
double crossCorr(const Mat& src1, const Mat& src2)
{
    CV_Assert( src1.size == src2.size && src1.type() == src2.type() );
    const Mat *arrays[]={&src1, &src2, 0};
    Mat planes[2];
1423

1424 1425
    NAryMatIterator it(arrays, planes);
    size_t total = planes[0].total()*planes[0].channels();
1426
    size_t i, nplanes = it.nplanes;
1427
    int depth = src1.depth();
1428
    double result = 0;
1429

1430 1431
    for( i = 0; i < nplanes; i++, ++it )
    {
1432 1433
        const uchar* sptr1 = planes[0].ptr();
        const uchar* sptr2 = planes[1].ptr();
1434

1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
        switch( depth )
        {
        case CV_8U:
            result += crossCorr_((const uchar*)sptr1, (const uchar*)sptr2, total);
            break;
        case CV_8S:
            result += crossCorr_((const schar*)sptr1, (const schar*)sptr2, total);
            break;
        case CV_16U:
            result += crossCorr_((const ushort*)sptr1, (const ushort*)sptr2, total);
            break;
        case CV_16S:
            result += crossCorr_((const short*)sptr1, (const short*)sptr2, total);
            break;
        case CV_32S:
            result += crossCorr_((const int*)sptr1, (const int*)sptr2, total);
            break;
        case CV_32F:
            result += crossCorr_((const float*)sptr1, (const float*)sptr2, total);
            break;
        case CV_64F:
            result += crossCorr_((const double*)sptr1, (const double*)sptr2, total);
            break;
        default:
1459
            CV_Error(Error::StsUnsupportedFormat, "");
1460 1461 1462 1463
        };
    }
    return result;
}
1464

1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488

static void
logicOp_(const uchar* src1, const uchar* src2, uchar* dst, size_t total, char c)
{
    size_t i;
    if( c == '&' )
        for( i = 0; i < total; i++ )
            dst[i] = src1[i] & src2[i];
    else if( c == '|' )
        for( i = 0; i < total; i++ )
            dst[i] = src1[i] | src2[i];
    else
        for( i = 0; i < total; i++ )
            dst[i] = src1[i] ^ src2[i];
}

static void
logicOpS_(const uchar* src, const uchar* scalar, uchar* dst, size_t total, char c)
{
    const size_t blockSize = 96;
    size_t i, j;
    if( c == '&' )
        for( i = 0; i < total; i += blockSize, dst += blockSize, src += blockSize )
        {
1489
            size_t sz = MIN(total - i, blockSize);
1490 1491 1492 1493 1494 1495
            for( j = 0; j < sz; j++ )
                dst[j] = src[j] & scalar[j];
        }
    else if( c == '|' )
        for( i = 0; i < total; i += blockSize, dst += blockSize, src += blockSize )
        {
1496
            size_t sz = MIN(total - i, blockSize);
1497 1498 1499 1500 1501 1502 1503
            for( j = 0; j < sz; j++ )
                dst[j] = src[j] | scalar[j];
        }
    else if( c == '^' )
    {
        for( i = 0; i < total; i += blockSize, dst += blockSize, src += blockSize )
        {
1504
            size_t sz = MIN(total - i, blockSize);
1505 1506 1507 1508 1509 1510 1511
            for( j = 0; j < sz; j++ )
                dst[j] = src[j] ^ scalar[j];
        }
    }
    else
        for( i = 0; i < total; i++ )
            dst[i] = ~src[i];
1512 1513 1514
}


1515 1516 1517 1518 1519 1520 1521
void logicOp( const Mat& src1, const Mat& src2, Mat& dst, char op )
{
    CV_Assert( op == '&' || op == '|' || op == '^' );
    CV_Assert( src1.type() == src2.type() && src1.size == src2.size );
    dst.create( src1.dims, &src1.size[0], src1.type() );
    const Mat *arrays[]={&src1, &src2, &dst, 0};
    Mat planes[3];
1522

1523 1524
    NAryMatIterator it(arrays, planes);
    size_t total = planes[0].total()*planes[0].elemSize();
1525
    size_t i, nplanes = it.nplanes;
1526

1527 1528
    for( i = 0; i < nplanes; i++, ++it )
    {
1529 1530 1531
        const uchar* sptr1 = planes[0].ptr();
        const uchar* sptr2 = planes[1].ptr();
        uchar* dptr = planes[2].ptr();
1532

1533 1534 1535
        logicOp_(sptr1, sptr2, dptr, total, op);
    }
}
1536 1537


1538 1539 1540 1541 1542 1543
void logicOp(const Mat& src, const Scalar& s, Mat& dst, char op)
{
    CV_Assert( op == '&' || op == '|' || op == '^' || op == '~' );
    dst.create( src.dims, &src.size[0], src.type() );
    const Mat *arrays[]={&src, &dst, 0};
    Mat planes[2];
1544

1545 1546
    NAryMatIterator it(arrays, planes);
    size_t total = planes[0].total()*planes[0].elemSize();
1547
    size_t i, nplanes = it.nplanes;
1548
    double buf[12];
1549
    scalarToRawData(s, buf, src.type(), (int)(96/planes[0].elemSize1()));
1550

1551 1552
    for( i = 0; i < nplanes; i++, ++it )
    {
1553 1554
        const uchar* sptr = planes[0].ptr();
        uchar* dptr = planes[1].ptr();
1555

1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
        logicOpS_(sptr, (uchar*)&buf[0], dptr, total, op);
    }
}


template<typename _Tp> static void
compare_(const _Tp* src1, const _Tp* src2, uchar* dst, size_t total, int cmpop)
{
    size_t i;
    switch( cmpop )
    {
    case CMP_LT:
        for( i = 0; i < total; i++ )
            dst[i] = src1[i] < src2[i] ? 255 : 0;
        break;
    case CMP_LE:
        for( i = 0; i < total; i++ )
            dst[i] = src1[i] <= src2[i] ? 255 : 0;
        break;
    case CMP_EQ:
        for( i = 0; i < total; i++ )
            dst[i] = src1[i] == src2[i] ? 255 : 0;
        break;
    case CMP_NE:
        for( i = 0; i < total; i++ )
            dst[i] = src1[i] != src2[i] ? 255 : 0;
        break;
    case CMP_GE:
        for( i = 0; i < total; i++ )
            dst[i] = src1[i] >= src2[i] ? 255 : 0;
        break;
    case CMP_GT:
        for( i = 0; i < total; i++ )
            dst[i] = src1[i] > src2[i] ? 255 : 0;
        break;
    default:
1592
        CV_Error(Error::StsBadArg, "Unknown comparison operation");
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
    }
}


template<typename _Tp, typename _WTp> static void
compareS_(const _Tp* src1, _WTp value, uchar* dst, size_t total, int cmpop)
{
    size_t i;
    switch( cmpop )
    {
    case CMP_LT:
        for( i = 0; i < total; i++ )
            dst[i] = src1[i] < value ? 255 : 0;
        break;
    case CMP_LE:
        for( i = 0; i < total; i++ )
            dst[i] = src1[i] <= value ? 255 : 0;
        break;
    case CMP_EQ:
        for( i = 0; i < total; i++ )
            dst[i] = src1[i] == value ? 255 : 0;
        break;
    case CMP_NE:
        for( i = 0; i < total; i++ )
            dst[i] = src1[i] != value ? 255 : 0;
        break;
    case CMP_GE:
        for( i = 0; i < total; i++ )
            dst[i] = src1[i] >= value ? 255 : 0;
        break;
    case CMP_GT:
        for( i = 0; i < total; i++ )
            dst[i] = src1[i] > value ? 255 : 0;
        break;
    default:
1628
        CV_Error(Error::StsBadArg, "Unknown comparison operation");
1629
    }
1630 1631 1632
}


1633 1634 1635 1636 1637 1638
void compare(const Mat& src1, const Mat& src2, Mat& dst, int cmpop)
{
    CV_Assert( src1.type() == src2.type() && src1.channels() == 1 && src1.size == src2.size );
    dst.create( src1.dims, &src1.size[0], CV_8U );
    const Mat *arrays[]={&src1, &src2, &dst, 0};
    Mat planes[3];
1639

1640 1641
    NAryMatIterator it(arrays, planes);
    size_t total = planes[0].total();
1642
    size_t i, nplanes = it.nplanes;
1643 1644
    int depth = src1.depth();

1645 1646
    for( i = 0; i < nplanes; i++, ++it )
    {
1647 1648 1649
        const uchar* sptr1 = planes[0].ptr();
        const uchar* sptr2 = planes[1].ptr();
        uchar* dptr = planes[2].ptr();
1650

1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
        switch( depth )
        {
        case CV_8U:
            compare_((const uchar*)sptr1, (const uchar*)sptr2, dptr, total, cmpop);
            break;
        case CV_8S:
            compare_((const schar*)sptr1, (const schar*)sptr2, dptr, total, cmpop);
            break;
        case CV_16U:
            compare_((const ushort*)sptr1, (const ushort*)sptr2, dptr, total, cmpop);
            break;
        case CV_16S:
            compare_((const short*)sptr1, (const short*)sptr2, dptr, total, cmpop);
            break;
        case CV_32S:
            compare_((const int*)sptr1, (const int*)sptr2, dptr, total, cmpop);
            break;
        case CV_32F:
            compare_((const float*)sptr1, (const float*)sptr2, dptr, total, cmpop);
            break;
        case CV_64F:
            compare_((const double*)sptr1, (const double*)sptr2, dptr, total, cmpop);
            break;
        default:
1675
            CV_Error(Error::StsUnsupportedFormat, "");
1676 1677 1678
        }
    }
}
1679

1680 1681 1682 1683 1684 1685
void compare(const Mat& src, double value, Mat& dst, int cmpop)
{
    CV_Assert( src.channels() == 1 );
    dst.create( src.dims, &src.size[0], CV_8U );
    const Mat *arrays[]={&src, &dst, 0};
    Mat planes[2];
1686

1687 1688
    NAryMatIterator it(arrays, planes);
    size_t total = planes[0].total();
1689
    size_t i, nplanes = it.nplanes;
1690
    int depth = src.depth();
1691
    int ivalue = saturate_cast<int>(value);
1692

1693 1694
    for( i = 0; i < nplanes; i++, ++it )
    {
1695 1696
        const uchar* sptr = planes[0].ptr();
        uchar* dptr = planes[1].ptr();
1697

1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
        switch( depth )
        {
        case CV_8U:
            compareS_((const uchar*)sptr, ivalue, dptr, total, cmpop);
            break;
        case CV_8S:
            compareS_((const schar*)sptr, ivalue, dptr, total, cmpop);
            break;
        case CV_16U:
            compareS_((const ushort*)sptr, ivalue, dptr, total, cmpop);
            break;
        case CV_16S:
            compareS_((const short*)sptr, ivalue, dptr, total, cmpop);
            break;
        case CV_32S:
            compareS_((const int*)sptr, ivalue, dptr, total, cmpop);
            break;
        case CV_32F:
            compareS_((const float*)sptr, value, dptr, total, cmpop);
            break;
        case CV_64F:
            compareS_((const double*)sptr, value, dptr, total, cmpop);
            break;
        default:
1722
            CV_Error(Error::StsUnsupportedFormat, "");
1723 1724 1725 1726
        }
    }
}

1727

1728
template<typename _Tp> double
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
cmpUlpsInt_(const _Tp* src1, const _Tp* src2, size_t total, int imaxdiff,
           size_t startidx, size_t& idx)
{
    size_t i;
    int realmaxdiff = 0;
    for( i = 0; i < total; i++ )
    {
        int diff = std::abs(src1[i] - src2[i]);
        if( realmaxdiff < diff )
        {
            realmaxdiff = diff;
            if( diff > imaxdiff && idx == 0 )
                idx = i + startidx;
        }
    }
    return realmaxdiff;
}

1747

1748
template<> double cmpUlpsInt_<int>(const int* src1, const int* src2,
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
                                          size_t total, int imaxdiff,
                                          size_t startidx, size_t& idx)
{
    size_t i;
    double realmaxdiff = 0;
    for( i = 0; i < total; i++ )
    {
        double diff = fabs((double)src1[i] - (double)src2[i]);
        if( realmaxdiff < diff )
        {
            realmaxdiff = diff;
            if( diff > imaxdiff && idx == 0 )
                idx = i + startidx;
        }
    }
    return realmaxdiff;
1765 1766
}

1767

1768 1769
static double
cmpUlpsFlt_(const int* src1, const int* src2, size_t total, int imaxdiff, size_t startidx, size_t& idx)
1770
{
1771 1772
    const int C = 0x7fffffff;
    int realmaxdiff = 0;
1773 1774 1775
    size_t i;
    for( i = 0; i < total; i++ )
    {
1776
        int a = src1[i], b = src2[i];
1777
        if( a < 0 ) a ^= C; if( b < 0 ) b ^= C;
1778
        int diff = std::abs(a - b);
1779 1780 1781 1782 1783 1784 1785 1786 1787
        if( realmaxdiff < diff )
        {
            realmaxdiff = diff;
            if( diff > imaxdiff && idx == 0 )
                idx = i + startidx;
        }
    }
    return realmaxdiff;
}
1788

1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809

static double
cmpUlpsFlt_(const int64* src1, const int64* src2, size_t total, int imaxdiff, size_t startidx, size_t& idx)
{
    const int64 C = CV_BIG_INT(0x7fffffffffffffff);
    double realmaxdiff = 0;
    size_t i;
    for( i = 0; i < total; i++ )
    {
        int64 a = src1[i], b = src2[i];
        if( a < 0 ) a ^= C; if( b < 0 ) b ^= C;
        double diff = fabs((double)a - (double)b);
        if( realmaxdiff < diff )
        {
            realmaxdiff = diff;
            if( diff > imaxdiff && idx == 0 )
                idx = i + startidx;
        }
    }
    return realmaxdiff;
}
1810

1811 1812 1813 1814 1815 1816 1817
bool cmpUlps(const Mat& src1, const Mat& src2, int imaxDiff, double* _realmaxdiff, vector<int>* loc)
{
    CV_Assert( src1.type() == src2.type() && src1.size == src2.size );
    const Mat *arrays[]={&src1, &src2, 0};
    Mat planes[2];
    NAryMatIterator it(arrays, planes);
    size_t total = planes[0].total()*planes[0].channels();
1818
    size_t i, nplanes = it.nplanes;
1819
    int depth = src1.depth();
1820 1821 1822
    size_t startidx = 1, idx = 0;
    if(_realmaxdiff)
        *_realmaxdiff = 0;
1823

1824 1825
    for( i = 0; i < nplanes; i++, ++it, startidx += total )
    {
1826 1827
        const uchar* sptr1 = planes[0].ptr();
        const uchar* sptr2 = planes[1].ptr();
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
        double realmaxdiff = 0;

        switch( depth )
        {
        case CV_8U:
            realmaxdiff = cmpUlpsInt_((const uchar*)sptr1, (const uchar*)sptr2, total, imaxDiff, startidx, idx);
            break;
        case CV_8S:
            realmaxdiff = cmpUlpsInt_((const schar*)sptr1, (const schar*)sptr2, total, imaxDiff, startidx, idx);
            break;
        case CV_16U:
            realmaxdiff = cmpUlpsInt_((const ushort*)sptr1, (const ushort*)sptr2, total, imaxDiff, startidx, idx);
            break;
        case CV_16S:
            realmaxdiff = cmpUlpsInt_((const short*)sptr1, (const short*)sptr2, total, imaxDiff, startidx, idx);
            break;
        case CV_32S:
            realmaxdiff = cmpUlpsInt_((const int*)sptr1, (const int*)sptr2, total, imaxDiff, startidx, idx);
            break;
        case CV_32F:
            realmaxdiff = cmpUlpsFlt_((const int*)sptr1, (const int*)sptr2, total, imaxDiff, startidx, idx);
            break;
        case CV_64F:
            realmaxdiff = cmpUlpsFlt_((const int64*)sptr1, (const int64*)sptr2, total, imaxDiff, startidx, idx);
            break;
        default:
1854
            CV_Error(Error::StsUnsupportedFormat, "");
1855
        }
1856

1857 1858 1859 1860 1861 1862 1863 1864
        if(_realmaxdiff)
            *_realmaxdiff = std::max(*_realmaxdiff, realmaxdiff);
    }
    if(idx > 0 && loc)
        setpos(src1, *loc, idx);
    return idx == 0;
}

1865

1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
template<typename _Tp> static void
checkInt_(const _Tp* a, size_t total, int imin, int imax, size_t startidx, size_t& idx)
{
    for( size_t i = 0; i < total; i++ )
    {
        int val = a[i];
        if( val < imin || val > imax )
        {
            idx = i + startidx;
            break;
        }
    }
}

1880

1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
template<typename _Tp> static void
checkFlt_(const _Tp* a, size_t total, double fmin, double fmax, size_t startidx, size_t& idx)
{
    for( size_t i = 0; i < total; i++ )
    {
        double val = a[i];
        if( cvIsNaN(val) || cvIsInf(val) || val < fmin || val > fmax )
        {
            idx = i + startidx;
            break;
        }
    }
}
1894

1895 1896 1897 1898 1899 1900 1901 1902 1903

// checks that the array does not have NaNs and/or Infs and all the elements are
// within [min_val,max_val). idx is the index of the first "bad" element.
int check( const Mat& a, double fmin, double fmax, vector<int>* _idx )
{
    const Mat *arrays[]={&a, 0};
    Mat plane;
    NAryMatIterator it(arrays, &plane);
    size_t total = plane.total()*plane.channels();
1904
    size_t i, nplanes = it.nplanes;
1905
    int depth = a.depth();
1906 1907
    size_t startidx = 1, idx = 0;
    int imin = 0, imax = 0;
1908

1909 1910 1911 1912
    if( depth <= CV_32S )
    {
        imin = cvCeil(fmin);
        imax = cvFloor(fmax);
1913 1914
    }

1915 1916
    for( i = 0; i < nplanes; i++, ++it, startidx += total )
    {
1917
        const uchar* aptr = plane.ptr();
1918

1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
        switch( depth )
        {
            case CV_8U:
                checkInt_((const uchar*)aptr, total, imin, imax, startidx, idx);
                break;
            case CV_8S:
                checkInt_((const schar*)aptr, total, imin, imax, startidx, idx);
                break;
            case CV_16U:
                checkInt_((const ushort*)aptr, total, imin, imax, startidx, idx);
                break;
            case CV_16S:
                checkInt_((const short*)aptr, total, imin, imax, startidx, idx);
                break;
            case CV_32S:
                checkInt_((const int*)aptr, total, imin, imax, startidx, idx);
                break;
            case CV_32F:
                checkFlt_((const float*)aptr, total, fmin, fmax, startidx, idx);
                break;
            case CV_64F:
                checkFlt_((const double*)aptr, total, fmin, fmax, startidx, idx);
                break;
            default:
1943
                CV_Error(Error::StsUnsupportedFormat, "");
1944
        }
1945

1946 1947 1948
        if( idx != 0 )
            break;
    }
1949

1950 1951 1952 1953 1954
    if(idx != 0 && _idx)
        setpos(a, *_idx, idx);
    return idx == 0 ? 0 : -1;
}

1955 1956 1957 1958
#define CMP_EPS_OK 0
#define CMP_EPS_BIG_DIFF -1
#define CMP_EPS_INVALID_TEST_DATA -2 // there is NaN or Inf value in test data
#define CMP_EPS_INVALID_REF_DATA -3 // there is NaN or Inf value in reference data
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968

// compares two arrays. max_diff is the maximum actual difference,
// success_err_level is maximum allowed difference, idx is the index of the first
// element for which difference is >success_err_level
// (or index of element with the maximum difference)
int cmpEps( const Mat& arr, const Mat& refarr, double* _realmaxdiff,
            double success_err_level, vector<int>* _idx,
            bool element_wise_relative_error )
{
    CV_Assert( arr.type() == refarr.type() && arr.size == refarr.size );
1969

1970
    int ilevel = refarr.depth() <= CV_32S ? cvFloor(success_err_level) : 0;
1971
    int result = CMP_EPS_OK;
1972 1973 1974 1975 1976

    const Mat *arrays[]={&arr, &refarr, 0};
    Mat planes[2];
    NAryMatIterator it(arrays, planes);
    size_t total = planes[0].total()*planes[0].channels(), j = total;
1977
    size_t i, nplanes = it.nplanes;
1978
    int depth = arr.depth();
1979 1980
    size_t startidx = 1, idx = 0;
    double realmaxdiff = 0, maxval = 0;
1981

1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
    if(_realmaxdiff)
        *_realmaxdiff = 0;

    if( refarr.depth() >= CV_32F && !element_wise_relative_error )
    {
        maxval = cvtest::norm( refarr, NORM_INF );
        maxval = MAX(maxval, 1.);
    }

    for( i = 0; i < nplanes; i++, ++it, startidx += total )
    {
1993 1994
        const uchar* sptr1 = planes[0].ptr();
        const uchar* sptr2 = planes[1].ptr();
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

        switch( depth )
        {
        case CV_8U:
            realmaxdiff = cmpUlpsInt_((const uchar*)sptr1, (const uchar*)sptr2, total, ilevel, startidx, idx);
            break;
        case CV_8S:
            realmaxdiff = cmpUlpsInt_((const schar*)sptr1, (const schar*)sptr2, total, ilevel, startidx, idx);
            break;
        case CV_16U:
            realmaxdiff = cmpUlpsInt_((const ushort*)sptr1, (const ushort*)sptr2, total, ilevel, startidx, idx);
            break;
        case CV_16S:
            realmaxdiff = cmpUlpsInt_((const short*)sptr1, (const short*)sptr2, total, ilevel, startidx, idx);
            break;
        case CV_32S:
            realmaxdiff = cmpUlpsInt_((const int*)sptr1, (const int*)sptr2, total, ilevel, startidx, idx);
            break;
        case CV_32F:
            for( j = 0; j < total; j++ )
            {
                double a_val = ((float*)sptr1)[j];
                double b_val = ((float*)sptr2)[j];
                double threshold;
                if( ((int*)sptr1)[j] == ((int*)sptr2)[j] )
                    continue;
                if( cvIsNaN(a_val) || cvIsInf(a_val) )
                {
2023
                    result = CMP_EPS_INVALID_TEST_DATA;
2024 2025 2026 2027 2028
                    idx = startidx + j;
                    break;
                }
                if( cvIsNaN(b_val) || cvIsInf(b_val) )
                {
2029
                    result = CMP_EPS_INVALID_REF_DATA;
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
                    idx = startidx + j;
                    break;
                }
                a_val = fabs(a_val - b_val);
                threshold = element_wise_relative_error ? fabs(b_val) + 1 : maxval;
                if( a_val > threshold*success_err_level )
                {
                    realmaxdiff = a_val/threshold;
                    if( idx == 0 )
                        idx = startidx + j;
                    break;
                }
            }
            break;
        case CV_64F:
            for( j = 0; j < total; j++ )
            {
                double a_val = ((double*)sptr1)[j];
                double b_val = ((double*)sptr2)[j];
                double threshold;
                if( ((int64*)sptr1)[j] == ((int64*)sptr2)[j] )
                    continue;
                if( cvIsNaN(a_val) || cvIsInf(a_val) )
                {
2054
                    result = CMP_EPS_INVALID_TEST_DATA;
2055 2056 2057 2058 2059
                    idx = startidx + j;
                    break;
                }
                if( cvIsNaN(b_val) || cvIsInf(b_val) )
                {
2060
                    result = CMP_EPS_INVALID_REF_DATA;
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
                    idx = startidx + j;
                    break;
                }
                a_val = fabs(a_val - b_val);
                threshold = element_wise_relative_error ? fabs(b_val) + 1 : maxval;
                if( a_val > threshold*success_err_level )
                {
                    realmaxdiff = a_val/threshold;
                    idx = startidx + j;
                    break;
                }
            }
            break;
        default:
            assert(0);
2076
            return CMP_EPS_BIG_DIFF;
2077 2078 2079 2080 2081 2082 2083 2084
        }
        if(_realmaxdiff)
            *_realmaxdiff = MAX(*_realmaxdiff, realmaxdiff);
        if( idx != 0 )
            break;
    }

    if( result == 0 && idx != 0 )
2085
        result = CMP_EPS_BIG_DIFF;
2086 2087 2088 2089 2090

    if( result < -1 && _realmaxdiff )
        *_realmaxdiff = exp(1000.);
    if(idx > 0 && _idx)
        setpos(arr, *_idx, idx);
2091

2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
    return result;
}


int cmpEps2( TS* ts, const Mat& a, const Mat& b, double success_err_level,
             bool element_wise_relative_error, const char* desc )
{
    char msg[100];
    double diff = 0;
    vector<int> idx;
    int code = cmpEps( a, b, &diff, success_err_level, &idx, element_wise_relative_error );

    switch( code )
    {
2106
    case CMP_EPS_BIG_DIFF:
2107 2108 2109
        sprintf( msg, "%s: Too big difference (=%g)", desc, diff );
        code = TS::FAIL_BAD_ACCURACY;
        break;
2110
    case CMP_EPS_INVALID_TEST_DATA:
2111 2112 2113
        sprintf( msg, "%s: Invalid output", desc );
        code = TS::FAIL_INVALID_OUTPUT;
        break;
2114
    case CMP_EPS_INVALID_REF_DATA:
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
        sprintf( msg, "%s: Invalid reference output", desc );
        code = TS::FAIL_INVALID_OUTPUT;
        break;
    default:
        ;
    }

    if( code < 0 )
    {
        if( a.total() == 1 )
        {
            ts->printf( TS::LOG, "%s\n", msg );
        }
        else if( a.dims == 2 && (a.rows == 1 || a.cols == 1) )
        {
            ts->printf( TS::LOG, "%s at element %d\n", msg, idx[0] + idx[1] );
        }
        else
        {
            string idxstr = vec2str(", ", &idx[0], idx.size());
            ts->printf( TS::LOG, "%s at (%s)\n", msg, idxstr.c_str() );
        }
    }

    return code;
}


int cmpEps2_64f( TS* ts, const double* val, const double* refval, int len,
             double eps, const char* param_name )
{
    Mat _val(1, len, CV_64F, (void*)val);
    Mat _refval(1, len, CV_64F, (void*)refval);

    return cmpEps2( ts, _val, _refval, eps, true, param_name );
}

2152

2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
template<typename _Tp> static void
GEMM_(const _Tp* a_data0, int a_step, int a_delta,
      const _Tp* b_data0, int b_step, int b_delta,
      const _Tp* c_data0, int c_step, int c_delta,
      _Tp* d_data, int d_step,
      int d_rows, int d_cols, int a_cols, int cn,
      double alpha, double beta)
{
    for( int i = 0; i < d_rows; i++, d_data += d_step, c_data0 += c_step, a_data0 += a_step )
    {
        for( int j = 0; j < d_cols; j++ )
        {
            const _Tp* a_data = a_data0;
            const _Tp* b_data = b_data0 + j*b_delta;
            const _Tp* c_data = c_data0 + j*c_delta;
2168

2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
            if( cn == 1 )
            {
                double s = 0;
                for( int k = 0; k < a_cols; k++ )
                {
                    s += ((double)a_data[0])*b_data[0];
                    a_data += a_delta;
                    b_data += b_step;
                }
                d_data[j] = (_Tp)(s*alpha + (c_data ? c_data[0]*beta : 0));
            }
            else
            {
                double s_re = 0, s_im = 0;
2183

2184 2185 2186 2187 2188 2189 2190
                for( int k = 0; k < a_cols; k++ )
                {
                    s_re += ((double)a_data[0])*b_data[0] - ((double)a_data[1])*b_data[1];
                    s_im += ((double)a_data[0])*b_data[1] + ((double)a_data[1])*b_data[0];
                    a_data += a_delta;
                    b_data += b_step;
                }
2191

2192 2193
                s_re *= alpha;
                s_im *= alpha;
2194

2195 2196 2197 2198 2199
                if( c_data )
                {
                    s_re += c_data[0]*beta;
                    s_im += c_data[1]*beta;
                }
2200

2201 2202 2203 2204 2205 2206
                d_data[j*2] = (_Tp)s_re;
                d_data[j*2+1] = (_Tp)s_im;
            }
        }
    }
}
2207 2208


2209 2210 2211 2212
void gemm( const Mat& _a, const Mat& _b, double alpha,
           const Mat& _c, double beta, Mat& d, int flags )
{
    Mat a = _a, b = _b, c = _c;
2213 2214

    if( a.data == d.data )
2215
        a = a.clone();
2216 2217

    if( b.data == d.data )
2218
        b = b.clone();
2219

2220 2221
    if( !c.empty() && c.data == d.data && (flags & cv::GEMM_3_T) )
        c = c.clone();
2222

2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
    int a_rows = a.rows, a_cols = a.cols, b_rows = b.rows, b_cols = b.cols;
    int cn = a.channels();
    int a_step = (int)a.step1(), a_delta = cn;
    int b_step = (int)b.step1(), b_delta = cn;
    int c_rows = 0, c_cols = 0, c_step = 0, c_delta = 0;

    CV_Assert( a.type() == b.type() && a.dims == 2 && b.dims == 2 && cn <= 2 );

    if( flags & cv::GEMM_1_T )
    {
        std::swap( a_rows, a_cols );
        std::swap( a_step, a_delta );
    }
2236

2237 2238 2239 2240 2241
    if( flags & cv::GEMM_2_T )
    {
        std::swap( b_rows, b_cols );
        std::swap( b_step, b_delta );
    }
2242

2243 2244 2245 2246 2247 2248
    if( !c.empty() )
    {
        c_rows = c.rows;
        c_cols = c.cols;
        c_step = (int)c.step1();
        c_delta = cn;
2249

2250 2251 2252 2253 2254
        if( flags & cv::GEMM_3_T )
        {
            std::swap( c_rows, c_cols );
            std::swap( c_step, c_delta );
        }
2255

2256 2257 2258 2259
        CV_Assert( c.dims == 2 && c.type() == a.type() && c_rows == a_rows && c_cols == b_cols );
    }

    d.create(a_rows, b_cols, a.type());
2260

2261 2262 2263
    if( a.depth() == CV_32F )
        GEMM_(a.ptr<float>(), a_step, a_delta, b.ptr<float>(), b_step, b_delta,
              !c.empty() ? c.ptr<float>() : 0, c_step, c_delta, d.ptr<float>(),
2264
              (int)d.step1(), a_rows, b_cols, a_cols, cn, alpha, beta );
2265 2266 2267
    else
        GEMM_(a.ptr<double>(), a_step, a_delta, b.ptr<double>(), b_step, b_delta,
              !c.empty() ? c.ptr<double>() : 0, c_step, c_delta, d.ptr<double>(),
2268
              (int)d.step1(), a_rows, b_cols, a_cols, cn, alpha, beta );
2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
}


template<typename _Tp> static void
transform_(const _Tp* sptr, _Tp* dptr, size_t total, int scn, int dcn, const double* mat)
{
    for( size_t i = 0; i < total; i++, sptr += scn, dptr += dcn )
    {
        for( int j = 0; j < dcn; j++ )
        {
            double s = mat[j*(scn + 1) + scn];
            for( int k = 0; k < scn; k++ )
                s += mat[j*(scn + 1) + k]*sptr[k];
            dptr[j] = saturate_cast<_Tp>(s);
        }
    }
}
2286 2287


2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
void transform( const Mat& src, Mat& dst, const Mat& transmat, const Mat& _shift )
{
    double mat[20];

    int scn = src.channels();
    int dcn = dst.channels();
    int depth = src.depth();
    int mattype = transmat.depth();
    Mat shift = _shift.reshape(1, 0);
    bool haveShift = !shift.empty();
2298

2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
    CV_Assert( scn <= 4 && dcn <= 4 &&
              (mattype == CV_32F || mattype == CV_64F) &&
              (!haveShift || (shift.type() == mattype && (shift.rows == 1 || shift.cols == 1))) );

    // prepare cn x (cn + 1) transform matrix
    if( mattype == CV_32F )
    {
        for( int i = 0; i < transmat.rows; i++ )
        {
            mat[i*(scn+1)+scn] = 0.;
            for( int j = 0; j < transmat.cols; j++ )
                mat[i*(scn+1)+j] = transmat.at<float>(i,j);
            if( haveShift )
                mat[i*(scn+1)+scn] = shift.at<float>(i);
        }
    }
    else
    {
        for( int i = 0; i < transmat.rows; i++ )
        {
            mat[i*(scn+1)+scn] = 0.;
            for( int j = 0; j < transmat.cols; j++ )
                mat[i*(scn+1)+j] = transmat.at<double>(i,j);
            if( haveShift )
                mat[i*(scn+1)+scn] = shift.at<double>(i);
        }
    }

    const Mat *arrays[]={&src, &dst, 0};
    Mat planes[2];
    NAryMatIterator it(arrays, planes);
    size_t total = planes[0].total();
2331
    size_t i, nplanes = it.nplanes;
2332

2333 2334
    for( i = 0; i < nplanes; i++, ++it )
    {
2335 2336
        const uchar* sptr = planes[0].ptr();
        uchar* dptr = planes[1].ptr();
2337

2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
        switch( depth )
        {
        case CV_8U:
            transform_((const uchar*)sptr, (uchar*)dptr, total, scn, dcn, mat);
            break;
        case CV_8S:
            transform_((const schar*)sptr, (schar*)dptr, total, scn, dcn, mat);
            break;
        case CV_16U:
            transform_((const ushort*)sptr, (ushort*)dptr, total, scn, dcn, mat);
            break;
        case CV_16S:
            transform_((const short*)sptr, (short*)dptr, total, scn, dcn, mat);
            break;
        case CV_32S:
            transform_((const int*)sptr, (int*)dptr, total, scn, dcn, mat);
            break;
        case CV_32F:
            transform_((const float*)sptr, (float*)dptr, total, scn, dcn, mat);
            break;
        case CV_64F:
            transform_((const double*)sptr, (double*)dptr, total, scn, dcn, mat);
            break;
        default:
2362
            CV_Error(Error::StsUnsupportedFormat, "");
2363 2364 2365
        }
    }
}
2366

2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
template<typename _Tp> static void
minmax_(const _Tp* src1, const _Tp* src2, _Tp* dst, size_t total, char op)
{
    if( op == 'M' )
        for( size_t i = 0; i < total; i++ )
            dst[i] = std::max(src1[i], src2[i]);
    else
        for( size_t i = 0; i < total; i++ )
            dst[i] = std::min(src1[i], src2[i]);
}

static void minmax(const Mat& src1, const Mat& src2, Mat& dst, char op)
{
    dst.create(src1.dims, src1.size, src1.type());
    CV_Assert( src1.type() == src2.type() && src1.size == src2.size );
    const Mat *arrays[]={&src1, &src2, &dst, 0};
    Mat planes[3];
2384

2385 2386
    NAryMatIterator it(arrays, planes);
    size_t total = planes[0].total()*planes[0].channels();
2387
    size_t i, nplanes = it.nplanes, depth = src1.depth();
2388

2389 2390
    for( i = 0; i < nplanes; i++, ++it )
    {
2391 2392 2393
        const uchar* sptr1 = planes[0].ptr();
        const uchar* sptr2 = planes[1].ptr();
        uchar* dptr = planes[2].ptr();
2394

2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
        switch( depth )
        {
        case CV_8U:
            minmax_((const uchar*)sptr1, (const uchar*)sptr2, (uchar*)dptr, total, op);
            break;
        case CV_8S:
            minmax_((const schar*)sptr1, (const schar*)sptr2, (schar*)dptr, total, op);
            break;
        case CV_16U:
            minmax_((const ushort*)sptr1, (const ushort*)sptr2, (ushort*)dptr, total, op);
            break;
        case CV_16S:
            minmax_((const short*)sptr1, (const short*)sptr2, (short*)dptr, total, op);
            break;
        case CV_32S:
            minmax_((const int*)sptr1, (const int*)sptr2, (int*)dptr, total, op);
            break;
        case CV_32F:
            minmax_((const float*)sptr1, (const float*)sptr2, (float*)dptr, total, op);
            break;
        case CV_64F:
            minmax_((const double*)sptr1, (const double*)sptr2, (double*)dptr, total, op);
            break;
        default:
2419
            CV_Error(Error::StsUnsupportedFormat, "");
2420 2421 2422 2423
        }
    }
}

2424

2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
void min(const Mat& src1, const Mat& src2, Mat& dst)
{
    minmax( src1, src2, dst, 'm' );
}

void max(const Mat& src1, const Mat& src2, Mat& dst)
{
    minmax( src1, src2, dst, 'M' );
}


template<typename _Tp> static void
minmax_(const _Tp* src1, _Tp val, _Tp* dst, size_t total, char op)
{
    if( op == 'M' )
        for( size_t i = 0; i < total; i++ )
            dst[i] = std::max(src1[i], val);
    else
        for( size_t i = 0; i < total; i++ )
            dst[i] = std::min(src1[i], val);
}

static void minmax(const Mat& src1, double val, Mat& dst, char op)
{
    dst.create(src1.dims, src1.size, src1.type());
    const Mat *arrays[]={&src1, &dst, 0};
    Mat planes[2];
2452

2453 2454
    NAryMatIterator it(arrays, planes);
    size_t total = planes[0].total()*planes[0].channels();
2455
    size_t i, nplanes = it.nplanes, depth = src1.depth();
2456
    int ival = saturate_cast<int>(val);
2457

2458 2459
    for( i = 0; i < nplanes; i++, ++it )
    {
2460 2461
        const uchar* sptr1 = planes[0].ptr();
        uchar* dptr = planes[1].ptr();
2462

2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
        switch( depth )
        {
        case CV_8U:
            minmax_((const uchar*)sptr1, saturate_cast<uchar>(ival), (uchar*)dptr, total, op);
            break;
        case CV_8S:
            minmax_((const schar*)sptr1, saturate_cast<schar>(ival), (schar*)dptr, total, op);
            break;
        case CV_16U:
            minmax_((const ushort*)sptr1, saturate_cast<ushort>(ival), (ushort*)dptr, total, op);
            break;
        case CV_16S:
            minmax_((const short*)sptr1, saturate_cast<short>(ival), (short*)dptr, total, op);
            break;
        case CV_32S:
            minmax_((const int*)sptr1, saturate_cast<int>(ival), (int*)dptr, total, op);
            break;
        case CV_32F:
            minmax_((const float*)sptr1, saturate_cast<float>(val), (float*)dptr, total, op);
            break;
        case CV_64F:
            minmax_((const double*)sptr1, saturate_cast<double>(val), (double*)dptr, total, op);
            break;
        default:
2487
            CV_Error(Error::StsUnsupportedFormat, "");
2488 2489 2490 2491
        }
    }
}

2492

2493 2494 2495 2496 2497 2498 2499 2500 2501
void min(const Mat& src1, double val, Mat& dst)
{
    minmax( src1, val, dst, 'm' );
}

void max(const Mat& src1, double val, Mat& dst)
{
    minmax( src1, val, dst, 'M' );
}
2502 2503


2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523
template<typename _Tp> static void
muldiv_(const _Tp* src1, const _Tp* src2, _Tp* dst, size_t total, double scale, char op)
{
    if( op == '*' )
        for( size_t i = 0; i < total; i++ )
            dst[i] = saturate_cast<_Tp>((scale*src1[i])*src2[i]);
    else if( src1 )
        for( size_t i = 0; i < total; i++ )
            dst[i] = src2[i] ? saturate_cast<_Tp>((scale*src1[i])/src2[i]) : 0;
    else
        for( size_t i = 0; i < total; i++ )
            dst[i] = src2[i] ? saturate_cast<_Tp>(scale/src2[i]) : 0;
}

static void muldiv(const Mat& src1, const Mat& src2, Mat& dst, double scale, char op)
{
    dst.create(src2.dims, src2.size, src2.type());
    CV_Assert( src1.empty() || (src1.type() == src2.type() && src1.size == src2.size) );
    const Mat *arrays[]={&src1, &src2, &dst, 0};
    Mat planes[3];
2524

2525 2526
    NAryMatIterator it(arrays, planes);
    size_t total = planes[1].total()*planes[1].channels();
2527
    size_t i, nplanes = it.nplanes, depth = src2.depth();
2528

2529 2530
    for( i = 0; i < nplanes; i++, ++it )
    {
2531 2532 2533
        const uchar* sptr1 = planes[0].ptr();
        const uchar* sptr2 = planes[1].ptr();
        uchar* dptr = planes[2].ptr();
2534

2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
        switch( depth )
        {
        case CV_8U:
            muldiv_((const uchar*)sptr1, (const uchar*)sptr2, (uchar*)dptr, total, scale, op);
            break;
        case CV_8S:
            muldiv_((const schar*)sptr1, (const schar*)sptr2, (schar*)dptr, total, scale, op);
            break;
        case CV_16U:
            muldiv_((const ushort*)sptr1, (const ushort*)sptr2, (ushort*)dptr, total, scale, op);
            break;
        case CV_16S:
            muldiv_((const short*)sptr1, (const short*)sptr2, (short*)dptr, total, scale, op);
            break;
        case CV_32S:
            muldiv_((const int*)sptr1, (const int*)sptr2, (int*)dptr, total, scale, op);
            break;
        case CV_32F:
            muldiv_((const float*)sptr1, (const float*)sptr2, (float*)dptr, total, scale, op);
            break;
        case CV_64F:
            muldiv_((const double*)sptr1, (const double*)sptr2, (double*)dptr, total, scale, op);
            break;
        default:
2559
            CV_Error(Error::StsUnsupportedFormat, "");
2560 2561 2562
        }
    }
}
2563

2564 2565 2566 2567 2568 2569 2570 2571 2572

void multiply(const Mat& src1, const Mat& src2, Mat& dst, double scale)
{
    muldiv( src1, src2, dst, scale, '*' );
}

void divide(const Mat& src1, const Mat& src2, Mat& dst, double scale)
{
    muldiv( src1, src2, dst, scale, '/' );
2573 2574 2575
}


2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
template<typename _Tp> static void
mean_(const _Tp* src, const uchar* mask, size_t total, int cn, Scalar& sum, int& nz)
{
    if( !mask )
    {
        nz += (int)total;
        total *= cn;
        for( size_t i = 0; i < total; i += cn )
        {
            for( int c = 0; c < cn; c++ )
                sum[c] += src[i + c];
        }
    }
    else
    {
        for( size_t i = 0; i < total; i++ )
            if( mask[i] )
            {
                nz++;
                for( int c = 0; c < cn; c++ )
                    sum[c] += src[i*cn + c];
            }
    }
}
2600

2601 2602 2603 2604 2605
Scalar mean(const Mat& src, const Mat& mask)
{
    CV_Assert(mask.empty() || (mask.type() == CV_8U && mask.size == src.size));
    Scalar sum;
    int nz = 0;
2606

2607 2608
    const Mat *arrays[]={&src, &mask, 0};
    Mat planes[2];
2609

2610 2611
    NAryMatIterator it(arrays, planes);
    size_t total = planes[0].total();
2612 2613
    size_t i, nplanes = it.nplanes;
    int depth = src.depth(), cn = src.channels();
2614

2615 2616
    for( i = 0; i < nplanes; i++, ++it )
    {
2617 2618
        const uchar* sptr = planes[0].ptr();
        const uchar* mptr = planes[1].ptr();
2619

2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
        switch( depth )
        {
        case CV_8U:
            mean_((const uchar*)sptr, mptr, total, cn, sum, nz);
            break;
        case CV_8S:
            mean_((const schar*)sptr, mptr, total, cn, sum, nz);
            break;
        case CV_16U:
            mean_((const ushort*)sptr, mptr, total, cn, sum, nz);
            break;
        case CV_16S:
            mean_((const short*)sptr, mptr, total, cn, sum, nz);
            break;
        case CV_32S:
            mean_((const int*)sptr, mptr, total, cn, sum, nz);
            break;
        case CV_32F:
            mean_((const float*)sptr, mptr, total, cn, sum, nz);
            break;
        case CV_64F:
            mean_((const double*)sptr, mptr, total, cn, sum, nz);
            break;
        default:
2644
            CV_Error(Error::StsUnsupportedFormat, "");
2645 2646
        }
    }
2647

2648 2649 2650
    return sum * (1./std::max(nz, 1));
}

2651

2652 2653 2654 2655 2656
void  patchZeros( Mat& mat, double level )
{
    int j, ncols = mat.cols * mat.channels();
    int depth = mat.depth();
    CV_Assert( depth == CV_32F || depth == CV_64F );
2657

2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676
    for( int i = 0; i < mat.rows; i++ )
    {
        if( depth == CV_32F )
        {
            float* data = mat.ptr<float>(i);
            for( j = 0; j < ncols; j++ )
                if( fabs(data[j]) < level )
                    data[j] += 1;
        }
        else
        {
            double* data = mat.ptr<double>(i);
            for( j = 0; j < ncols; j++ )
                if( fabs(data[j]) < level )
                    data[j] += 1;
        }
    }
}

2677

2678 2679 2680 2681
static void calcSobelKernel1D( int order, int _aperture_size, int size, vector<int>& kernel )
{
    int i, j, oldval, newval;
    kernel.resize(size + 1);
2682

2683 2684 2685 2686 2687 2688 2689 2690
    if( _aperture_size < 0 )
    {
        static const int scharr[] = { 3, 10, 3, -1, 0, 1 };
        assert( size == 3 );
        for( i = 0; i < size; i++ )
            kernel[i] = scharr[order*3 + i];
        return;
    }
2691

2692 2693 2694
    for( i = 1; i <= size; i++ )
        kernel[i] = 0;
    kernel[0] = 1;
2695

2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
    for( i = 0; i < size - order - 1; i++ )
    {
        oldval = kernel[0];
        for( j = 1; j <= size; j++ )
        {
            newval = kernel[j] + kernel[j-1];
            kernel[j-1] = oldval;
            oldval = newval;
        }
    }
2706

2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
    for( i = 0; i < order; i++ )
    {
        oldval = -kernel[0];
        for( j = 1; j <= size; j++ )
        {
            newval = kernel[j-1] - kernel[j];
            kernel[j-1] = oldval;
            oldval = newval;
        }
    }
}


Mat calcSobelKernel2D( int dx, int dy, int _aperture_size, int origin )
{
    CV_Assert( (_aperture_size == -1 || (_aperture_size >= 1 && _aperture_size % 2 == 1)) &&
              dx >= 0 && dy >= 0 && dx + dy <= 3 );
    Size ksize = _aperture_size == -1 ? Size(3,3) : _aperture_size > 1 ?
        Size(_aperture_size, _aperture_size) : dx > 0 ? Size(3, 1) : Size(1, 3);
2726

2727 2728
    Mat kernel(ksize, CV_32F);
    vector<int> kx, ky;
2729

2730 2731
    calcSobelKernel1D( dx, _aperture_size, ksize.width, kx );
    calcSobelKernel1D( dy, _aperture_size, ksize.height, ky );
2732

2733 2734 2735 2736 2737 2738
    for( int i = 0; i < kernel.rows; i++ )
    {
        float ay = (float)ky[i]*(origin && (dy & 1) ? -1 : 1);
        for( int j = 0; j < kernel.cols; j++ )
            kernel.at<float>(i, j) = kx[j]*ay;
    }
2739

2740 2741 2742
    return kernel;
}

2743

2744 2745 2746 2747
Mat calcLaplaceKernel2D( int aperture_size )
{
    int ksize = aperture_size == 1 ? 3 : aperture_size;
    Mat kernel(ksize, ksize, CV_32F);
2748

2749
    vector<int> kx, ky;
2750

2751 2752 2753 2754 2755 2756 2757 2758
    calcSobelKernel1D( 2, aperture_size, ksize, kx );
    if( aperture_size > 1 )
        calcSobelKernel1D( 0, aperture_size, ksize, ky );
    else
    {
        ky.resize(3);
        ky[0] = ky[2] = 0; ky[1] = 1;
    }
2759

2760 2761
    for( int i = 0; i < ksize; i++ )
        for( int j = 0; j < ksize; j++ )
2762
            kernel.at<float>(i, j) = (float)(kx[j]*ky[i] + kx[i]*ky[j]);
2763

2764 2765 2766
    return kernel;
}

2767

2768 2769 2770 2771
void initUndistortMap( const Mat& _a0, const Mat& _k0, Size sz, Mat& _mapx, Mat& _mapy )
{
    _mapx.create(sz, CV_32F);
    _mapy.create(sz, CV_32F);
2772

2773 2774 2775 2776
    double a[9], k[5]={0,0,0,0,0};
    Mat _a(3, 3, CV_64F, a);
    Mat _k(_k0.rows,_k0.cols, CV_MAKETYPE(CV_64F,_k0.channels()),k);
    double fx, fy, cx, cy, ifx, ify, cxn, cyn;
2777

2778 2779 2780 2781 2782 2783
    _a0.convertTo(_a, CV_64F);
    _k0.convertTo(_k, CV_64F);
    fx = a[0]; fy = a[4]; cx = a[2]; cy = a[5];
    ifx = 1./fx; ify = 1./fy;
    cxn = cx;
    cyn = cy;
2784

2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795
    for( int v = 0; v < sz.height; v++ )
    {
        for( int u = 0; u < sz.width; u++ )
        {
            double x = (u - cxn)*ifx;
            double y = (v - cyn)*ify;
            double x2 = x*x, y2 = y*y;
            double r2 = x2 + y2;
            double cdist = 1 + (k[0] + (k[1] + k[4]*r2)*r2)*r2;
            double x1 = x*cdist + k[2]*2*x*y + k[3]*(r2 + 2*x2);
            double y1 = y*cdist + k[3]*2*x*y + k[2]*(r2 + 2*y2);
2796

2797 2798 2799 2800 2801
            _mapy.at<float>(v, u) = (float)(y1*fy + cy);
            _mapx.at<float>(v, u) = (float)(x1*fx + cx);
        }
    }
}
2802 2803


2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
std::ostream& operator << (std::ostream& out, const MatInfo& m)
{
    if( !m.m || m.m->empty() )
        out << "<Empty>";
    else
    {
        static const char* depthstr[] = {"8u", "8s", "16u", "16s", "32s", "32f", "64f", "?"};
        out << depthstr[m.m->depth()] << "C" << m.m->channels() << " " << m.m->dims << "-dim (";
        for( int i = 0; i < m.m->dims; i++ )
            out << m.m->size[i] << (i < m.m->dims-1 ? " x " : ")");
    }
    return out;
}


static Mat getSubArray(const Mat& m, int border, vector<int>& ofs0, vector<int>& ofs)
{
    ofs.resize(ofs0.size());
    if( border < 0 )
    {
        std::copy(ofs0.begin(), ofs0.end(), ofs.begin());
        return m;
    }
    int i, d = m.dims;
    CV_Assert(d == (int)ofs.size());
    vector<Range> r(d);
    for( i = 0; i < d; i++ )
    {
        r[i].start = std::max(0, ofs0[i] - border);
        r[i].end = std::min(ofs0[i] + 1 + border, m.size[i]);
        ofs[i] = std::min(ofs0[i], border);
    }
    return m(&r[0]);
}

template<typename _Tp, typename _WTp> static void
writeElems(std::ostream& out, const void* data, int nelems, int starpos)
{
    for(int i = 0; i < nelems; i++)
    {
        if( i == starpos )
            out << "*";
        out << (_WTp)((_Tp*)data)[i];
        if( i == starpos )
            out << "*";
        out << (i+1 < nelems ? ", " : "");
    }
}


static void writeElems(std::ostream& out, const void* data, int nelems, int depth, int starpos)
{
    if(depth == CV_8U)
        writeElems<uchar, int>(out, data, nelems, starpos);
    else if(depth == CV_8S)
        writeElems<schar, int>(out, data, nelems, starpos);
    else if(depth == CV_16U)
        writeElems<ushort, int>(out, data, nelems, starpos);
    else if(depth == CV_16S)
        writeElems<short, int>(out, data, nelems, starpos);
    else if(depth == CV_32S)
        writeElems<int, int>(out, data, nelems, starpos);
    else if(depth == CV_32F)
    {
        std::streamsize pp = out.precision();
        out.precision(8);
        writeElems<float, float>(out, data, nelems, starpos);
        out.precision(pp);
    }
    else if(depth == CV_64F)
    {
        std::streamsize pp = out.precision();
        out.precision(16);
        writeElems<double, double>(out, data, nelems, starpos);
        out.precision(pp);
    }
    else
2881
        CV_Error(Error::StsUnsupportedFormat, "");
2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907
}


struct MatPart
{
    MatPart(const Mat& _m, const vector<int>* _loc)
    : m(&_m), loc(_loc) {}
    const Mat* m;
    const vector<int>* loc;
};

static std::ostream& operator << (std::ostream& out, const MatPart& m)
{
    CV_Assert( !m.loc || ((int)m.loc->size() == m.m->dims && m.m->dims <= 2) );
    if( !m.loc )
        out << *m.m;
    else
    {
        int i, depth = m.m->depth(), cn = m.m->channels(), width = m.m->cols*cn;
        for( i = 0; i < m.m->rows; i++ )
        {
            writeElems(out, m.m->ptr(i), width, depth, i == (*m.loc)[0] ? (*m.loc)[1] : -1);
            out << (i < m.m->rows-1 ? ";\n" : "");
        }
    }
    return out;
2908 2909
}

2910
MatComparator::MatComparator(double _maxdiff, int _context)
2911
    : maxdiff(_maxdiff), realmaxdiff(DBL_MAX), context(_context) {}
2912

2913 2914 2915 2916 2917 2918 2919 2920 2921
::testing::AssertionResult
MatComparator::operator()(const char* expr1, const char* expr2,
                          const Mat& m1, const Mat& m2)
{
    if( m1.type() != m2.type() || m1.size != m2.size )
        return ::testing::AssertionFailure()
        << "The reference and the actual output arrays have different type or size:\n"
        << expr1 << " ~ " << MatInfo(m1) << "\n"
        << expr2 << " ~ " << MatInfo(m2) << "\n";
2922

2923 2924
    //bool ok = cvtest::cmpUlps(m1, m2, maxdiff, &realmaxdiff, &loc0);
    int code = cmpEps( m1, m2, &realmaxdiff, maxdiff, &loc0, true);
2925

2926 2927
    if(code >= 0)
        return ::testing::AssertionSuccess();
2928

2929 2930 2931 2932
    Mat m[] = {m1.reshape(1,0), m2.reshape(1,0)};
    int dims = m[0].dims;
    vector<int> loc;
    int border = dims <= 2 ? context : 0;
2933

2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945
    Mat m1part, m2part;
    if( border == 0 )
    {
        loc = loc0;
        m1part = Mat(1, 1, m[0].depth(), m[0].ptr(&loc[0]));
        m2part = Mat(1, 1, m[1].depth(), m[1].ptr(&loc[0]));
    }
    else
    {
        m1part = getSubArray(m[0], border, loc0, loc);
        m2part = getSubArray(m[1], border, loc0, loc);
    }
2946

2947 2948 2949 2950 2951 2952 2953 2954
    return ::testing::AssertionFailure()
    << "too big relative difference (" << realmaxdiff << " > "
    << maxdiff << ") between "
    << MatInfo(m1) << " '" << expr1 << "' and '" << expr2 << "' at " << Mat(loc0) << ".\n\n"
    << "'" << expr1 << "': " << MatPart(m1part, border > 0 ? &loc : 0) << ".\n\n"
    << "'" << expr2 << "': " << MatPart(m2part, border > 0 ? &loc : 0) << ".\n";
}

2955 2956
void printVersionInfo(bool useStdOut)
{
2957
    ::testing::Test::RecordProperty("cv_version", CV_VERSION);
2958 2959 2960 2961 2962
    if(useStdOut) std::cout << "OpenCV version: " << CV_VERSION << std::endl;

    std::string buildInfo( cv::getBuildInformation() );

    size_t pos1 = buildInfo.find("Version control");
2963
    size_t pos2 = buildInfo.find('\n', pos1);
2964 2965
    if(pos1 != std::string::npos && pos2 != std::string::npos)
    {
2966 2967 2968 2969
        size_t value_start = buildInfo.rfind(' ', pos2) + 1;
        std::string ver( buildInfo.substr(value_start, pos2 - value_start) );
        ::testing::Test::RecordProperty("cv_vcs_version", ver);
        if (useStdOut) std::cout << "OpenCV VCS version: " << ver << std::endl;
2970 2971 2972
    }

    pos1 = buildInfo.find("inner version");
2973
    pos2 = buildInfo.find('\n', pos1);
2974 2975
    if(pos1 != std::string::npos && pos2 != std::string::npos)
    {
2976 2977 2978 2979
        size_t value_start = buildInfo.rfind(' ', pos2) + 1;
        std::string ver( buildInfo.substr(value_start, pos2 - value_start) );
        ::testing::Test::RecordProperty("cv_inner_vcs_version", ver);
        if(useStdOut) std::cout << "Inner VCS version: " << ver << std::endl;
2980
    }
2981

2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
    const char * build_type =
#ifdef _DEBUG
        "debug";
#else
        "release";
#endif

    ::testing::Test::RecordProperty("cv_build_type", build_type);
    if (useStdOut) std::cout << "Build type: " << build_type << std::endl;

2992 2993 2994 2995 2996
    const char* parallel_framework = currentParallelFramework();

    if (parallel_framework) {
        ::testing::Test::RecordProperty("cv_parallel_framework", parallel_framework);
        if (useStdOut) std::cout << "Parallel framework: " << parallel_framework << std::endl;
2997
    }
2998 2999 3000

    std::string cpu_features;

3001 3002 3003
#if CV_POPCNT
    if (checkHardwareSupport(CV_CPU_POPCNT)) cpu_features += " popcnt";
#endif
Ilya Lavrenov's avatar
Ilya Lavrenov committed
3004 3005 3006
#if CV_MMX
    if (checkHardwareSupport(CV_CPU_MMX)) cpu_features += " mmx";
#endif
3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
#if CV_SSE
    if (checkHardwareSupport(CV_CPU_SSE)) cpu_features += " sse";
#endif
#if CV_SSE2
    if (checkHardwareSupport(CV_CPU_SSE2)) cpu_features += " sse2";
#endif
#if CV_SSE3
    if (checkHardwareSupport(CV_CPU_SSE3)) cpu_features += " sse3";
#endif
#if CV_SSSE3
    if (checkHardwareSupport(CV_CPU_SSSE3)) cpu_features += " ssse3";
#endif
#if CV_SSE4_1
    if (checkHardwareSupport(CV_CPU_SSE4_1)) cpu_features += " sse4.1";
#endif
#if CV_SSE4_2
    if (checkHardwareSupport(CV_CPU_SSE4_2)) cpu_features += " sse4.2";
#endif
#if CV_AVX
    if (checkHardwareSupport(CV_CPU_AVX)) cpu_features += " avx";
#endif
Ilya Lavrenov's avatar
Ilya Lavrenov committed
3028 3029 3030
#if CV_AVX2
    if (checkHardwareSupport(CV_CPU_AVX2)) cpu_features += " avx2";
#endif
3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060
#if CV_FMA3
    if (checkHardwareSupport(CV_CPU_FMA3)) cpu_features += " fma3";
#endif
#if CV_AVX_512F
    if (checkHardwareSupport(CV_CPU_AVX_512F) cpu_features += " avx-512f";
#endif
#if CV_AVX_512BW
    if (checkHardwareSupport(CV_CPU_AVX_512BW) cpu_features += " avx-512bw";
#endif
#if CV_AVX_512CD
    if (checkHardwareSupport(CV_CPU_AVX_512CD) cpu_features += " avx-512cd";
#endif
#if CV_AVX_512DQ
    if (checkHardwareSupport(CV_CPU_AVX_512DQ) cpu_features += " avx-512dq";
#endif
#if CV_AVX_512ER
    if (checkHardwareSupport(CV_CPU_AVX_512ER) cpu_features += " avx-512er";
#endif
#if CV_AVX_512IFMA512
    if (checkHardwareSupport(CV_CPU_AVX_512IFMA512) cpu_features += " avx-512ifma512";
#endif
#if CV_AVX_512PF
    if (checkHardwareSupport(CV_CPU_AVX_512PF) cpu_features += " avx-512pf";
#endif
#if CV_AVX_512VBMI
    if (checkHardwareSupport(CV_CPU_AVX_512VBMI) cpu_features += " avx-512vbmi";
#endif
#if CV_AVX_512VL
    if (checkHardwareSupport(CV_CPU_AVX_512VL) cpu_features += " avx-512vl";
#endif
3061
#if CV_NEON
3062
    if (checkHardwareSupport(CV_CPU_NEON)) cpu_features += " neon";
3063 3064 3065 3066 3067 3068 3069 3070
#endif

    cpu_features.erase(0, 1); // erase initial space

    ::testing::Test::RecordProperty("cv_cpu_features", cpu_features);
    if (useStdOut) std::cout << "CPU features: " << cpu_features << std::endl;

#ifdef HAVE_TEGRA_OPTIMIZATION
3071
    const char * tegra_optimization = tegra::useTegra() && tegra::isDeviceSupported() ? "enabled" : "disabled";
3072 3073 3074
    ::testing::Test::RecordProperty("cv_tegra_optimization", tegra_optimization);
    if (useStdOut) std::cout << "Tegra optimization: " << tegra_optimization << std::endl;
#endif
3075 3076 3077
}

}