fabmap_sample.cpp 7.37 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
// This file originates from the openFABMAP project:
// [http://code.google.com/p/openfabmap/]
//
// For published work which uses all or part of OpenFABMAP, please cite:
// [http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6224843]
//
// Original Algorithm by Mark Cummins and Paul Newman:
// [http://ijr.sagepub.com/content/27/6/647.short]
// [http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5613942]
// [http://ijr.sagepub.com/content/30/9/1100.abstract]
//
//                           License Agreement
//
// Copyright (C) 2012 Arren Glover [aj.glover@qut.edu.au] and
//                    Will Maddern [w.maddern@qut.edu.au], all rights reserved.
//
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/


#include "opencv2/opencv.hpp"
#include "opencv2/nonfree/nonfree.hpp"

using namespace cv;
using namespace std;

int main(int argc, char * argv[]) {

61
    /*
62

63
    Note: the vocabulary and training data is specifically made for this openCV
64
    example. It is not reccomended for use with other datasets as it is
65 66 67 68 69
    intentionally small to reduce baggage in the openCV project.

    A new vocabulary can be generated using the supplied BOWMSCtrainer (or other
    clustering method such as K-means

70
    New training data can be generated by extracting bag-of-words using the
71 72 73
    openCV BOWImgDescriptorExtractor class.

    vocabulary, chow-liu tree, training data, and test data can all be saved and
74
    loaded using openCV's FileStorage class and it is not necessary to generate
75 76 77 78
    data each time as done in this example

    */

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
    cout << "This sample program demonstrates the FAB-MAP image matching "
        "algorithm" << endl << endl;

    string dataDir;
    if (argc == 1) {
        dataDir = "fabmap/";
    } else if (argc == 2) {
        dataDir = string(argv[1]);
        dataDir += "/";
    } else {
        //incorrect arguments
        cout << "Usage: fabmap_sample <sample data directory>" <<
            endl;
        return -1;
    }

    FileStorage fs;

    //load/generate vocab
    cout << "Loading Vocabulary: " <<
        dataDir + string("vocab_small.yml") << endl << endl;
    fs.open(dataDir + string("vocab_small.yml"), FileStorage::READ);
    Mat vocab;
    fs["Vocabulary"] >> vocab;
    if (vocab.empty()) {
        cerr << "Vocabulary not found" << endl;
        return -1;
    }
    fs.release();

    //load/generate training data

    cout << "Loading Training Data: " <<
        dataDir + string("train_data_small.yml") << endl << endl;
    fs.open(dataDir + string("train_data_small.yml"), FileStorage::READ);
    Mat trainData;
    fs["BOWImageDescs"] >> trainData;
    if (trainData.empty()) {
        cerr << "Training Data not found" << endl;
        return -1;
    }
    fs.release();

    //create Chow-liu tree
    cout << "Making Chow-Liu Tree from training data" << endl <<
        endl;
    of2::ChowLiuTree treeBuilder;
    treeBuilder.add(trainData);
    Mat tree = treeBuilder.make();

    //generate test data
    cout << "Extracting Test Data from images" << endl <<
        endl;
    Ptr<FeatureDetector> detector =
        new DynamicAdaptedFeatureDetector(
        AdjusterAdapter::create("STAR"), 130, 150, 5);
    Ptr<DescriptorExtractor> extractor =
        new SurfDescriptorExtractor(1000, 4, 2, false, true);
    Ptr<DescriptorMatcher> matcher =
        DescriptorMatcher::create("FlannBased");

    BOWImgDescriptorExtractor bide(extractor, matcher);
    bide.setVocabulary(vocab);

    vector<string> imageNames;
    imageNames.push_back(string("stlucia_test_small0000.jpeg"));
    imageNames.push_back(string("stlucia_test_small0001.jpeg"));
    imageNames.push_back(string("stlucia_test_small0002.jpeg"));
    imageNames.push_back(string("stlucia_test_small0003.jpeg"));
    imageNames.push_back(string("stlucia_test_small0004.jpeg"));
    imageNames.push_back(string("stlucia_test_small0005.jpeg"));
    imageNames.push_back(string("stlucia_test_small0006.jpeg"));
    imageNames.push_back(string("stlucia_test_small0007.jpeg"));
    imageNames.push_back(string("stlucia_test_small0008.jpeg"));
    imageNames.push_back(string("stlucia_test_small0009.jpeg"));

    Mat testData;
    Mat frame;
    Mat bow;
    vector<KeyPoint> kpts;

    for(size_t i = 0; i < imageNames.size(); i++) {
        cout << dataDir + imageNames[i] << endl;
        frame = imread(dataDir + imageNames[i]);
        if(frame.empty()) {
            cerr << "Test images not found" << endl;
            return -1;
        }

        detector->detect(frame, kpts);

        bide.compute(frame, kpts, bow);

        testData.push_back(bow);

        drawKeypoints(frame, kpts, frame);
        imshow(imageNames[i], frame);
        waitKey(10);
    }

    //run fabmap
    cout << "Running FAB-MAP algorithm" << endl <<
        endl;
    Ptr<of2::FabMap> fabmap;

    fabmap = new of2::FabMap2(tree, 0.39, 0, of2::FabMap::SAMPLED |
        of2::FabMap::CHOW_LIU);
    fabmap->addTraining(trainData);

    vector<of2::IMatch> matches;
    fabmap->compare(testData, matches, true);

    //display output
    Mat result_small = Mat::zeros(10, 10, CV_8UC1);
    vector<of2::IMatch>::iterator l;

    for(l = matches.begin(); l != matches.end(); l++) {
            if(l->imgIdx < 0) {
                result_small.at<char>(l->queryIdx, l->queryIdx) =
                    (char)(l->match*255);

            } else {
                result_small.at<char>(l->queryIdx, l->imgIdx) =
                    (char)(l->match*255);
            }
    }

    Mat result_large(100, 100, CV_8UC1);
    resize(result_small, result_large, Size(500, 500), 0, 0, CV_INTER_NN);

209
    cout << endl << "Press any key to exit" << endl;
210 211 212 213 214
    imshow("Confusion Matrix", result_large);
    waitKey();

    return 0;
}