dnn.cpp 77.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"
#include "op_halide.hpp"
#include "halide_scheduler.hpp"
#include <set>
#include <algorithm>
#include <iostream>
#include <sstream>
#include <iterator>
50
#include <numeric>
51 52 53
#include <opencv2/dnn/shape_utils.hpp>
#include <opencv2/imgproc.hpp>

54 55 56
namespace cv {
namespace dnn {
CV__DNN_EXPERIMENTAL_NS_BEGIN
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

using std::vector;
using std::map;
using std::make_pair;
using std::set;

namespace
{
    typedef std::vector<MatShape> ShapesVec;

    struct LayerShapes
    {
        ShapesVec in, out, internal;
        // No guarantees that layer which support in-place computations
        // will be computed in-place (input.data_ptr == output.data_ptr).
        // If layer said that it could work in-place and layers after it
        // no longer use input blob, we'll set output = input.
        bool supportInPlace;
        LayerShapes() {supportInPlace = false;}
    };
}

template<typename T>
static String toString(const T &v)
{
    std::ostringstream ss;
    ss << v;
    return ss.str();
}

Mat blobFromImage(const Mat& image, double scalefactor, const Size& size,
88
                  const Scalar& mean, bool swapRB, bool crop)
89
{
90
    CV_TRACE_FUNCTION();
91
    std::vector<Mat> images(1, image);
92
    return blobFromImages(images, scalefactor, size, mean, swapRB, crop);
93 94 95
}

Mat blobFromImages(const std::vector<Mat>& images_, double scalefactor, Size size,
96
                   const Scalar& mean_, bool swapRB, bool crop)
97
{
98
    CV_TRACE_FUNCTION();
99 100 101 102 103 104 105 106
    std::vector<Mat> images = images_;
    for (int i = 0; i < images.size(); i++)
    {
        Size imgSize = images[i].size();
        if (size == Size())
            size = imgSize;
        if (size != imgSize)
        {
107 108 109 110 111 112 113 114 115 116 117 118
            if(crop)
            {
              float resizeFactor = std::max(size.width / (float)imgSize.width,
                                            size.height / (float)imgSize.height);
              resize(images[i], images[i], Size(), resizeFactor, resizeFactor);
              Rect crop(Point(0.5 * (images[i].cols - size.width),
                              0.5 * (images[i].rows - size.height)),
                        size);
              images[i] = images[i](crop);
            }
            else
              resize(images[i], images[i], size);
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
        }
        if(images[i].depth() == CV_8U)
            images[i].convertTo(images[i], CV_32F);
        Scalar mean = mean_;
        if (swapRB)
            std::swap(mean[0], mean[2]);

        images[i] -= mean;
        images[i] *= scalefactor;
    }

    size_t i, nimages = images.size();
    if(nimages == 0)
        return Mat();
    Mat image0 = images[0];
    int nch = image0.channels();
    CV_Assert(image0.dims == 2);
    Mat blob, image;
    if (nch == 3 || nch == 4)
    {
139
        int sz[] = { (int)nimages, nch, image0.rows, image0.cols };
140 141 142 143 144 145 146 147 148 149 150
        blob = Mat(4, sz, CV_32F);
        Mat ch[4];

        for( i = 0; i < nimages; i++ )
        {
            image = images[i];
            CV_Assert(image.depth() == CV_32F);
            nch = image.channels();
            CV_Assert(image.dims == 2 && (nch == 3 || nch == 4));
            CV_Assert(image.size() == image0.size());

151
            for( int j = 0; j < nch; j++ )
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
                ch[j] = Mat(image.rows, image.cols, CV_32F, blob.ptr((int)i, j));
            if(swapRB)
                std::swap(ch[0], ch[2]);
            split(image, ch);
        }
    }
    else
    {
       CV_Assert(nch == 1);
       int sz[] = { (int)nimages, 1, image0.rows, image0.cols };
       blob = Mat(4, sz, CV_32F);

       for( i = 0; i < nimages; i++ )
       {
           Mat image = images[i];
           CV_Assert(image.depth() == CV_32F);
           nch = image.channels();
           CV_Assert(image.dims == 2 && (nch == 1));
           CV_Assert(image.size() == image0.size());

           image.copyTo(Mat(image.rows, image.cols, CV_32F, blob.ptr((int)i, 0)));
       }
    }
    return blob;
}

struct LayerPin
{
    int lid;
    int oid;

    LayerPin(int layerId = -1, int outputId = -1)
        : lid(layerId), oid(outputId) {}

    bool valid() const
    {
        return (lid >= 0 && oid >= 0);
    }

    bool equal(const LayerPin &r) const
    {
        return (lid == r.lid && oid == r.oid);
    }

    bool operator<(const LayerPin &r) const
    {
        return lid < r.lid || lid == r.lid && oid < r.oid;
    }

    bool operator ==(const LayerPin &r) const
    {
        return lid == r.lid && oid == r.oid;
    }
};

struct LayerData
{
209
    LayerData() : id(-1), flag(0) {}
210
    LayerData(int _id, const String &_name, const String &_type, LayerParams &_params)
211
        : id(_id), name(_name), type(_type), params(_params), flag(0)
212
    {
213 214
        CV_TRACE_FUNCTION();

215 216 217 218 219 220 221 222 223 224 225 226 227 228
        //add logging info
        params.name = name;
        params.type = type;
    }

    int id;
    String name;
    String type;
    LayerParams params;

    std::vector<LayerPin> inputBlobsId;
    std::set<int> inputLayersId;
    std::set<int> requiredOutputs;
    std::vector<LayerPin> consumers;
229 230
    std::vector<Ptr<BackendWrapper> > outputBlobsWrappers;
    std::vector<Ptr<BackendWrapper> > inputBlobsWrappers;
231 232 233 234 235

    Ptr<Layer> layerInstance;
    std::vector<Mat> outputBlobs;
    std::vector<Mat*> inputBlobs;
    std::vector<Mat> internals;
236 237 238
    std::vector<UMat> umat_outputBlobs;
    std::vector<UMat> umat_inputBlobs;
    std::vector<UMat> umat_internals;
239 240 241 242 243 244 245 246 247
    // Computation nodes of implemented backends (except DEFAULT).
    std::map<int, Ptr<BackendNode> > backendNodes;
    // Flag for skip layer computation for specific backend.
    std::map<int, bool> skipFlags;

    int flag;

    Ptr<Layer> getLayerInstance()
    {
248 249 250
        CV_TRACE_FUNCTION();
        CV_TRACE_ARG_VALUE(type, "type", type.c_str());

251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
        if (layerInstance)
            return layerInstance;

        layerInstance = LayerFactory::createLayerInstance(type, params);
        if (!layerInstance)
        {
            CV_Error(Error::StsError, "Can't create layer \"" + name + "\" of type \"" + type + "\"");
        }

        return layerInstance;
    }
};

//fake layer containing network input blobs
struct DataLayer : public Layer
{
    void finalize(const std::vector<Mat*>&, std::vector<Mat>&) {}
    void forward(std::vector<Mat*>&, std::vector<Mat>&, std::vector<Mat> &) {}
269
    void forward(InputArrayOfArrays inputs, OutputArrayOfArrays outputs, OutputArrayOfArrays internals) {}
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359

    int outputNameToIndex(String tgtName)
    {
        int idx = (int)(std::find(outNames.begin(), outNames.end(), tgtName) - outNames.begin());
        return (idx < (int)outNames.size()) ? idx : -1;
    }

    void setNames(const std::vector<String> &names)
    {
        outNames.assign(names.begin(), names.end());
    }

private:
    std::vector<String> outNames;
};

struct BlobManager
{
public:
    // Increase references counter to layer output.
    void addReference(const LayerPin& lp)
    {
        std::map<LayerPin, int>::iterator it = refCounter.find(lp);
        if (it == refCounter.end())
            refCounter[lp] = 1;
        else
            it->second += 1;
    }

    void addReferences(const std::vector<LayerPin>& pins)
    {
        for (int i = 0; i < pins.size(); i++)
        {
            addReference(pins[i]);
        }
    }

    // Returns number of references to allocated memory that used in specific
    // layer blob.
    int numReferences(const LayerPin& lp)
    {
        std::map<LayerPin, LayerPin>::iterator mapIt = reuseMap.find(lp);
        CV_Assert(mapIt != reuseMap.end());
        LayerPin memHost = mapIt->second;

        std::map<LayerPin, int>::iterator refIt = refCounter.find(memHost);
        CV_Assert(refIt != refCounter.end());
        return refIt->second;
    }

    // Reuse data allocated in <host> inside the <user> blob.
    void reuse(const LayerPin& host, const LayerPin& user)
    {
        CV_Assert(reuseMap.find(user) == reuseMap.end());
        CV_Assert(reuseMap.find(host) != reuseMap.end());
        LayerPin memHost = reuseMap[host];
        reuseMap[user] = memHost;
        if (refCounter.find(memHost) != refCounter.end())
        {
            std::map<LayerPin, int>::iterator userRefIt = refCounter.find(user);
            if (userRefIt != refCounter.end())
            {
                refCounter[memHost] += userRefIt->second;
                refCounter.erase(userRefIt);
            }
            else
                refCounter[memHost] += 1;
        }
    }

    // Decrease references counter to allocated memory inside specific blob.
    void releaseReference(const LayerPin& lp)
    {
        std::map<LayerPin, LayerPin>::iterator mapIt = reuseMap.find(lp);
        CV_Assert(mapIt != reuseMap.end());

        std::map<LayerPin, int>::iterator refIt = refCounter.find(mapIt->second);
        CV_Assert(refIt != refCounter.end());
        CV_Assert(refIt->second > 0);
        refIt->second -= 1;
    }

    void releaseReferences(const std::vector<LayerPin>& pins)
    {
        for (int i = 0; i < pins.size(); i++)
        {
            releaseReference(pins[i]);
        }
    }

360
    void reuseOrCreate(const MatShape& shape, const LayerPin& lp, Mat& dst, bool force)
361 362 363
    {
        Mat bestBlob;
        LayerPin bestBlobPin;
364 365

        if( !force )
366
        {
367 368 369 370 371 372 373
            std::map<LayerPin, Mat>::iterator hostIt;
            std::map<LayerPin, int>::iterator refIt;

            const int targetTotal = total(shape);
            int bestBlobTotal = INT_MAX;

            for (hostIt = memHosts.begin(); hostIt != memHosts.end(); ++hostIt)
374
            {
375 376 377 378
                refIt = refCounter.find(hostIt->first);
                // Use only blobs that had references before because if not,
                // it might be used as output.
                if (refIt != refCounter.end() && refIt->second == 0)
379
                {
380 381 382 383 384 385 386 387
                    Mat& unusedBlob = hostIt->second;
                    if (unusedBlob.total() >= targetTotal &&
                        unusedBlob.total() < bestBlobTotal)
                    {
                        bestBlobPin = hostIt->first;
                        bestBlob = unusedBlob;
                        bestBlobTotal = unusedBlob.total();
                    }
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
                }
            }
        }
        if (!bestBlob.empty())
        {
            reuse(bestBlobPin, lp);
            dst = Mat(shape, CV_32F, bestBlob.data);
        }
        else
        {
            // if dst already has been allocated with total(shape) elements,
            // it won't be recrreated and pointer of dst.data remains the same.
            dst.create(shape, CV_32F);
            addHost(lp, dst);
        }
    }

405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
    void reuseOrCreate(const MatShape& shape, const LayerPin& lp, UMat &umat_dst, bool force)
    {
        UMat bestBlob;
        LayerPin bestBlobPin;

        if( !force )
        {
            std::map<LayerPin, UMat>::iterator hostIt;
            std::map<LayerPin, int>::iterator refIt;

            const int targetTotal = total(shape);
            int bestBlobTotal = INT_MAX;

            for (hostIt = umat_memHosts.begin(); hostIt != umat_memHosts.end(); ++hostIt)
            {
                refIt = refCounter.find(hostIt->first);
                // Use only blobs that had references before because if not,
                // it might be used as output.
                if (refIt != refCounter.end() && refIt->second == 0)
                {
                    UMat& unusedBlob = hostIt->second;
                    if (unusedBlob.total() >= targetTotal &&
                        unusedBlob.total() < bestBlobTotal)
                    {
                        bestBlobPin = hostIt->first;
                        bestBlob = unusedBlob;
                        bestBlobTotal = unusedBlob.total();
                    }
                }
            }
        }
        if (!bestBlob.empty())
        {
            reuse(bestBlobPin, lp);
            umat_dst.create(shape, CV_32F);
        }
        else
        {
            // if dst already has been allocated with total(shape) elements,
            // it won't be recrreated and pointer of dst.data remains the same.
            umat_dst.create(shape, CV_32F);
            addHost(lp, umat_dst);
        }
    }

450
    void allocateBlobsForLayer(LayerData &ld, const LayerShapes& layerShapes,
451 452
                               std::vector<LayerPin>& pinsForInternalBlobs,
                               bool maximizeReuse)
453
    {
454
        CV_TRACE_FUNCTION();
455 456
        bool use_umat = (preferableBackend == DNN_BACKEND_DEFAULT &&
                         preferableTarget == DNN_TARGET_OPENCL);
457

458 459 460 461 462
        pinsForInternalBlobs.clear();

        std::vector<Mat>& outputBlobs = ld.outputBlobs,
                &internalBlobs = ld.internals;

463 464 465
        std::vector<UMat>& umat_outputBlobs = ld.umat_outputBlobs,
                &umat_internalBlobs = ld.umat_internals;

466 467 468 469 470
        const ShapesVec& outShapes = layerShapes.out,
                internalShapes = layerShapes.internal;

        outputBlobs.resize(std::max((size_t)1, outShapes.size())); //layer produce at least one output blob
        internalBlobs.resize(internalShapes.size());
471 472 473 474 475
        if (use_umat)
        {
            umat_outputBlobs.resize(std::max((size_t)1, outShapes.size()));
            umat_internalBlobs.resize(internalShapes.size());
        }
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494

        CV_Assert(ld.requiredOutputs.size() <= outShapes.size());

        // Check that layer could work in-place.
        bool inPlace = false;
        if (layerShapes.supportInPlace)
        {
            if (ld.inputBlobs.size() == 1)
            {
                // Get number of references to the input memory.
                int numRef = numReferences(ld.inputBlobsId[0]);
                // If current layer is one and only customer of this blob.
                inPlace = numRef == 1;
            }
        }

        ShapesVec shapes(outShapes);
        shapes.insert(shapes.end(), internalShapes.begin(), internalShapes.end());
        std::vector<Mat*> blobs;
495
        std::vector<UMat*> umat_blobs;
496 497 498
        for(int i = 0; i < outputBlobs.size(); i++)
        {
            blobs.push_back(&outputBlobs[i]);
499 500
            if (use_umat)
                umat_blobs.push_back(&umat_outputBlobs[i]);
501 502 503 504 505
        }

        for(int i = 0; i < internalBlobs.size(); i++)
        {
            blobs.push_back(&internalBlobs[i]);
506 507
            if (use_umat)
                umat_blobs.push_back(&umat_internalBlobs[i]);
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
            if (total(internalShapes[i]))
            {
                pinsForInternalBlobs.push_back(LayerPin(ld.id, ld.outputBlobs.size() + i));
            }
        }

        addReferences(pinsForInternalBlobs);

        std::map<int, std::vector<int> > idxSizes;
        for(int i = 0; i < shapes.size(); i++)
        {
            idxSizes[total(shapes[i])].push_back(i);
        }

        std::map<int, std::vector<int> >::reverse_iterator it;
523
        bool force = !maximizeReuse && ld.inputBlobsId.size() > 1;
524 525 526 527 528 529 530 531
        for(it = idxSizes.rbegin(); it != idxSizes.rend(); it++)
        {
            for(int j = 0; j < it->second.size(); j++)
            {
                int index = it->second[j];
                if (total(shapes[index]))
                {
                    LayerPin blobPin(ld.id, index);
532
                    if (index < outShapes.size() && inPlace && !force)
533
                    {
534 535 536 537 538 539 540 541 542 543 544 545
                        if (use_umat)
                        {
                            CV_Assert(ld.umat_inputBlobs[0].total() == total(shapes[index]));
                            ld.umat_outputBlobs[index] =
                                ld.umat_inputBlobs[0].reshape(1, shapes[index].size(),
                                                              &shapes[index][0]);
                        }
                        else
                        {
                            CV_Assert(ld.inputBlobs[0]->total() == total(shapes[index]));
                            ld.outputBlobs[index] = ld.inputBlobs[0]->reshape(1, shapes[index]);
                        }
546 547 548 549
                        reuse(ld.inputBlobsId[0], blobPin);
                    }
                    else
                    {
550 551 552 553
                        if (use_umat)
                            reuseOrCreate(shapes[index], blobPin, *umat_blobs[index], force);
                        else
                            reuseOrCreate(shapes[index], blobPin, *blobs[index], force);
554 555 556 557 558 559 560 561 562
                    }
                }
            }
        }
    }

    // Clear internal state. Calls before an every reallocation.
    void reset()
    {
563 564
        CV_TRACE_FUNCTION();

565 566 567
        refCounter.clear();
        reuseMap.clear();
        memHosts.clear();
568 569 570 571 572 573 574 575 576 577 578 579 580
        umat_memHosts.clear();
        preferableTarget = DNN_TARGET_CPU;
        preferableBackend = DNN_BACKEND_DEFAULT;
    }

    void setPreferableTarget(int targetId)
    {
        preferableTarget = targetId;
    }

    void setPreferableBackend(int backendId)
    {
        preferableBackend = backendId;
581 582 583 584 585 586 587 588 589 590 591
    }

private:
    // Register allocated memory.
    void addHost(const LayerPin& lp, const Mat& mat)
    {
        CV_Assert(memHosts.find(lp) == memHosts.end());
        reuseMap[lp] = lp;
        memHosts[lp] = mat;
    }

592 593 594 595 596 597 598
    void addHost(const LayerPin& lp, const UMat& umat)
    {
        CV_Assert(umat_memHosts.find(lp) == umat_memHosts.end());
        reuseMap[lp] = lp;
        umat_memHosts[lp] = umat;
    }

599 600 601 602 603
    std::map<LayerPin, int> refCounter;
    // Maps pin to origin blob (for whom memory was allocated firstly).
    // For origin blobs key == value.
    std::map<LayerPin, LayerPin> reuseMap;
    std::map<LayerPin, Mat> memHosts;
604 605 606
    std::map<LayerPin, UMat> umat_memHosts;
    int preferableTarget;
    int preferableBackend;
607 608
};

609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
static Ptr<BackendWrapper> wrapMat(int backendId, int targetId, const cv::Mat& m)
{
    if (backendId == DNN_BACKEND_DEFAULT)
    {
        return Ptr<BackendWrapper>();
    }
    else if (backendId == DNN_BACKEND_HALIDE)
    {
        CV_Assert(haveHalide());
#ifdef HAVE_HALIDE
        return Ptr<BackendWrapper>(new HalideBackendWrapper(targetId, m));
#endif  // HAVE_HALIDE
    }
    else
        CV_Error(Error::StsNotImplemented, "Unknown backend identifier");
    return Ptr<BackendWrapper>();
}

627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
struct Net::Impl
{
    typedef std::map<int, LayerShapes> LayersShapesMap;
    typedef std::map<int, LayerData> MapIdToLayerData;

    Impl()
    {
        //allocate fake net input layer
        netInputLayer = Ptr<DataLayer>(new DataLayer());
        LayerData &inpl = layers.insert( make_pair(0, LayerData()) ).first->second;
        inpl.id = 0;
        inpl.name = "_input";
        inpl.type = "__NetInputLayer__";
        inpl.layerInstance = netInputLayer;
        layerNameToId.insert(std::make_pair(inpl.name, inpl.id));

643
        lastLayerId = 0;
644
        netWasAllocated = false;
645
        fusion = true;
646 647 648 649 650 651 652 653 654 655 656 657 658
        preferableBackend = DNN_BACKEND_DEFAULT;
        preferableTarget = DNN_TARGET_CPU;
    }

    Ptr<DataLayer> netInputLayer;
    std::vector<int> netOutputs;
    std::vector<LayerPin> blobsToKeep;
    MapIdToLayerData layers;
    std::map<String, int> layerNameToId;
    BlobManager blobManager;
    int preferableBackend;
    int preferableTarget;
    String halideConfigFile;
659 660
    // Map host data to backend specific wrapper.
    std::map<void*, Ptr<BackendWrapper> > backendWrappers;
661 662 663 664

    int lastLayerId;

    bool netWasAllocated;
665
    bool fusion;
666
    std::vector<int64> layersTimings;
667

668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
    Ptr<BackendWrapper> wrap(const Mat& host)
    {
        if (preferableBackend == DNN_BACKEND_DEFAULT)
            return Ptr<BackendWrapper>();

        MatShape shape(host.dims);
        for (int i = 0; i < host.dims; ++i)
            shape[i] = host.size[i];

        void* data = host.data;
        if (backendWrappers.find(data) != backendWrappers.end())
        {
            Ptr<BackendWrapper> baseBuffer = backendWrappers[data];
            if (preferableBackend == DNN_BACKEND_HALIDE)
            {
                CV_Assert(haveHalide());
  #ifdef HAVE_HALIDE
                return Ptr<BackendWrapper>(new HalideBackendWrapper(baseBuffer, shape));
  #endif  // HAVE_HALIDE
            }
            else
                CV_Error(Error::StsNotImplemented, "Unknown backend identifier");
        }

        Ptr<BackendWrapper> wrapper = wrapMat(preferableBackend, preferableTarget, host);
        backendWrappers[data] = wrapper;
        return wrapper;
    }

697
#ifdef HAVE_HALIDE
698 699
    void compileHalide()
    {
700 701
        CV_TRACE_FUNCTION();

702 703 704
        CV_Assert(preferableBackend == DNN_BACKEND_HALIDE);

        HalideScheduler scheduler(halideConfigFile);
705 706
        std::vector< std::reference_wrapper<LayerData> > compileList; compileList.reserve(64);
        for (MapIdToLayerData::iterator it = layers.begin(); it != layers.end(); ++it)
707 708 709 710 711 712 713 714 715 716 717 718 719 720
        {
            LayerData &ld = it->second;
            Ptr<Layer> layer = ld.layerInstance;
            if (layer->supportBackend(DNN_BACKEND_HALIDE) && !ld.skipFlags[DNN_BACKEND_HALIDE])
            {
                CV_Assert(!ld.backendNodes[DNN_BACKEND_HALIDE].empty());
                bool scheduled = scheduler.process(ld.backendNodes[DNN_BACKEND_HALIDE]);
                if (!scheduled)
                {
                    // Use automatic scheduling provided by layer.
                    layer->applyHalideScheduler(ld.backendNodes[DNN_BACKEND_HALIDE],
                                                ld.inputBlobs, ld.outputBlobs,
                                                preferableTarget);
                }
721
                compileList.emplace_back(ld);
722 723
            }
        }
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
        std::atomic<int> progress(0);
        auto fn = ([&] () -> void
        {
            for (;;)
            {
                int id = progress.fetch_add(1);
                if ((size_t)id >= compileList.size())
                    return;
                const LayerData& ld = compileList[id].get();
                Ptr<BackendNode> node = ld.backendNodes.find(DNN_BACKEND_HALIDE)->second;
                dnn::compileHalide(ld.outputBlobs, node, preferableTarget);
            }
        });
        size_t num_threads = std::min(compileList.size(), (size_t)std::thread::hardware_concurrency());
        num_threads = std::max((size_t)1u, std::min((size_t)8u, num_threads));
        std::vector<std::thread> threads(num_threads - 1);
        for (auto& t: threads) t = std::thread(fn);
        fn(); // process own tasks
        for (auto& t: threads) t.join();
743
    }
744
#endif
745 746 747

    void clear()
    {
748 749
        CV_TRACE_FUNCTION();

750 751 752 753
        MapIdToLayerData::iterator it;
        for (it = layers.begin(); it != layers.end(); it++)
        {
            if (it->second.id != 0) {
754
                it->second.inputBlobs.clear();
755 756
                it->second.outputBlobs.clear();
                it->second.internals.clear();
757 758 759
                it->second.umat_inputBlobs.clear();
                it->second.umat_outputBlobs.clear();
                it->second.umat_internals.clear();
760 761
            }
            it->second.skipFlags.clear();
762 763
            //it->second.consumers.clear();
            Ptr<Layer> currLayer = it->second.layerInstance;
764

765 766 767
            if( currLayer.empty() )
                continue;

768
            currLayer->unsetAttached();
769

770
            Ptr<PoolingLayer> poolingLayer = currLayer.dynamicCast<PoolingLayer>();
771 772 773 774 775
            if( !poolingLayer.empty() )
            {
                poolingLayer->computeMaxIdx = true;
            }
        }
776 777 778
        it = layers.find(0);
        CV_Assert(it != layers.end());
        it->second.skipFlags[DNN_BACKEND_DEFAULT] = true;
779 780

        layersTimings.clear();
781 782 783 784
    }

    void setUpNet(const std::vector<LayerPin>& blobsToKeep_ = std::vector<LayerPin>())
    {
785 786
        CV_TRACE_FUNCTION();

787 788 789 790 791 792 793 794 795 796
        if (!netWasAllocated || this->blobsToKeep != blobsToKeep_)
        {
            clear();

            allocateLayers(blobsToKeep_);
            computeNetOutputLayers();
            initBackend();

            if (!netWasAllocated )
            {
797
#ifdef HAVE_HALIDE
798 799
                if (preferableBackend == DNN_BACKEND_HALIDE)
                    compileHalide();
800 801 802
#else
                CV_Assert(preferableBackend != DNN_BACKEND_HALIDE);
#endif
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
            }

            netWasAllocated = true;
            this->blobsToKeep = blobsToKeep_;
        }
    }

    int getLayerId(const String &layerName)
    {
        std::map<String, int>::iterator it = layerNameToId.find(layerName);
        return (it != layerNameToId.end()) ? it->second : -1;
    }

    int getLayerId(int id)
    {
        MapIdToLayerData::iterator it = layers.find(id);
        return (it != layers.end()) ? id : -1;
    }

    int getLayerId(DictValue &layerDesc)
    {
        if (layerDesc.isInt())
            return getLayerId(layerDesc.get<int>());
        else if (layerDesc.isString())
            return getLayerId(layerDesc.get<String>());

        CV_Assert(layerDesc.isInt() || layerDesc.isString());
        return -1;
    }

    String getLayerName(int id)
    {
        MapIdToLayerData::iterator it = layers.find(id);
        return (it != layers.end()) ? it->second.name : "(unknown layer)";
    }

    LayerData& getLayerData(int id)
    {
        MapIdToLayerData::iterator it = layers.find(id);

        if (it == layers.end())
            CV_Error(Error::StsObjectNotFound, format("Layer with requested id=%d not found", id));

        return it->second;
    }

    LayerData& getLayerData(const String &layerName)
    {
        int id = getLayerId(layerName);

        if (id < 0)
            CV_Error(Error::StsError, "Requsted layer \"" + layerName + "\" not found");

        return getLayerData(id);
    }

    LayerData& getLayerData(const DictValue &layerDesc)
    {
861
        CV_Assert(layerDesc.isInt() || layerDesc.isString());
862 863
        if (layerDesc.isInt())
            return getLayerData(layerDesc.get<int>());
864
        else /*if (layerDesc.isString())*/
865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
            return getLayerData(layerDesc.get<String>());
    }

    static void addLayerInput(LayerData &ld, int inNum, LayerPin from)
    {
        if ((int)ld.inputBlobsId.size() <= inNum)
        {
            ld.inputBlobsId.resize(inNum + 1);
        }
        else
        {
            LayerPin storedFrom = ld.inputBlobsId[inNum];
            if (storedFrom.valid() && !storedFrom.equal(from))
                CV_Error(Error::StsError, "Input #" + toString(inNum) + "of layer \"" + ld.name + "\" already was connected");
        }

        ld.inputBlobsId[inNum] = from;
    }

    static void splitPin(const String &pinAlias, String &layerName, String &outName)
    {
        size_t delimPos = pinAlias.find('.');
        layerName = pinAlias.substr(0, delimPos);
        outName = (delimPos == String::npos) ? String() : pinAlias.substr(delimPos + 1);
    }

    int resolvePinOutputName(LayerData &ld, const String &outName)
    {
        if (outName.empty())
            return 0;

        if (std::isdigit(outName[0]))
        {
            char *lastChar;
            long inum = std::strtol(outName.c_str(), &lastChar, 10);

            if (*lastChar == 0)
            {
                CV_Assert(inum == (int)inum);
                return (int)inum;
            }
        }

        return ld.getLayerInstance()->outputNameToIndex(outName);
    }

    LayerPin getPinByAlias(const String &pinAlias)
    {
        LayerPin pin;
        String layerName, outName;
        splitPin(pinAlias, layerName, outName);

        pin.lid = (layerName.empty()) ? 0 : getLayerId(layerName);

        if (pin.lid >= 0)
            pin.oid = resolvePinOutputName(getLayerData(pin.lid), outName);

        return pin;
    }

    std::vector<LayerPin> getLayerOutPins(const String &pinAlias)
    {
        String layerName, outName;
        splitPin(pinAlias, layerName, outName);

        int lid = (layerName.empty()) ? 0 : getLayerId(layerName);

        std::vector<LayerPin> pins;

        for (int i = 0; i < layers[lid].outputBlobs.size(); i++)
        {
            pins.push_back(LayerPin(lid, i));
        }

        return pins;
    }

    void connect(int outLayerId, int outNum, int inLayerId, int inNum)
    {
        CV_Assert(outLayerId < inLayerId);
        LayerData &ldOut = getLayerData(outLayerId);
        LayerData &ldInp = getLayerData(inLayerId);

        addLayerInput(ldInp, inNum, LayerPin(outLayerId, outNum));
        ldOut.requiredOutputs.insert(outNum);
        ldOut.consumers.push_back(LayerPin(inLayerId, outNum));
    }

    void computeNetOutputLayers()
    {
955 956
        CV_TRACE_FUNCTION();

957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
        netOutputs.clear();

        MapIdToLayerData::iterator it;
        for (it = layers.begin(); it != layers.end(); it++)
        {
            int lid = it->first;
            LayerData &ld = it->second;

            if (ld.requiredOutputs.size() == 0)
                netOutputs.push_back(lid);
        }

        #ifndef NDEBUG
        std::cout << "\nNet Outputs(" << netOutputs.size() << "):\n";
        for (size_t i = 0; i < netOutputs.size(); i++)
            std::cout << layers[netOutputs[i]].name << "\n";
        #endif
    }

    void initBackend()
    {
978 979
        CV_TRACE_FUNCTION();

980 981
        if (preferableBackend == DNN_BACKEND_DEFAULT)
        {
982
            CV_Assert(preferableTarget == DNN_TARGET_CPU || preferableTarget == DNN_TARGET_OPENCL);
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
            return;
        }

        // Iterator to current layer.
        MapIdToLayerData::iterator it = layers.begin();
        // Iterator to base layer for fusion. In example, in case of conv+bn+relu
        // it'll be a conv layer.
        MapIdToLayerData::iterator baseIt = layers.begin();
        for (; it != layers.end(); it++)
        {
            LayerData &ldTop = it->second;
            Ptr<Layer> layerTop = ldTop.layerInstance;
            if (!layerTop->supportBackend(preferableBackend))
            {
                // Move base iterator to layer that don't support preferable
                // backend to prevent fusion over layer of different backend.
                baseIt = it;
                continue;
            }
            // Try to do layers fusion.
            LayerData &ldBot = baseIt->second;
            Ptr<Layer> layerBot = ldBot.layerInstance;
            // 1. Check that bottom and top from the same backends.
            if (it != layers.begin() && layerBot->supportBackend(preferableBackend))
            {
                // 2. Check that current layer works in-place.
                bool inPlace = ldTop.inputBlobs.size() == 1 &&
                               ldBot.outputBlobs.size() == 1 &&
                               ldTop.inputBlobs[0]->data ==
                               ldBot.outputBlobs[0].data;
                if (inPlace)
                {
                    // 3. Try to attach node.
                    CV_Assert(!ldBot.backendNodes[preferableBackend].empty());
                    Ptr<BackendNode> fusedNode =
                        layerTop->tryAttach(ldBot.backendNodes[preferableBackend]);
                    if (!fusedNode.empty())
                    {
                        ldTop.skipFlags[preferableBackend] = true;
                        ldBot.backendNodes[preferableBackend] = fusedNode;
                        continue;
                    }
                }
            }
            // No layers fusion.
            ldTop.skipFlags[preferableBackend] = false;
            if (preferableBackend == DNN_BACKEND_HALIDE)
            {
1031 1032
                ldTop.backendNodes[DNN_BACKEND_HALIDE] =
                    layerTop->initHalide(ldTop.inputBlobsWrappers);
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
                baseIt = it;
            }
            else
            {
                CV_Error(Error::StsNotImplemented, "Unknown backend identifier");
            }
        }
    }

    void allocateLayer(int lid, const LayersShapesMap& layersShapes)
    {
1044 1045
        CV_TRACE_FUNCTION();

1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
        LayerData &ld = layers[lid];

        //already allocated
        if (ld.flag)
            return;

        size_t ninputs = ld.inputBlobsId.size();
#if 0
        printf("layer %s:", ld.name.c_str());
        for (size_t i = 0; i < ninputs; i++)
        {
            int inp_lid = ld.inputBlobsId[i].lid;
            LayerData &inp_ld = layers[inp_lid];
            int inp_outputs = (int)inp_ld.outputBlobs.size();
            std::cout << " " << inp_ld.name << "(" << inp_outputs;

            for( int j = 0; j < inp_outputs; j++ )
            {
                std::cout << (j == 0 ? ": " : ", ") << inp_ld.outputBlobs[j].size;
            }
            std::cout << ")";
        }
        printf("\n");
#endif

        //determine parent layers
        for (size_t i = 0; i < ninputs; i++)
            ld.inputLayersId.insert(ld.inputBlobsId[i].lid);

        //allocate parents
        for (set<int>::iterator i = ld.inputLayersId.begin(); i != ld.inputLayersId.end(); i++)
            allocateLayer(*i, layersShapes);

        //bind inputs
1080 1081
        bool use_umat = (preferableBackend == DNN_BACKEND_DEFAULT &&
                         preferableTarget == DNN_TARGET_OPENCL);
1082
        ld.inputBlobs.resize(ninputs);
1083 1084
        if (use_umat)
            ld.umat_inputBlobs.resize(ninputs);
1085
        ld.inputBlobsWrappers.resize(ninputs);
1086 1087 1088 1089 1090 1091
        for (size_t i = 0; i < ninputs; i++)
        {
            LayerPin from = ld.inputBlobsId[i];
            CV_Assert(from.valid());
            CV_DbgAssert(layers.count(from.lid) && (int)layers[from.lid].outputBlobs.size() > from.oid);
            ld.inputBlobs[i] = &layers[from.lid].outputBlobs[from.oid];
1092 1093
            if (use_umat)
                ld.umat_inputBlobs[i] = layers[from.lid].umat_outputBlobs[from.oid];
1094
            ld.inputBlobsWrappers[i] = layers[from.lid].outputBlobsWrappers[from.oid];
1095 1096 1097 1098 1099 1100 1101
        }

        LayersShapesMap::const_iterator layerShapesIt = layersShapes.find(lid);

        CV_Assert(layerShapesIt != layersShapes.end());

        std::vector<LayerPin> pinsForInternalBlobs;
1102 1103
        bool maximizeReuse = preferableBackend == DNN_BACKEND_HALIDE;
        blobManager.allocateBlobsForLayer(ld, layerShapesIt->second, pinsForInternalBlobs, maximizeReuse);
1104 1105 1106 1107 1108
        ld.outputBlobsWrappers.resize(ld.outputBlobs.size());
        for (int i = 0; i < ld.outputBlobs.size(); ++i)
        {
            ld.outputBlobsWrappers[i] = wrap(ld.outputBlobs[i]);
        }
1109 1110 1111

        Ptr<Layer> layerPtr = ld.getLayerInstance();
        {
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
            if (use_umat)
            {
                std::vector<Mat*> inputs(ld.umat_inputBlobs.size());;
                std::vector<Mat> outputs(ld.umat_outputBlobs.size());
                Mat mat;
                for (int i = 0; i < inputs.size(); i++)
                {
                    mat = ld.umat_inputBlobs[i].getMat(ACCESS_READ);
                    inputs[i] = &mat;
                }
                for (int i = 0; i < outputs.size(); i++)
                {
                    outputs[i] = ld.umat_outputBlobs[i].getMat(ACCESS_READ);
                }
                layerPtr->finalize(inputs, outputs);
            }
            else
            {
                layerPtr->finalize(ld.inputBlobs, ld.outputBlobs);
            }
1132
            layerPtr->preferableTarget = preferableTarget;
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
#if 0
            std::cout << "\toutputs:";
            size_t noutputs = ld.outputBlobs.size();
            for (size_t j = 0; j < noutputs; j++)
            {
                std::cout << (j == 0 ? " " : ", ") << ld.outputBlobs[j].size;
            }
            std::cout << "\n";
#endif
        }

        // After allocation of layer, we decrease counters to it's input blobs.
        blobManager.releaseReferences(ld.inputBlobsId);
        blobManager.releaseReferences(pinsForInternalBlobs);

        ld.flag = 1;
    }

1151 1152 1153 1154 1155 1156
#if 0
#define printf_(args) printf args
#else
#define printf_(args)
#endif

1157 1158
    void fuseLayers(const std::vector<LayerPin>& blobsToKeep_)
    {
1159
        if( !fusion || preferableBackend != DNN_BACKEND_DEFAULT)
1160 1161
            return;

1162 1163
        CV_TRACE_FUNCTION();

1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
        // scan through all the layers. If there is convolution layer followed by the activation layer,
        // we try to embed this activation into the convolution and disable separate execution of the activation
        std::vector<String> outnames;
        std::set<LayerPin> pinsToKeep(blobsToKeep_.begin(),
                                      blobsToKeep_.end());
        MapIdToLayerData::iterator it;
        for (it = layers.begin(); it != layers.end(); it++)
        {
            int lid = it->first;
            LayerData& ld = layers[lid];
            if( ld.skipFlags[DNN_BACKEND_DEFAULT] )
            {
1176
                printf_(("skipped %s: %s\n", ld.layerInstance->name.c_str(), ld.layerInstance->type.c_str()));
1177 1178
                continue;
            }
1179
            printf_(("analyzing %s: %s\n", ld.layerInstance->name.c_str(), ld.layerInstance->type.c_str()));
1180 1181
            if( ld.consumers.size() == 0 )
                outnames.push_back(ld.layerInstance->name);
1182

1183 1184 1185 1186
            // the optimization #1. try to fuse batch norm, scaling and/or activation layers
            // with the current layer if they follow it. Normally, the are fused with the convolution layer,
            // but some of them (like activation) may be fused with fully-connected, elemwise (+) and
            // some other layers.
1187 1188 1189 1190 1191

            // TODO: OpenCL target support more fusion styles.
            if ( preferableTarget == DNN_TARGET_OPENCL && ld.layerInstance->type.compare("Convolution") )
                continue;

1192 1193
            Ptr<Layer>& currLayer = ld.layerInstance;
            if( ld.consumers.size() == 1 && pinsToKeep.count(LayerPin(lid, 0)) == 0 )
1194 1195 1196 1197 1198 1199 1200 1201 1202
            {
                LayerData* nextData = &layers[ld.consumers[0].lid];
                Ptr<BatchNormLayer> nextBNormLayer =
                    nextData->layerInstance.dynamicCast<BatchNormLayer>();
                LayerPin lpNext(ld.consumers[0].lid, 0);
                if( !nextBNormLayer.empty() && pinsToKeep.count(lpNext) == 0 )
                {
                    LayerData* bnormData = nextData;
                    nextData = 0;
1203
                    if( currLayer->setBatchNorm(nextBNormLayer) )
1204
                    {
1205
                        printf_(("\tfused with %s\n", nextBNormLayer->name.c_str()));
1206 1207 1208
                        bnormData->skipFlags[DNN_BACKEND_DEFAULT] = true;
                        ld.outputBlobs = layers[lpNext.lid].outputBlobs;
                        if( bnormData->consumers.size() == 1 )
1209
                        {
1210
                            nextData = &layers[bnormData->consumers[0].lid];
1211 1212
                            lpNext = LayerPin(bnormData->consumers[0].lid, 0);
                        }
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
                    }
                }

                Ptr<ScaleLayer> nextScaleLayer;
                if( nextData )
                    nextScaleLayer = nextData->layerInstance.dynamicCast<ScaleLayer>();
                if( !nextScaleLayer.empty() && pinsToKeep.count(lpNext) == 0 )
                {
                    LayerData* scaleData = nextData;
                    nextData = 0;
                    if( currLayer->setScale(nextScaleLayer) )
                    {
                        printf_(("\tfused with %s\n", nextScaleLayer->name.c_str()));
                        scaleData->skipFlags[DNN_BACKEND_DEFAULT] = true;
                        ld.outputBlobs = layers[lpNext.lid].outputBlobs;
                        if( scaleData->consumers.size() == 1 )
1229
                        {
1230
                            nextData = &layers[scaleData->consumers[0].lid];
1231 1232
                            lpNext = LayerPin(scaleData->consumers[0].lid, 0);
                        }
1233 1234 1235
                    }
                }

1236 1237 1238 1239 1240 1241
                // For now,  OpenCL target only support fusion with activation of ReLU/ChannelsPReLU
                if ( preferableTarget != DNN_TARGET_OPENCL ||
                        (preferableTarget == DNN_TARGET_OPENCL &&
                         nextData &&
                        (!nextData->type.compare("ReLU") ||
                         !nextData->type.compare("ChannelsPReLU"))) )
1242
                {
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256

                    Ptr<ActivationLayer> nextActivLayer;

                    if( nextData )
                        nextActivLayer = nextData->layerInstance.dynamicCast<ActivationLayer>();

                    if( !nextActivLayer.empty() && pinsToKeep.count(lpNext) == 0
                            && currLayer->setActivation(nextActivLayer) )
                    {
                        LayerData *activData = nextData;
                        printf_(("\tfused with %s\n", nextActivLayer->name.c_str()));
                        activData->skipFlags[DNN_BACKEND_DEFAULT] = true;
                        ld.outputBlobs = layers[lpNext.lid].outputBlobs;
                    }
1257 1258
                }
            }
1259 1260 1261 1262 1263

            // the optimization #2. if there is no layer that takes max pooling layer's computed
            // max indices (and only some semantical segmentation networks might need this;
            // many others only take the maximum values), then we switch the max pooling
            // layer to the faster operating mode.
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
            Ptr<PoolingLayer> poolingLayer = ld.layerInstance.dynamicCast<PoolingLayer>();
            if( !poolingLayer.empty() && !ld.consumers.empty() )
            {
                size_t i = 0, nconsumers = ld.consumers.size();
                for( ; i < nconsumers; i++ )
                    if( ld.consumers[i].oid > 0 )
                        break;
                // if there is no layer that takes the second output pin of the pooling layer
                // on input then we don't need to compute the indices
                if( i >= nconsumers )
1274
                {
1275
                    poolingLayer->computeMaxIdx = false;
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
                    printf_(("\tsimplified pooling layer %s\n", poolingLayer->name.c_str()));
                }
            }

            // the optimization #3. if there is concat layer that concatenates channels
            // from the inputs together (i.e. axis == 1) then we make the inputs of
            // the concat layer to write to the concatetion output buffer
            // (and so we eliminate the concatenation layer, because the channels
            // are concatenated implicitly).
            Ptr<ConcatLayer> concatLayer = ld.layerInstance.dynamicCast<ConcatLayer>();
1286
            if( !concatLayer.empty() && concatLayer->axis == 1 && !concatLayer->padding &&
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
                ld.outputBlobs.size() == 1 )
            {
                Mat& output = ld.outputBlobs[0];

                // TODO: in general, this optimization can always be done, but
                // many layers currently check that the input/output blobs are
                // continuous arrays. Unfortunately, this is not true when
                // the concatenation optimization is applied with batch_size > 1.
                // so, for now, we only apply this optimization in the most popular
                // case batch_size == 1.
                if( output.dims == 4 && output.size[0] == 1 )
                {
                    size_t i, ninputs = ld.inputBlobsId.size();
                    std::vector<LayerPin> realinputs(ninputs);
                    for( i = 0; i < ninputs; i++ )
                    {
                        LayerPin pin = ld.inputBlobsId[i];
                        LayerData* inp_i_data = &layers[pin.lid];
                        while(inp_i_data->skipFlags[DNN_BACKEND_DEFAULT] &&
                              inp_i_data->inputBlobsId.size() == 1)
                        {
                            pin = inp_i_data->inputBlobsId[0];
                            inp_i_data = &layers[pin.lid];
                        }
                        printf_(("\treal input for %s is %s\n",
                               layers[ld.inputBlobsId[i].lid].getLayerInstance()->name.c_str(),
                               inp_i_data->getLayerInstance()->name.c_str()));

                        if(inp_i_data->skipFlags[DNN_BACKEND_DEFAULT])
                            break;
                        realinputs[i] = pin;
                    }

                    if( i >= ninputs )
                    {
                        Range chrange[] = { Range::all(), Range::all(), Range::all(), Range::all() };
                        int ofs = 0;
                        for( i = 0; i < ninputs; i++ )
                        {
                            LayerPin pin = realinputs[i];
                            LayerData* inp_i_data = &layers[pin.lid];
                            int channels_i = ld.inputBlobs[i]->size[1];
                            chrange[1] = Range(ofs, ofs + channels_i);
                            printf_(("\toutput %s(%d) to channels (%d, %d)\n", inp_i_data->layerInstance->name.c_str(),
                                   pin.oid, ofs, ofs + channels_i));
                            ofs += channels_i;
                            Mat output_slice = output(chrange);
                            Mat& curr_output = inp_i_data->outputBlobs[pin.oid];
                            CV_Assert(output_slice.isContinuous() && output_slice.size == curr_output.size);
                            curr_output = output_slice;
                        }
                        ld.skipFlags[DNN_BACKEND_DEFAULT] = true;
                        printf_(("\toptimized out Concat layer %s\n", concatLayer->name.c_str()));
                    }
1341
                }
1342 1343 1344 1345 1346 1347
            }
        }
    }

    void allocateLayers(const std::vector<LayerPin>& blobsToKeep_)
    {
1348 1349
        CV_TRACE_FUNCTION();

1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
        MapIdToLayerData::iterator it;
        for (it = layers.begin(); it != layers.end(); it++)
            it->second.flag = 0;

        CV_Assert(!layers[0].outputBlobs.empty());
        ShapesVec inputShapes;
        for(int i = 0; i < layers[0].outputBlobs.size(); i++)
        {
            CV_Assert(layers[0].outputBlobs[i].total());
            inputShapes.push_back(shape(layers[0].outputBlobs[i]));
        }
        LayersShapesMap layersShapes;
        getLayersShapes(inputShapes, layersShapes);

        blobManager.reset();
1365 1366
        blobManager.setPreferableTarget(preferableTarget);
        blobManager.setPreferableBackend(preferableBackend);
1367 1368
        backendWrappers.clear();
        blobManager.addReference(LayerPin(0, 0));
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
        for (it = layers.begin(); it != layers.end(); ++it)
        {
            const LayerData& ld = it->second;
            blobManager.addReferences(ld.inputBlobsId);
        }

        for (int i = 0; i < blobsToKeep_.size(); i++)
        {
            blobManager.addReference(blobsToKeep_[i]);
        }

        for (it = layers.begin(); it != layers.end(); it++)
        {
            int lid = it->first;
            allocateLayer(lid, layersShapes);
        }

1386
        layersTimings.resize(lastLayerId + 1, 0);
1387 1388 1389 1390 1391
        fuseLayers(blobsToKeep_);
    }

    void forwardLayer(LayerData &ld)
    {
1392 1393
        CV_TRACE_FUNCTION();

1394 1395
        Ptr<Layer> layer = ld.layerInstance;

1396 1397 1398
        TickMeter tm;
        tm.start();

1399 1400 1401 1402
        if (preferableBackend == DNN_BACKEND_DEFAULT ||
            !layer->supportBackend(preferableBackend))
        {
            if( !ld.skipFlags[DNN_BACKEND_DEFAULT] )
1403 1404 1405 1406 1407 1408
            {
                for (int i = 0, n = ld.inputBlobsWrappers.size(); i < n; ++i)
                {
                    if (!ld.inputBlobsWrappers[i].empty())
                        ld.inputBlobsWrappers[i]->copyToHost();
                }
1409 1410 1411 1412
                if (preferableBackend == DNN_BACKEND_DEFAULT && preferableTarget == DNN_TARGET_OPENCL)
                    layer->forward(ld.umat_inputBlobs, ld.umat_outputBlobs, ld.umat_internals);
                else
                    layer->forward(ld.inputBlobs, ld.outputBlobs, ld.internals);
1413 1414 1415 1416 1417 1418
                for (int i = 0, n = ld.outputBlobsWrappers.size(); i < n; ++i)
                {
                    if (!ld.outputBlobsWrappers[i].empty())
                        ld.outputBlobsWrappers[i]->setHostDirty();
                }
            }
1419 1420
            else
                tm.reset();
1421 1422 1423 1424 1425 1426
        }
        else if (!ld.skipFlags[preferableBackend])
        {
            Ptr<BackendNode> node = ld.backendNodes[preferableBackend];
            if (preferableBackend == DNN_BACKEND_HALIDE)
            {
1427
                forwardHalide(ld.outputBlobsWrappers, node);
1428 1429 1430 1431 1432 1433 1434
            }
            else
            {
                CV_Error(Error::StsNotImplemented, "Unknown backend identifier");
            }
        }

1435 1436 1437
        tm.stop();
        layersTimings[ld.id] = tm.getTimeTicks();

1438 1439 1440 1441 1442
        ld.flag = 1;
    }

    void forwardToLayer(LayerData &ld, bool clearFlags = true)
    {
1443 1444
        CV_TRACE_FUNCTION();

1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
        if (clearFlags)
        {
            MapIdToLayerData::iterator it;
            for (it = layers.begin(); it != layers.end(); it++)
                it->second.flag = 0;
        }

        //already was forwarded
        if (ld.flag)
            return;

        //forward parents
        MapIdToLayerData::iterator it;
1458
        for (it = layers.begin(); it != layers.end() && (it->second.id < ld.id); ++it)
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
        {
            LayerData &ld = it->second;
            if (ld.flag)
                continue;
            forwardLayer(ld);
        }

        //forward itself
        forwardLayer(ld);
    }

    void forwardAll()
    {
1472 1473
        CV_TRACE_FUNCTION();

1474 1475 1476
        MapIdToLayerData::reverse_iterator last_layer = layers.rbegin();
        CV_Assert(last_layer != layers.rend());
        forwardToLayer(last_layer->second, true);
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
    }

    void getLayerShapesRecursively(int id, LayersShapesMap& inOutShapes)
    {
        std::vector<LayerPin>& inputLayerIds = layers[id].inputBlobsId;

        if (inOutShapes[id].in.empty())
        {
            for(int i = 0; i < inputLayerIds.size(); i++)
            {
                int layerId = inputLayerIds[i].lid;
                LayersShapesMap::iterator it =
                        inOutShapes.find(layerId);
                if(it == inOutShapes.end() ||
                        it->second.out.empty())
                {
                    getLayerShapesRecursively(layerId, inOutShapes);
                }
                const MatShape& shape = inOutShapes[layerId].out[inputLayerIds[i].oid];
                inOutShapes[id].in.push_back(shape);
            }
        }
        const ShapesVec& is = inOutShapes[id].in;
        ShapesVec& os = inOutShapes[id].out;
        ShapesVec& ints = inOutShapes[id].internal;
        int requiredOutputs = layers[id].requiredOutputs.size();
        inOutShapes[id].supportInPlace =
                layers[id].getLayerInstance()->getMemoryShapes(is, requiredOutputs, os, ints);
    }

    void getLayersShapes(const ShapesVec& netInputShapes,
                         LayersShapesMap& inOutShapes)
    {
        inOutShapes.clear();

        inOutShapes[0].in = netInputShapes; //insert shape for first input layer
        for (MapIdToLayerData::iterator it = layers.begin();
             it != layers.end(); it++)
        {
            getLayerShapesRecursively(it->first, inOutShapes);
        }
    }

    void getLayerShapes(const ShapesVec& netInputShapes,
                        const int layerId,
                        LayerShapes& shapes)
    {
        LayersShapesMap inOutShapes;
        inOutShapes[0].in = netInputShapes; //insert shape for first input layer
        getLayerShapesRecursively(layerId, inOutShapes);
        shapes = inOutShapes[layerId];
    }

    LayerPin getLatestLayerPin(const std::vector<LayerPin>& pins)
    {
        return *std::max_element(pins.begin(), pins.end());
    }

    Mat getBlob(const LayerPin& pin)
    {
1537 1538
        CV_TRACE_FUNCTION();

1539 1540 1541 1542 1543 1544 1545 1546 1547
        if (!pin.valid())
            CV_Error(Error::StsObjectNotFound, "Requested blob not found");

        LayerData &ld = layers[pin.lid];
        if ((size_t)pin.oid >= ld.outputBlobs.size())
        {
            CV_Error(Error::StsOutOfRange, "Layer \"" + ld.name + "\" produce only " + toString(ld.outputBlobs.size()) +
                                           " outputs, the #" + toString(pin.oid) + " was requsted");
        }
1548
        if (preferableBackend != DNN_TARGET_CPU)
1549 1550
        {
            // Transfer data to CPU if it's require.
1551
            ld.outputBlobsWrappers[pin.oid]->copyToHost();
1552 1553 1554
        }
        else
        {
1555
            CV_Assert(preferableTarget == DNN_TARGET_CPU || preferableTarget == DNN_TARGET_OPENCL);
1556
        }
1557 1558 1559 1560

        if (ld.umat_outputBlobs.size() > 0 && !ld.umat_outputBlobs[pin.oid].empty())
            ld.umat_outputBlobs[pin.oid].copyTo(ld.outputBlobs[pin.oid]);

1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
        return ld.outputBlobs[pin.oid];
    }

    Mat getBlob(String outputName)
    {
        return getBlob(getPinByAlias(outputName));
    }
};

Net::Net() : impl(new Net::Impl)
{
}

Net::~Net()
{
}

int Net::addLayer(const String &name, const String &type, LayerParams &params)
{
1580 1581
    CV_TRACE_FUNCTION();

1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
    if (name.find('.') != String::npos)
    {
        CV_Error(Error::StsBadArg, "Added layer name \"" + name + "\" must not contain dot symbol");
        return -1;
    }

    if (impl->getLayerId(name) >= 0)
    {
        CV_Error(Error::StsBadArg, "Layer \"" + name + "\" already into net");
        return -1;
    }

    int id = ++impl->lastLayerId;
    impl->layerNameToId.insert(std::make_pair(name, id));
    impl->layers.insert(std::make_pair(id, LayerData(id, name, type, params)));

    return id;
}

int Net::addLayerToPrev(const String &name, const String &type, LayerParams &params)
{
1603 1604
    CV_TRACE_FUNCTION();

1605 1606 1607 1608 1609 1610 1611 1612
    int prvLid = impl->lastLayerId;
    int newLid = this->addLayer(name, type, params);
    this->connect(prvLid, 0, newLid, 0);
    return newLid;
}

void Net::connect(int outLayerId, int outNum, int inpLayerId, int inpNum)
{
1613 1614
    CV_TRACE_FUNCTION();

1615 1616 1617 1618 1619
    impl->connect(outLayerId, outNum, inpLayerId, inpNum);
}

void Net::connect(String _outPin, String _inPin)
{
1620 1621
    CV_TRACE_FUNCTION();

1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
    LayerPin outPin = impl->getPinByAlias(_outPin);
    LayerPin inpPin = impl->getPinByAlias(_inPin);

    CV_Assert(outPin.valid() && inpPin.valid());

    impl->connect(outPin.lid, outPin.oid, inpPin.lid, inpPin.oid);
}

Mat Net::forward(const String& outputName)
{
1632 1633
    CV_TRACE_FUNCTION();

1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
    String layerName = outputName;

    if (layerName.empty())
        layerName = getLayerNames().back();

    impl->setUpNet();
    impl->forwardToLayer(impl->getLayerData(layerName));

    return impl->getBlob(layerName);
}

void Net::forward(std::vector<Mat>& outputBlobs, const String& outputName)
{
1647 1648
    CV_TRACE_FUNCTION();

1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
    impl->setUpNet();

    String layerName = outputName;

    if (layerName.empty())
        layerName = getLayerNames().back();

    impl->forwardToLayer(impl->getLayerData(layerName));

    LayerPin pin = impl->getPinByAlias(layerName);
    LayerData &ld = impl->layers[pin.lid];
1660 1661 1662 1663 1664 1665 1666

    if (ld.umat_outputBlobs.size() > 0)
    {
        for (int i = 0; i < ld.umat_outputBlobs.size(); i++)
            ld.umat_outputBlobs[i].copyTo(ld.outputBlobs[i]);
    }

1667 1668 1669 1670 1671 1672
    outputBlobs = ld.outputBlobs;
}

void Net::forward(std::vector<Mat>& outputBlobs,
                  const std::vector<String>& outBlobNames)
{
1673 1674
    CV_TRACE_FUNCTION();

1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
    std::vector<LayerPin> pins;
    for (int i = 0; i < outBlobNames.size(); i++)
    {
       pins.push_back(impl->getPinByAlias(outBlobNames[i]));
    }

    impl->setUpNet(pins);

    LayerPin out = impl->getLatestLayerPin(pins);

    impl->forwardToLayer(impl->getLayerData(out.lid));

    outputBlobs.clear();
    for (int i = 0; i < pins.size(); i++)
    {
        outputBlobs.push_back(impl->getBlob(pins[i]));
    }
}

void Net::forward(std::vector<std::vector<Mat> >& outputBlobs,
                     const std::vector<String>& outBlobNames)
{
1697 1698
    CV_TRACE_FUNCTION();

1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
    std::vector<LayerPin> pins;
    for (int i = 0; i < outBlobNames.size(); i++)
    {
        std::vector<LayerPin> lp = impl->getLayerOutPins(outBlobNames[i]);
        pins.insert(pins.end(), lp.begin(), lp.end());
    }

    impl->setUpNet(pins);

    LayerPin out = impl->getLatestLayerPin(pins);

    impl->forwardToLayer(impl->getLayerData(out.lid));

    outputBlobs.resize(outBlobNames.size());
    for (int i = 0; i < outBlobNames.size(); i++)
    {
        std::vector<LayerPin> lp = impl->getLayerOutPins(outBlobNames[i]);
        for (int i = 0; i < lp.size(); i++)
        {
            outputBlobs[i].push_back(impl->getBlob(lp[i]));
        }
    }
}

void Net::setPreferableBackend(int backendId)
{
1725 1726 1727
    CV_TRACE_FUNCTION();
    CV_TRACE_ARG(backendId);

1728 1729 1730
    if( impl->preferableBackend != backendId )
    {
        impl->preferableBackend = backendId;
1731
        impl->blobManager.setPreferableBackend(backendId);
1732 1733 1734
        impl->netWasAllocated = false;
        impl->clear();
    }
1735 1736 1737 1738
}

void Net::setPreferableTarget(int targetId)
{
1739 1740 1741
    CV_TRACE_FUNCTION();
    CV_TRACE_ARG(targetId);

1742 1743 1744
    if( impl->preferableTarget != targetId )
    {
        impl->preferableTarget = targetId;
1745
        impl->blobManager.setPreferableTarget(targetId);
1746 1747 1748
        impl->netWasAllocated = false;
        impl->clear();
    }
1749 1750 1751 1752
}

void Net::setInputsNames(const std::vector<String> &inputBlobNames)
{
1753 1754
    CV_TRACE_FUNCTION();

1755 1756 1757 1758 1759
    impl->netInputLayer->setNames(inputBlobNames);
}

void Net::setInput(const Mat &blob_, const String& name)
{
1760 1761 1762
    CV_TRACE_FUNCTION();
    CV_TRACE_ARG_VALUE(name, "name", name.c_str());

1763 1764 1765 1766 1767 1768 1769 1770 1771
    LayerPin pin;
    pin.lid = 0;
    pin.oid = impl->resolvePinOutputName(impl->getLayerData(pin.lid), name);

    if (!pin.valid())
        CV_Error(Error::StsObjectNotFound, "Requested blob \"" + name + "\" not found");

    LayerData &ld = impl->layers[pin.lid];
    ld.outputBlobs.resize( std::max(pin.oid+1, (int)ld.requiredOutputs.size()) );
1772 1773 1774 1775
    bool use_umat = (impl->preferableBackend == DNN_BACKEND_DEFAULT &&
                     impl->preferableTarget == DNN_TARGET_OPENCL);
    if (use_umat)
        ld.umat_outputBlobs.resize( std::max(pin.oid+1, (int)ld.requiredOutputs.size()) );
1776
    ld.outputBlobsWrappers.resize(ld.outputBlobs.size());
1777 1778 1779
    MatShape prevShape = shape(ld.outputBlobs[pin.oid]);
    bool oldShape = prevShape == shape(blob_);
    if (oldShape)
1780
    {
1781
        blob_.copyTo(ld.outputBlobs[pin.oid]);
1782 1783 1784
        if (use_umat)
            blob_.copyTo(ld.umat_outputBlobs[pin.oid]);
    }
1785
    else
1786
    {
1787
        ld.outputBlobs[pin.oid] = blob_.clone();
1788 1789 1790
        if (use_umat)
            blob_.copyTo(ld.umat_outputBlobs[pin.oid]);
    }
1791

1792 1793 1794 1795
    if (!ld.outputBlobsWrappers[pin.oid].empty())
    {
        ld.outputBlobsWrappers[pin.oid]->setHostDirty();
    }
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
    impl->netWasAllocated = impl->netWasAllocated && oldShape;
}

Mat Net::getParam(LayerId layer, int numParam)
{
    LayerData &ld = impl->getLayerData(layer);

    std::vector<Mat> &layerBlobs = ld.layerInstance->blobs;
    CV_Assert(numParam < (int)layerBlobs.size());
    return layerBlobs[numParam];
}

void Net::setParam(LayerId layer, int numParam, const Mat &blob)
{
    LayerData &ld = impl->getLayerData(layer);

    std::vector<Mat> &layerBlobs = ld.layerInstance->blobs;
    CV_Assert(numParam < (int)layerBlobs.size());
    //we don't make strong checks, use this function carefully
    layerBlobs[numParam] = blob;
}

int Net::getLayerId(const String &layer)
{
    return impl->getLayerId(layer);
}

void Net::deleteLayer(LayerId)
{
    CV_Error(Error::StsNotImplemented, "");
}

Ptr<Layer> Net::getLayer(LayerId layerId)
{
    LayerData &ld = impl->getLayerData(layerId);
1831
    return ld.getLayerInstance();
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
}

std::vector<Ptr<Layer> > Net::getLayerInputs(LayerId layerId)
{
    LayerData &ld = impl->getLayerData(layerId);
    if (!ld.layerInstance)
        CV_Error(Error::StsNullPtr, format("Requested layer \"%s\" was not initialized", ld.name.c_str()));

    std::vector<Ptr<Layer> > inputLayers;
    inputLayers.reserve(ld.inputLayersId.size());
    std::set<int>::iterator it;
    for (it = ld.inputLayersId.begin(); it != ld.inputLayersId.end(); ++it) {
        inputLayers.push_back(getLayer(*it));
    }
    return inputLayers;
}

std::vector<String> Net::getLayerNames() const
{
    std::vector<String> res;
    res.reserve(impl->layers.size());

    Impl::MapIdToLayerData::iterator it;
    for (it = impl->layers.begin(); it != impl->layers.end(); it++)
    {
        if (it->second.id) //skip Data layer
            res.push_back(it->second.name);
    }

    return res;
}

bool Net::empty() const
{
    return impl->layers.size() <= 1; //first layer is default Data layer
}

std::vector<int> Net::getUnconnectedOutLayers() const
{
    std::vector<int> layersIds;

    Impl::MapIdToLayerData::iterator it;
    for (it = impl->layers.begin(); it != impl->layers.end(); it++)
    {
        int lid = it->first;
        LayerData &ld = it->second;

        if (ld.requiredOutputs.size() == 0)
            layersIds.push_back(lid);
    }

    return layersIds;
}

void Net::getLayersShapes(const ShapesVec& netInputShapes,
1887 1888 1889
                          std::vector<int>& layersIds,
                          std::vector<ShapesVec>& inLayersShapes,
                          std::vector<ShapesVec>& outLayersShapes) const
1890
{
1891 1892 1893
    layersIds.clear();
    inLayersShapes.clear();
    outLayersShapes.clear();
1894 1895 1896 1897 1898 1899 1900

    Impl::LayersShapesMap inOutShapes;
    impl->getLayersShapes(netInputShapes, inOutShapes);

    for(Impl::LayersShapesMap::const_iterator it = inOutShapes.begin();
        it != inOutShapes.end(); it++)
    {
1901 1902 1903
        layersIds.push_back(it->first);
        inLayersShapes.push_back(it->second.in);
        outLayersShapes.push_back(it->second.out);
1904 1905 1906 1907
    }
}

void Net::getLayersShapes(const MatShape& netInputShape,
1908 1909 1910
                          std::vector<int>& layerIds,
                          std::vector<ShapesVec>& inLayersShapes,
                          std::vector<ShapesVec>& outLayersShapes) const
1911 1912 1913 1914 1915 1916 1917
{
    getLayersShapes(ShapesVec(1, netInputShape),
                    layerIds, inLayersShapes, outLayersShapes);
}

void Net::getLayerShapes(const MatShape& netInputShape,
                         const int layerId,
1918 1919
                         ShapesVec& inLayerShapes,
                         ShapesVec& outLayerShapes) const
1920 1921 1922 1923 1924 1925 1926 1927
{
    getLayerShapes(ShapesVec(1, netInputShape),
                   layerId, inLayerShapes, outLayerShapes);

}

void Net::getLayerShapes(const ShapesVec& netInputShapes,
                    const int layerId,
1928 1929
                    ShapesVec& inLayerShapes,
                    ShapesVec& outLayerShapes) const
1930 1931 1932
{
    LayerShapes shapes;
    impl->getLayerShapes(netInputShapes, layerId, shapes);
1933 1934
    inLayerShapes = shapes.in;
    outLayerShapes = shapes.out;
1935 1936 1937 1938
}

int64 Net::getFLOPS(const std::vector<MatShape>& netInputShapes) const
{
1939 1940
    CV_TRACE_FUNCTION();

1941 1942 1943
    int64 flops = 0;
    std::vector<int> ids;
    std::vector<std::vector<MatShape> > inShapes, outShapes;
1944
    getLayersShapes(netInputShapes, ids, inShapes, outShapes);
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
    CV_Assert(inShapes.size() == outShapes.size());
    CV_Assert(inShapes.size() == ids.size());

    for(int i = 0; i < ids.size(); i++)
    {
        flops += impl->layers[ids[i]].getLayerInstance()->getFLOPS(inShapes[i],
                                                                   outShapes[i]);
    }

    return flops;
}

int64 Net::getFLOPS(const MatShape& netInputShape) const
{
    return getFLOPS(std::vector<MatShape>(1, netInputShape));
}

int64 Net::getFLOPS(const int layerId,
              const std::vector<MatShape>& netInputShapes) const
{
    Impl::MapIdToLayerData::iterator layer = impl->layers.find(layerId);
    CV_Assert(layer != impl->layers.end());

    LayerShapes shapes;
    impl->getLayerShapes(netInputShapes, layerId, shapes);

    return layer->second.getLayerInstance()->getFLOPS(shapes.in, shapes.out);
}

int64 Net::getFLOPS(const int layerId,
              const MatShape& netInputShape) const
{
    return getFLOPS(layerId, std::vector<MatShape>(1, netInputShape));
}

void Net::getLayerTypes(std::vector<String>& layersTypes) const
{
    layersTypes.clear();

    std::map<String, int> layers;
    for (Impl::MapIdToLayerData::iterator it = impl->layers.begin();
         it != impl->layers.end(); it++)
    {
        if (layers.find(it->second.type) == layers.end())
            layers[it->second.type] = 0;
        layers[it->second.type]++;
    }

    for (std::map<String, int>::iterator it = layers.begin();
         it != layers.end(); it++)
    {
        layersTypes.push_back(it->first);
    }
}

int Net::getLayersCount(const String& layerType) const
{
    int count = 0;
    for (Impl::MapIdToLayerData::iterator it = impl->layers.begin();
         it != impl->layers.end(); it++)
    {
        if (it->second.type == layerType)
            count++;
    }
    return count;
}

void Net::getMemoryConsumption(const int layerId,
                               const std::vector<MatShape>& netInputShapes,
                               size_t& weights, size_t& blobs) const
{
2016 2017
    CV_TRACE_FUNCTION();

2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
    Impl::MapIdToLayerData::iterator layer = impl->layers.find(layerId);
    CV_Assert(layer != impl->layers.end());

    weights = blobs = 0;

    for(int i = 0; i < layer->second.params.blobs.size(); i++)
    {
        const Mat& weightsBlob = layer->second.params.blobs[i];
        weights += weightsBlob.total()*weightsBlob.elemSize();
    }

2029 2030
    ShapesVec inLayerShapes, outLayerShapes;
    getLayerShapes(netInputShapes, layerId, inLayerShapes, outLayerShapes);
2031 2032 2033 2034 2035 2036 2037 2038 2039
    for(int i = 0; i < outLayerShapes.size(); i++)
    {
        blobs += total(outLayerShapes[i]) * sizeof(float);
    }
}

void Net::getMemoryConsumption(const std::vector<MatShape>& netInputShapes,
                               size_t& weights, size_t& blobs) const
{
2040 2041
    CV_TRACE_FUNCTION();

2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
    std::vector<int> layerIds;
    std::vector<size_t> w, b;
    getMemoryConsumption(netInputShapes, layerIds, w, b);

    weights = blobs = 0;
    for(int i = 0; i < layerIds.size(); i++)
    {
        weights += w[i];
        blobs += b[i];
    }
}

void Net::getMemoryConsumption(const int layerId,
                               const MatShape& netInputShape,
                               size_t& weights, size_t& blobs) const
{
    getMemoryConsumption(layerId, std::vector<MatShape>(1, netInputShape),
                         weights, blobs);
}

void Net::getMemoryConsumption(const MatShape& netInputShape,
                               size_t& weights, size_t& blobs) const
{
    getMemoryConsumption(std::vector<MatShape>(1, netInputShape),
                         weights, blobs);
}

void Net::getMemoryConsumption(const std::vector<MatShape>& netInputShapes,
                                  std::vector<int>& layerIds, std::vector<size_t>& weights,
                                  std::vector<size_t>& blobs) const
{
2073 2074
    CV_TRACE_FUNCTION();

2075 2076 2077 2078
    layerIds.clear();
    weights.clear();
    blobs.clear();

2079
    std::vector<std::vector<MatShape> > inLayerShapes, outLayerShapes;
2080

2081
    getLayersShapes(netInputShapes, layerIds, inLayerShapes, outLayerShapes);
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111

    for(int i = 0; i < layerIds.size(); i++)
    {
        int w = 0, b = 0;
        Impl::MapIdToLayerData::iterator layer = impl->layers.find(layerIds[i]);
        CV_Assert(layer != impl->layers.end());

        for(int j = 0; j < layer->second.params.blobs.size(); j++)
        {
            const Mat& weightsBlob = layer->second.params.blobs[j];
            w += weightsBlob.total()*weightsBlob.elemSize();
        }

        for(int j = 0; j < outLayerShapes[i].size(); j++)
        {
            b += total(outLayerShapes[i][j]) * sizeof(float);
        }

        weights.push_back(w);
        blobs.push_back(b);
    }
}

void Net::getMemoryConsumption(const MatShape& netInputShape, std::vector<int>& layerIds,
                               std::vector<size_t>& weights, std::vector<size_t>& blobs) const
{
    getMemoryConsumption(std::vector<MatShape>(1, netInputShape), layerIds,
                         weights, blobs);
}

2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
void Net::enableFusion(bool fusion)
{
    if( impl->fusion != fusion )
    {
        impl->fusion = fusion;
        impl->netWasAllocated = false;
        impl->clear();
    }
}

2122 2123
void Net::setHalideScheduler(const String& scheduler)
{
2124 2125 2126
    CV_TRACE_FUNCTION();
    CV_TRACE_ARG_VALUE(scheduler, "scheduler", scheduler.c_str());

2127 2128 2129
    impl->halideConfigFile = scheduler;
}

2130 2131 2132 2133 2134 2135 2136
int64 Net::getPerfProfile(std::vector<double>& timings)
{
    timings = std::vector<double>(impl->layersTimings.begin() + 1, impl->layersTimings.end());
    int64 total = std::accumulate(timings.begin(), timings.end(), 0);
    return total;
}

2137 2138 2139 2140
//////////////////////////////////////////////////////////////////////////

Importer::~Importer() {}

2141
Layer::Layer() { preferableTarget = DNN_TARGET_CPU; }
2142 2143 2144 2145

Layer::Layer(const LayerParams &params)
    : blobs(params.blobs), name(params.name), type(params.type)
{
2146
    preferableTarget = DNN_TARGET_CPU;
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
}

void Layer::setParamsFrom(const LayerParams &params)
{
    blobs = params.blobs;
    name = params.name;
    type = params.type;
}

int Layer::inputNameToIndex(String)
{
    return -1;
}

int Layer::outputNameToIndex(String)
{
    return -1;
}

bool Layer::supportBackend(int backendId)
{
    return backendId == DNN_BACKEND_DEFAULT;
}

Ptr<BackendNode> Layer::initHalide(const std::vector<Ptr<BackendWrapper> > &)
{
    CV_Error(Error::StsNotImplemented, "Halide pipeline of " + type +
                                       " layers is not defined.");
    return Ptr<BackendNode>();
}

void Layer::applyHalideScheduler(Ptr<BackendNode>& node, const std::vector<Mat*> &inputs,
                                 const std::vector<Mat> &outputs, int targetId) const
{
#ifdef  HAVE_HALIDE
2182 2183
    CV_TRACE_FUNCTION();

2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
    Halide::Var x("x"), y("y"), c("c"), n("n"), co("co"), ci("ci"),
                xo("xo"), xi("xi"), yo("yo"), yi("yi"), tile("tile");
    Halide::Func& top = node.dynamicCast<HalideBackendNode>()->funcs.back();

    int outW, outH, outC, outN;
    getCanonicalSize(outputs[0].size, &outW, &outH, &outC, &outN);

    if (targetId == DNN_TARGET_CPU)
    {
        if (outW == 1 && outH == 1)
        {
            if (outC + outN == 1)
                return;

            if (outC > 8)
              top.split(c, co, ci, 8)
                 .fuse(x, y, tile).fuse(co, tile, tile).fuse(n, tile, tile)
                 .parallel(tile)
                 .vectorize(ci, 8);
            else
              top.fuse(x, y, tile).fuse(c, tile, tile).fuse(n, tile, tile)
                 .parallel(tile);
        }
        else
        {
            if (outH > 2)
            {
                top.reorder(x, c, y)
                   .split(y, yo, yi, 2)
                   .fuse(yo, n, tile)
                   .parallel(tile)
                   .unroll(yi)
                   .vectorize(x, outW >= 16 ? 16 : outW);
            }
        }
    }
    else if (targetId == DNN_TARGET_OPENCL)
    {
        int c_split = outC > 8 ? (outC > 16 ? 8 : 4) : outC;
        if (outW == 1 && outH == 1)
        {
            top.split(c, co, ci, c_split)
               .fuse(x, y, tile).fuse(co, tile, tile).fuse(n, tile, tile)
               .gpu_blocks(tile)
               .gpu_threads(ci);
        }
        else
        {
            int x_split = outW > 8 ? (outW >= 32 ? 16 : 8) : outW;
            int y_split = outH > 8 ? (outH >= 32 ? 16 : 8) : outH;
            top.split(x, xo, xi, x_split).split(y, yo, yi, y_split)
               .split(c, co, ci, c_split)
               .gpu_blocks(xo, yo, co)
               .gpu_threads(xi, yi)
               .reorder(xi, yi, ci, xo, yo, co)
               .vectorize(ci);
        }
    }
    else
        CV_Error(Error::StsNotImplemented, "Unknown target identifier");
#endif  // HAVE_HALIDE
}

Ptr<BackendNode> Layer::tryAttach(const Ptr<BackendNode>& node)
{
    return Ptr<BackendNode>();
}

2252 2253
bool Layer::setActivation(const Ptr<ActivationLayer>&) { return false; }
bool Layer::setBatchNorm(const Ptr<BatchNormLayer>&) { return false; }
2254 2255 2256 2257 2258 2259 2260
bool Layer::setScale(const Ptr<ScaleLayer>&) { return false; }
void Layer::unsetAttached()
{
    setActivation(Ptr<ActivationLayer>());
    setBatchNorm(Ptr<BatchNormLayer>());
    setScale(Ptr<ScaleLayer>());
}
2261

2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
template <typename T>
static void vecToPVec(const std::vector<T> &v, std::vector<T*> &pv)
{
    pv.resize(v.size());
    for (size_t i = 0; i < v.size(); i++)
        pv[i] = const_cast<T*>(&v[i]);
}

void Layer::finalize(const std::vector<Mat> &inputs, std::vector<Mat> &outputs)
{
2272 2273
    CV_TRACE_FUNCTION();

2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
    std::vector<Mat*> inputsp;
    vecToPVec(inputs, inputsp);
    this->finalize(inputsp, outputs);
}

void Layer::finalize(const std::vector<Mat*> &input, std::vector<Mat> &output)
{
    (void)input;(void)output;
}

std::vector<Mat> Layer::finalize(const std::vector<Mat> &inputs)
{
2286 2287
    CV_TRACE_FUNCTION();

2288 2289 2290 2291 2292
    std::vector<Mat> outputs;
    this->finalize(inputs, outputs);
    return outputs;
}

2293
void Layer::forward_fallback(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr)
2294
{
2295
    CV_TRACE_FUNCTION();
2296
    CV_TRACE_ARG_VALUE(name, "name", name.c_str());
2297

2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
    std::vector<Mat> inpvec;
    std::vector<Mat> outputs;
    std::vector<Mat> internals;

    inputs_arr.getMatVector(inpvec);
    outputs_arr.getMatVector(outputs);
    internals_arr.getMatVector(internals);

    std::vector<Mat*> inputs(inpvec.size());
    for (int i = 0; i < inpvec.size(); i++)
        inputs[i] = &inpvec[i];

    this->forward(inputs, outputs, internals);
2311 2312 2313 2314
}

void Layer::run(const std::vector<Mat> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals)
{
2315 2316
    CV_TRACE_FUNCTION();

2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
    std::vector<Mat*> inputsp;
    vecToPVec(inputs, inputsp);
    this->finalize(inputsp, outputs);
    this->forward(inputsp, outputs, internals);
}

Layer::~Layer() {}

bool Layer::getMemoryShapes(const std::vector<MatShape> &inputs,
                            const int requiredOutputs,
                            std::vector<MatShape> &outputs,
                            std::vector<MatShape> &internals) const
{
    CV_Assert(inputs.size());
    outputs.assign(std::max(requiredOutputs, (int)inputs.size()), inputs[0]);
    return false;
}

//////////////////////////////////////////////////////////////////////////

2337
static Mutex& getLayerFactoryMutex()
2338
{
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
    static Mutex* volatile instance = NULL;
    if (instance == NULL)
    {
        cv::AutoLock lock(getInitializationMutex());
        if (instance == NULL)
            instance = new Mutex();
    }
    return *instance;
}

typedef std::map<String, LayerFactory::Constuctor> LayerFactory_Impl;

static LayerFactory_Impl& getLayerFactoryImpl_()
{
    static LayerFactory_Impl impl;
    return impl;
}
2356

2357
static LayerFactory_Impl& getLayerFactoryImpl()
2358
{
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
    static LayerFactory_Impl* volatile instance = NULL;
    if (instance == NULL)
    {
        cv::AutoLock lock(getLayerFactoryMutex());
        if (instance == NULL)
        {
            instance = &getLayerFactoryImpl_();
            initializeLayerFactory();
        }
    }
    return *instance;
2370 2371
}

2372
void LayerFactory::registerLayer(const String &type, Constuctor constructor)
2373
{
2374 2375 2376
    CV_TRACE_FUNCTION();
    CV_TRACE_ARG_VALUE(type, "type", type.c_str());

2377
    cv::AutoLock lock(getLayerFactoryMutex());
2378 2379
    String type_ = type.toLowerCase();
    LayerFactory_Impl::const_iterator it = getLayerFactoryImpl().find(type_);
2380

2381
    if (it != getLayerFactoryImpl().end() && it->second != constructor)
2382
    {
2383
        CV_Error(cv::Error::StsBadArg, "Layer \"" + type_ + "\" already was registered");
2384 2385
    }

2386
    getLayerFactoryImpl().insert(std::make_pair(type_, constructor));
2387 2388
}

2389
void LayerFactory::unregisterLayer(const String &type)
2390
{
2391 2392 2393
    CV_TRACE_FUNCTION();
    CV_TRACE_ARG_VALUE(type, "type", type.c_str());

2394
    cv::AutoLock lock(getLayerFactoryMutex());
2395 2396
    String type_ = type.toLowerCase();
    getLayerFactoryImpl().erase(type_);
2397 2398
}

2399
Ptr<Layer> LayerFactory::createLayerInstance(const String &type, LayerParams& params)
2400
{
2401 2402 2403
    CV_TRACE_FUNCTION();
    CV_TRACE_ARG_VALUE(type, "type", type.c_str());

2404
    cv::AutoLock lock(getLayerFactoryMutex());
2405 2406
    String type_ = type.toLowerCase();
    LayerFactory_Impl::const_iterator it = getLayerFactoryImpl().find(type_);
2407

2408
    if (it != getLayerFactoryImpl().end())
2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438
    {
        return it->second(params);
    }
    else
    {
        return Ptr<Layer>(); //NULL
    }
}

BackendNode::BackendNode(int backendId) : backendId(backendId) {}

BackendNode::~BackendNode() {};

BackendWrapper::BackendWrapper(int backendId, int targetId)
    : backendId(backendId), targetId(targetId) {}

BackendWrapper::BackendWrapper(int targetId, const cv::Mat& m)
{
    CV_Error(Error::StsNotImplemented,
             "Constructor of backend wrapper must be implemented");
}

BackendWrapper::BackendWrapper(const Ptr<BackendWrapper>& base, const MatShape& shape)
{
    CV_Error(Error::StsNotImplemented,
             "Constructor of backend wrapper must be implemented");
}

BackendWrapper::~BackendWrapper() {}

2439 2440
CV__DNN_EXPERIMENTAL_NS_END
}} // namespace