opencv_cheatsheet.tex 32.4 KB
Newer Older
1 2 3
%
%    The OpenCV cheatsheet structure:
%
4 5 6 7
%    opencv data structures
%        point, rect
%        matrix
%
8 9
%    creating matrices
%        from scratch
10
%        from previously allocated data: plain arrays, vectors
11 12 13 14
%        converting to/from old-style structures
%
%    element access, iteration through matrix elements
%
15
%    copying & shuffling matrix data
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
%        copying & converting the whole matrices
%        extracting matrix parts & copying them
%        split, merge & mixchannels
%        flip, transpose, repeat
%
%    matrix & image operations:
%        arithmetics & logic
%        matrix multiplication, inversion, determinant, trace, SVD
%        statistical functions
%
%    basic image processing:
%        image filtering with predefined & custom filters
%        example: finding local maxima
%        geometrical transformations, resize, warpaffine, perspective & remap.
%        color space transformations
%        histograms & back projections
%        contours
33
%
34 35 36 37 38 39 40 41 42
%    i/o:
%        displaying images
%        saving/loading to/from file (XML/YAML & image file formats)
%        reading videos & camera feed, writing videos
%
%    operations on point sets:
%        findcontours, bounding box, convex hull, min area rect,
%            transformations, to/from homogeneous coordinates
%        matching point sets: homography, fundamental matrix, rigid transforms
43
%
44 45 46 47
%    3d:
%        camera calibration, pose estimation.
%        uncalibrated case
%        stereo: rectification, running stereo correspondence, obtaining the depth.
48
%
49 50
%    feature detection:
%        features2d toolbox
51
%
52 53 54
%    object detection:
%        using a classifier running on a sliding window: cascadeclassifier + hog.
%        using salient point features: features2d -> matching
55
%
56 57 58 59 60 61 62 63 64 65 66 67 68 69
%    statistical data processing:
%        clustering (k-means),
%        classification + regression (SVM, boosting, k-nearest),
%        compressing data (PCA)
%

\documentclass[10pt,landscape]{article}
\usepackage[usenames,dvips,pdftex]{color}
\usepackage{multicol}
\usepackage{calc}
\usepackage{ifthen}
\usepackage[pdftex]{color,graphicx}
\usepackage[landscape]{geometry}
\usepackage{hyperref}
70
\usepackage[T1]{fontenc}
71 72 73 74 75 76 77
\hypersetup{colorlinks=true, filecolor=black, linkcolor=black, urlcolor=blue, citecolor=black}
\graphicspath{{./images/}}

% This sets page margins to .5 inch if using letter paper, and to 1cm
% if using A4 paper. (This probably isn't strictly necessary.)
% If using another size paper, use default 1cm margins.
\ifthenelse{\lengthtest { \paperwidth = 11in}}
78 79 80 81 82
    { \geometry{top=.5in,left=.5in,right=.5in,bottom=.5in} }
    {\ifthenelse{ \lengthtest{ \paperwidth = 297mm}}
        {\geometry{top=1cm,left=1cm,right=1cm,bottom=1cm} }
        {\geometry{top=1cm,left=1cm,right=1cm,bottom=1cm} }
    }
83 84

% Turn off header and footer
85
% \pagestyle{empty}
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137

% Redefine section commands to use less space
\makeatletter
\renewcommand{\section}{\@startsection{section}{1}{0mm}%
                                {-1ex plus -.5ex minus -.2ex}%
                                {0.5ex plus .2ex}%x
                                {\normalfont\large\bfseries}}
\renewcommand{\subsection}{\@startsection{subsection}{2}{0mm}%
                                {-1explus -.5ex minus -.2ex}%
                                {0.5ex plus .2ex}%
                                {\normalfont\normalsize\bfseries}}
\renewcommand{\subsubsection}{\@startsection{subsubsection}{3}{0mm}%
                                {-1ex plus -.5ex minus -.2ex}%
                                {1ex plus .2ex}%
                                {\normalfont\small\bfseries}}
\makeatother

% Define BibTeX command
\def\BibTeX{{\rm B\kern-.05em{\sc i\kern-.025em b}\kern-.08em
    T\kern-.1667em\lower.7ex\hbox{E}\kern-.125emX}}

% Don't print section numbers
\setcounter{secnumdepth}{0}


%\setlength{\parindent}{0pt}
%\setlength{\parskip}{0pt plus 0.5ex}

\newcommand{\ccode}[1]{
\begin{alltt}
#1
\end{alltt}
}

% -----------------------------------------------------------------------

\begin{document}

\raggedright
\footnotesize
\begin{multicols}{3}


% multicol parameters
% These lengths are set only within the two main columns
%\setlength{\columnseprule}{0.25pt}
\setlength{\premulticols}{1pt}
\setlength{\postmulticols}{1pt}
\setlength{\multicolsep}{1pt}
\setlength{\columnsep}{2pt}

\begin{center}
138
     \Large{\textbf{OpenCV 2.4 Cheat Sheet (C++)}} \\
139 140 141 142 143 144 145 146 147 148 149 150 151
\end{center}
\newlength{\MyLen}
\settowidth{\MyLen}{\texttt{letterpaper}/\texttt{a4paper} \ }

%\section{Filesystem Concepts}
%\begin{tabular}{@{}p{\the\MyLen}%
 %               @{}p{\linewidth-\the\MyLen}@{}}
%\texttt{\href{http://www.ros.org/wiki/Packages}{package}}   & The lowest level of ROS software organization. \\
%\texttt{\href{http://www.ros.org/wiki/Manifest}{manifest}}  & Description of a ROS package. \\
%\texttt{\href{http://www.ros.org/wiki/Stack}{stack}} & Collections of ROS packages that form a higher-level library. \\
%\texttt{\href{http://www.ros.org/wiki/Stack Manifest}{stack manifest}}  & Description of a ROS stack.
%\end{tabular}

152
\emph{The OpenCV C++ reference manual is here: \url{http://docs.opencv.org}. Use \textbf{Quick Search} to find descriptions of the particular functions and classes}
153 154 155 156

\section{Key OpenCV Classes}
\begin{tabular}{@{}p{\the\MyLen}%
                @{}p{\linewidth-\the\MyLen}@{}}
157 158 159 160 161 162 163 164 165 166 167
\texttt{\href{http://docs.opencv.org/modules/core/doc/basic_structures.html\#Point_}{Point\_}} & Template 2D point class \\
\texttt{\href{http://docs.opencv.org/modules/core/doc/basic_structures.html\#Point3_}{Point3\_}} & Template 3D point class \\
\texttt{\href{http://docs.opencv.org/modules/core/doc/basic_structures.html\#Size_}{Size\_}} & Template size (width, height) class \\
\texttt{\href{http://docs.opencv.org/modules/core/doc/basic_structures.html\#Vec}{Vec}} & Template short vector class \\
\texttt{\href{http://docs.opencv.org/modules/core/doc/basic_structures.html\#Matx}{Matx}} & Template small matrix class \\
\texttt{\href{http://docs.opencv.org/modules/core/doc/basic_structures.html\#Scalar_}{Scalar}} & 4-element vector \\
\texttt{\href{http://docs.opencv.org/modules/core/doc/basic_structures.html\#Rect_}{Rect}} & Rectangle \\
\texttt{\href{http://docs.opencv.org/modules/core/doc/basic_structures.html\#Range}{Range}} & Integer value range \\
\texttt{\href{http://docs.opencv.org/modules/core/doc/basic_structures.html\#Mat}{Mat}} & 2D or multi-dimensional dense array (can be used to store matrices, images, histograms, feature descriptors, voxel volumes etc.)\\
\texttt{\href{http://docs.opencv.org/modules/core/doc/basic_structures.html\#sparsemat}{SparseMat}} & Multi-dimensional sparse array \\
\texttt{\href{http://docs.opencv.org/modules/core/doc/basic_structures.html\#Ptr}{Ptr}} & Template smart pointer class
168 169
\end{tabular}

170 171 172 173 174 175 176
\section{Matrix Basics}
\begin{tabbing}

\textbf{Cr}\=\textbf{ea}\=\textbf{te}\={} \textbf{a matrix} \\
\> \texttt{Mat image(240, 320, CV\_8UC3);} \\

\textbf{[Re]allocate a pre-declared matrix}\\
177
\> \texttt{image.\href{http://docs.opencv.org/modules/core/doc/basic_structures.html\#mat-create}{create}(480, 640, CV\_8UC3);}\\
178 179 180 181 182 183 184 185 186

\textbf{Create a matrix initialized with a constant}\\
\> \texttt{Mat A33(3, 3, CV\_32F, Scalar(5));} \\
\> \texttt{Mat B33(3, 3, CV\_32F); B33 = Scalar(5);} \\
\> \texttt{Mat C33 = Mat::ones(3, 3, CV\_32F)*5.;} \\
\> \texttt{Mat D33 = Mat::zeros(3, 3, CV\_32F) + 5.;} \\

\textbf{Create a matrix initialized with specified values}\\
\> \texttt{double a = CV\_PI/3;} \\
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
187
\> \texttt{Mat A22 = (Mat\_<float>(2, 2) <<} \\
188 189 190 191 192
\> \> \texttt{cos(a), -sin(a), sin(a), cos(a));} \\
\> \texttt{float B22data[] = \{cos(a), -sin(a), sin(a), cos(a)\};} \\
\> \texttt{Mat B22 = Mat(2, 2, CV\_32F, B22data).clone();}\\

\textbf{Initialize a random matrix}\\
193 194
\> \texttt{\href{http://docs.opencv.org/modules/core/doc/operations_on_arrays.html\#randu}{randu}(image, Scalar(0), Scalar(256)); }\textit{// uniform dist}\\
\> \texttt{\href{http://docs.opencv.org/modules/core/doc/operations_on_arrays.html\#randn}{randn}(image, Scalar(128), Scalar(10)); }\textit{// Gaussian dist}\\
195 196

\textbf{Convert matrix to/from other structures}\\
197
\>\textbf{(without copying the data)}\\
198 199 200 201 202
\> \texttt{Mat image\_alias = image;}\\
\> \texttt{float* Idata=new float[480*640*3];}\\
\> \texttt{Mat I(480, 640, CV\_32FC3, Idata);}\\
\> \texttt{vector<Point> iptvec(10);}\\
\> \texttt{Mat iP(iptvec); }\textit{// iP -- 10x1 CV\_32SC2 matrix}\\
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
203
\> \texttt{IplImage* oldC0 = cvCreateImage(cvSize(320,240),16,1);}\\
204 205 206 207
\> \texttt{Mat newC = cvarrToMat(oldC0);}\\
\> \texttt{IplImage oldC1 = newC; CvMat oldC2 = newC;}\\

\textbf{... (with copying the data)}\\
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
208 209
\> \texttt{Mat newC2 = cvarrToMat(oldC0).clone();}\\
\> \texttt{vector<Point2f> ptvec = Mat\_<Point2f>(iP);}\\
210 211 212 213 214 215 216 217

\>\\
\textbf{Access matrix elements}\\
\> \texttt{A33.at<float>(i,j) = A33.at<float>(j,i)+1;}\\
\> \texttt{Mat dyImage(image.size(), image.type());}\\
\> \texttt{for(int y = 1; y < image.rows-1; y++) \{}\\
\> \> \texttt{Vec3b* prevRow = image.ptr<Vec3b>(y-1);}\\
\> \> \texttt{Vec3b* nextRow = image.ptr<Vec3b>(y+1);}\\
218
\> \> \texttt{for(int x = 0; x < image.cols; x++)}\\
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
\> \> \> \texttt{for(int c = 0; c < 3; c++)}\\
\> \> \> \texttt{  dyImage.at<Vec3b>(y,x)[c] =}\\
\> \> \> \texttt{    saturate\_cast<uchar>(}\\
\> \> \> \texttt{       nextRow[x][c] - prevRow[x][c]);}\\
\> \texttt{\} }\\
\> \texttt{Mat\_<Vec3b>::iterator it = image.begin<Vec3b>(),}\\
\> \> \texttt{itEnd = image.end<Vec3b>();}\\
\> \texttt{for(; it != itEnd; ++it)}\\
\> \> \texttt{(*it)[1] \textasciicircum{}= 255;}\\

\end{tabbing}

\section{Matrix Manipulations: Copying, Shuffling, Part Access}
\begin{tabular}{@{}p{\the\MyLen}%
                @{}p{\linewidth-\the\MyLen}@{}}
234 235 236 237
\texttt{\href{http://docs.opencv.org/modules/core/doc/basic_structures.html\#mat-copyto}{src.copyTo(dst)}} & Copy matrix to another one \\
\texttt{\href{http://docs.opencv.org/modules/core/doc/basic_structures.html\#mat-convertto}{src.convertTo(dst,type,scale,shift)}} & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ Scale and convert to another datatype \\
\texttt{\href{http://docs.opencv.org/modules/core/doc/basic_structures.html\#mat-clone}{m.clone()}} & Make deep copy of a matrix \\
\texttt{\href{http://docs.opencv.org/modules/core/doc/basic_structures.html\#mat-reshape}{m.reshape(nch,nrows)}} & Change matrix dimensions and/or number of channels without copying data \\
238

239 240
\texttt{\href{http://docs.opencv.org/modules/core/doc/basic_structures.html\#mat-row}{m.row(i)}},
\texttt{\href{http://docs.opencv.org/modules/core/doc/basic_structures.html\#mat-col}{m.col(i)}} & Take a matrix row/column \\
241

242 243
\texttt{\href{http://docs.opencv.org/modules/core/doc/basic_structures.html\#mat-rowrange}{m.rowRange(Range(i1,i2))}}
\texttt{\href{http://docs.opencv.org/modules/core/doc/basic_structures.html\#mat-colrange}{m.colRange(Range(j1,j2))}} & \ \ \ \ \ \ \ Take a matrix row/column span \\
244

245
\texttt{\href{http://docs.opencv.org/modules/core/doc/basic_structures.html\#mat-diag}{m.diag(i)}} & Take a matrix diagonal \\
246

247
\texttt{\href{http://docs.opencv.org/modules/core/doc/basic_structures.html\#Mat}{m(Range(i1,i2),Range(j1,j2)), m(roi)}} & \ \ \ \ \ \ \ \ \ \ \ \ \ Take a submatrix \\
248

249
\texttt{\href{http://docs.opencv.org/modules/core/doc/operations_on_arrays.html\#repeat}{m.repeat(ny,nx)}} & Make a bigger matrix from a smaller one \\
250

251
\texttt{\href{http://docs.opencv.org/modules/core/doc/operations_on_arrays.html\#flip}{flip(src,dst,dir)}} & Reverse the order of matrix rows and/or columns \\
252

253
\texttt{\href{http://docs.opencv.org/modules/core/doc/operations_on_arrays.html\#split}{split(...)}} & Split multi-channel matrix into separate channels \\
254

255
\texttt{\href{http://docs.opencv.org/modules/core/doc/operations_on_arrays.html\#merge}{merge(...)}} & Make a multi-channel matrix out of the separate channels \\
256

257
\texttt{\href{http://docs.opencv.org/modules/core/doc/operations_on_arrays.html\#mixchannels}{mixChannels(...)}} & Generalized form of split() and merge() \\
258

259
\texttt{\href{http://docs.opencv.org/modules/core/doc/operations_on_arrays.html\#randshuffle}{randShuffle(...)}} & Randomly shuffle matrix elements \\
260 261 262

\end{tabular}

Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
263 264 265
\begin{tabbing}
Exa\=mple 1. Smooth image ROI in-place\\
\>\texttt{Mat imgroi = image(Rect(10, 20, 100, 100));}\\
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
266
\>\texttt{GaussianBlur(imgroi, imgroi, Size(5, 5), 1.2, 1.2);}\\
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
267 268 269 270 271 272 273
Example 2. Somewhere in a linear algebra algorithm \\
\>\texttt{m.row(i) += m.row(j)*alpha;}\\
Example 3. Copy image ROI to another image with conversion\\
\>\texttt{Rect r(1, 1, 10, 20);}\\
\>\texttt{Mat dstroi = dst(Rect(0,10,r.width,r.height));}\\
\>\texttt{src(r).convertTo(dstroi, dstroi.type(), 1, 0);}\\
\end{tabbing}
274 275 276 277 278 279 280 281

\section{Simple Matrix Operations}

OpenCV implements most common arithmetical, logical and
other matrix operations, such as

\begin{itemize}
\item
282 283 284 285 286 287 288 289 290 291 292
\texttt{\href{http://docs.opencv.org/modules/core/doc/operations_on_arrays.html\#add}{add()}},
\texttt{\href{http://docs.opencv.org/modules/core/doc/operations_on_arrays.html\#subtract}{subtract()}},
\texttt{\href{http://docs.opencv.org/modules/core/doc/operations_on_arrays.html\#multiply}{multiply()}},
\texttt{\href{http://docs.opencv.org/modules/core/doc/operations_on_arrays.html\#divide}{divide()}},
\texttt{\href{http://docs.opencv.org/modules/core/doc/operations_on_arrays.html\#absdiff}{absdiff()}},
\texttt{\href{http://docs.opencv.org/modules/core/doc/operations_on_arrays.html\#bitwise-and}{bitwise\_and()}},
\texttt{\href{http://docs.opencv.org/modules/core/doc/operations_on_arrays.html\#bitwise-or}{bitwise\_or()}},
\texttt{\href{http://docs.opencv.org/modules/core/doc/operations_on_arrays.html\#bitwise-xor}{bitwise\_xor()}},
\texttt{\href{http://docs.opencv.org/modules/core/doc/operations_on_arrays.html\#max}{max()}},
\texttt{\href{http://docs.opencv.org/modules/core/doc/operations_on_arrays.html\#min}{min()}},
\texttt{\href{http://docs.opencv.org/modules/core/doc/operations_on_arrays.html\#compare}{compare()}}
293 294 295 296 297 298 299 300

-- correspondingly, addition, subtraction, element-wise multiplication ... comparison of two matrices or a matrix and a scalar.

\begin{tabbing}
Exa\=mple. \href{http://en.wikipedia.org/wiki/Alpha_compositing}{Alpha compositing} function:\\
\texttt{void alphaCompose(const Mat\& rgba1,}\\
\> \texttt{const Mat\& rgba2, Mat\& rgba\_dest)}\\
\texttt{\{ }\\
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
301 302
\> \texttt{Mat a1(rgba1.size(), rgba1.type()), ra1;}\\
\> \texttt{Mat a2(rgba2.size(), rgba2.type());}\\
303
\> \texttt{int mixch[]=\{3, 0, 3, 1, 3, 2, 3, 3\};}\\
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
304 305
\> \texttt{mixChannels(\&rgba1, 1, \&a1, 1, mixch, 4);}\\
\> \texttt{mixChannels(\&rgba2, 1, \&a2, 1, mixch, 4);}\\
306 307 308 309 310 311 312 313 314 315 316 317
\> \texttt{subtract(Scalar::all(255), a1, ra1);}\\
\> \texttt{bitwise\_or(a1, Scalar(0,0,0,255), a1);}\\
\> \texttt{bitwise\_or(a2, Scalar(0,0,0,255), a2);}\\
\> \texttt{multiply(a2, ra1, a2, 1./255);}\\
\> \texttt{multiply(a1, rgba1, a1, 1./255);}\\
\> \texttt{multiply(a2, rgba2, a2, 1./255);}\\
\> \texttt{add(a1, a2, rgba\_dest);}\\
\texttt{\}}
\end{tabbing}

\item

318 319 320 321 322 323
\texttt{\href{http://docs.opencv.org/modules/core/doc/operations_on_arrays.html\#sum}{sum()}},
\texttt{\href{http://docs.opencv.org/modules/core/doc/operations_on_arrays.html\#mean}{mean()}},
\texttt{\href{http://docs.opencv.org/modules/core/doc/operations_on_arrays.html\#meanstddev}{meanStdDev()}},
\texttt{\href{http://docs.opencv.org/modules/core/doc/operations_on_arrays.html\#norm}{norm()}},
\texttt{\href{http://docs.opencv.org/modules/core/doc/operations_on_arrays.html\#countnonzero}{countNonZero()}},
\texttt{\href{http://docs.opencv.org/modules/core/doc/operations_on_arrays.html\#minmaxloc}{minMaxLoc()}},
324 325 326 327

-- various statistics of matrix elements.

\item
328 329 330 331 332 333
\texttt{\href{http://docs.opencv.org/modules/core/doc/operations_on_arrays.html\#exp}{exp()}},
\texttt{\href{http://docs.opencv.org/modules/core/doc/operations_on_arrays.html\#log}{log()}},
\texttt{\href{http://docs.opencv.org/modules/core/doc/operations_on_arrays.html\#pow}{pow()}},
\texttt{\href{http://docs.opencv.org/modules/core/doc/operations_on_arrays.html\#sqrt}{sqrt()}},
\texttt{\href{http://docs.opencv.org/modules/core/doc/operations_on_arrays.html\#carttopolar}{cartToPolar()}},
\texttt{\href{http://docs.opencv.org/modules/core/doc/operations_on_arrays.html\#polartocart}{polarToCart()}}
334

335
-- the classical math functions.
336 337

\item
338 339 340 341 342 343 344 345 346
\texttt{\href{http://docs.opencv.org/modules/core/doc/operations_on_arrays.html\#scaleadd}{scaleAdd()}},
\texttt{\href{http://docs.opencv.org/modules/core/doc/operations_on_arrays.html\#transpose}{transpose()}},
\texttt{\href{http://docs.opencv.org/modules/core/doc/operations_on_arrays.html\#gemm}{gemm()}},
\texttt{\href{http://docs.opencv.org/modules/core/doc/operations_on_arrays.html\#invert}{invert()}},
\texttt{\href{http://docs.opencv.org/modules/core/doc/operations_on_arrays.html\#solve}{solve()}},
\texttt{\href{http://docs.opencv.org/modules/core/doc/operations_on_arrays.html\#determinant}{determinant()}},
\texttt{\href{http://docs.opencv.org/modules/core/doc/operations_on_arrays.html\#trace}{trace()}},
\texttt{\href{http://docs.opencv.org/modules/core/doc/operations_on_arrays.html\#eigen}{eigen()}},
\texttt{\href{http://docs.opencv.org/modules/core/doc/operations_on_arrays.html\#SVD}{SVD}},
347 348 349 350

-- the algebraic functions + SVD class.

\item
351 352 353 354
\texttt{\href{http://docs.opencv.org/modules/core/doc/operations_on_arrays.html\#dft}{dft()}},
\texttt{\href{http://docs.opencv.org/modules/core/doc/operations_on_arrays.html\#idft}{idft()}},
\texttt{\href{http://docs.opencv.org/modules/core/doc/operations_on_arrays.html\#dct}{dct()}},
\texttt{\href{http://docs.opencv.org/modules/core/doc/operations_on_arrays.html\#idct}{idct()}},
355

356
-- discrete Fourier and cosine transformations
357 358 359

\end{itemize}

360
For some operations a more convenient \href{http://docs.opencv.org/modules/core/doc/basic_structures.html\#matrix-expressions}{algebraic notation} can be used, for example:
361 362
\begin{tabbing}
\texttt{Mat}\={} \texttt{delta = (J.t()*J + lambda*}\\
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
363
\>\texttt{Mat::eye(J.cols, J.cols, J.type()))}\\
364 365 366 367 368 369 370 371 372 373
\>\texttt{.inv(CV\_SVD)*(J.t()*err);}
\end{tabbing}
implements the core of Levenberg-Marquardt optimization algorithm.

\section{Image Processsing}

\subsection{Filtering}

\begin{tabular}{@{}p{\the\MyLen}%
                @{}p{\linewidth-\the\MyLen}@{}}
374
\texttt{\href{http://docs.opencv.org/modules/imgproc/doc/filtering.html\#filter2d}{filter2D()}} & Non-separable linear filter \\
375

376
\texttt{\href{http://docs.opencv.org/modules/imgproc/doc/filtering.html\#sepfilter2d}{sepFilter2D()}} & Separable linear filter \\
377

378 379 380
\texttt{\href{http://docs.opencv.org/modules/imgproc/doc/filtering.html\#blur}{boxFilter()}},  \texttt{\href{http://docs.opencv.org/modules/imgproc/doc/filtering.html\#gaussianblur}{GaussianBlur()}},
\texttt{\href{http://docs.opencv.org/modules/imgproc/doc/filtering.html\#medianblur}{medianBlur()}},
\texttt{\href{http://docs.opencv.org/modules/imgproc/doc/filtering.html\#bilateralfilter}{bilateralFilter()}}
381 382
& Smooth the image with one of the linear or non-linear filters \\

383
\texttt{\href{http://docs.opencv.org/modules/imgproc/doc/filtering.html\#sobel}{Sobel()}},  \texttt{\href{http://docs.opencv.org/modules/imgproc/doc/filtering.html\#scharr}{Scharr()}}
384
& Compute the spatial image derivatives \\
385
\texttt{\href{http://docs.opencv.org/modules/imgproc/doc/filtering.html\#laplacian}{Laplacian()}} & compute Laplacian: $\Delta I = \frac{\partial ^ 2 I}{\partial x^2} + \frac{\partial ^ 2 I}{\partial y^2}$  \\
386

387
\texttt{\href{http://docs.opencv.org/modules/imgproc/doc/filtering.html\#erode}{erode()}}, \texttt{\href{http://docs.opencv.org/modules/imgproc/doc/filtering.html\#dilate}{dilate()}} & Morphological operations \\
388 389 390 391

\end{tabular}

\begin{tabbing}
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
392
Exa\=mple. Filter image in-place with a 3x3 high-pass kernel\\
393
\> (preserve negative responses by shifting the result by 128):\\
Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
394 395
\texttt{filter2D(image, image, image.depth(), (Mat\_<float>(3,3)<<}\\
\> \texttt{-1, -1, -1, -1, 9, -1, -1, -1, -1), Point(1,1), 128);}\\
396 397 398 399 400 401
\end{tabbing}

\subsection{Geometrical Transformations}

\begin{tabular}{@{}p{\the\MyLen}%
                @{}p{\linewidth-\the\MyLen}@{}}
402
\texttt{\href{http://docs.opencv.org/modules/imgproc/doc/geometric_transformations.html\#resize}{resize()}} & Resize image \\
403

404
\texttt{\href{http://docs.opencv.org/modules/imgproc/doc/geometric_transformations.html\#getrectsubpix}{getRectSubPix()}} & Extract an image patch \\
405

406
\texttt{\href{http://docs.opencv.org/modules/imgproc/doc/geometric_transformations.html\#warpaffine}{warpAffine()}} & Warp image affinely\\
407

408
\texttt{\href{http://docs.opencv.org/modules/imgproc/doc/geometric_transformations.html\#warpperspective}{warpPerspective()}} & Warp image perspectively\\
409

410
\texttt{\href{http://docs.opencv.org/modules/imgproc/doc/geometric_transformations.html\#remap}{remap()}} & Generic image warping\\
411

412
\texttt{\href{http://docs.opencv.org/modules/imgproc/doc/geometric_transformations.html\#convertmaps}{convertMaps()}} & Optimize maps for a faster remap() execution\\
413 414 415 416 417 418 419 420 421 422 423 424 425

\end{tabular}

\begin{tabbing}
Example. Decimate image by factor of $\sqrt{2}$:\\
\texttt{Mat dst; resize(src, dst, Size(), 1./sqrt(2), 1./sqrt(2));}
\end{tabbing}

\subsection{Various Image Transformations}

\begin{tabular}{@{}p{\the\MyLen}%
                @{}p{\linewidth-\the\MyLen}@{}}

426
\texttt{\href{http://docs.opencv.org/modules/imgproc/doc/miscellaneous_transformations.html\#cvtcolor}{cvtColor()}} & Convert image from one color space to another \\
427

428
\texttt{\href{http://docs.opencv.org/modules/imgproc/doc/miscellaneous_transformations.html\#threshold}{threshold()}}, \texttt{\href{http://docs.opencv.org/modules/imgproc/doc/miscellaneous_transformations.html\#adaptivethreshold}{adaptivethreshold()}} & Convert grayscale image to binary image using a fixed or a variable threshold \\
429

430
\texttt{\href{http://docs.opencv.org/modules/imgproc/doc/miscellaneous_transformations.html\#floodfill}{floodFill()}} & Find a connected component using region growing algorithm\\
431

432
\texttt{\href{http://docs.opencv.org/modules/imgproc/doc/miscellaneous_transformations.html\#integral}{integral()}} & Compute integral image \\
433

434
\texttt{\href{http://docs.opencv.org/modules/imgproc/doc/miscellaneous_transformations.html\#distancetransform}{distanceTransform()}}
435
 & build distance map or discrete Voronoi diagram for a binary image. \\
436

437 438
\texttt{\href{http://docs.opencv.org/modules/imgproc/doc/miscellaneous_transformations.html\#watershed}{watershed()}},
\texttt{\href{http://docs.opencv.org/modules/imgproc/doc/miscellaneous_transformations.html\#grabcut}{grabCut()}}
439
 & marker-based image segmentation algorithms.
440
 See the samples \texttt{\href{https://github.com/Itseez/opencv/tree/master/samples/cpp/watershed.cpp}{watershed.cpp}} and \texttt{\href{https://github.com/Itseez/opencv/tree/master/samples/cpp/grabcut.cpp}{grabcut.cpp}}.
441 442 443 444 445 446 447 448

\end{tabular}

\subsection{Histograms}

\begin{tabular}{@{}p{\the\MyLen}%
                @{}p{\linewidth-\the\MyLen}@{}}

449
\texttt{\href{http://docs.opencv.org/modules/imgproc/doc/histograms.html\#calchist}{calcHist()}} & Compute image(s) histogram \\
450

451
\texttt{\href{http://docs.opencv.org/modules/imgproc/doc/histograms.html\#calcbackproject}{calcBackProject()}} & Back-project the histogram \\
452

453
\texttt{\href{http://docs.opencv.org/modules/imgproc/doc/histograms.html\#equalizehist}{equalizeHist()}} & Normalize image brightness and contrast\\
454

455
\texttt{\href{http://docs.opencv.org/modules/imgproc/doc/histograms.html\#comparehist}{compareHist()}} & Compare two histograms\\
456 457 458 459 460

\end{tabular}

\begin{tabbing}
Example. Compute Hue-Saturation histogram of an image:\\
461
\texttt{Mat hsv, H;}\\
462 463
\texttt{cvtColor(image, hsv, CV\_BGR2HSV);}\\
\texttt{int planes[]=\{0, 1\}, hsize[] = \{32, 32\};}\\
464
\texttt{calcHist(\&hsv, 1, planes, Mat(), H, 2, hsize, 0);}\\
465 466 467
\end{tabbing}

\subsection{Contours}
468
See \texttt{\href{https://github.com/Itseez/opencv/tree/master/samples/cpp/contours2.cpp}{contours2.cpp}} and \texttt{\href{https://github.com/Itseez/opencv/tree/master/samples/cpp/squares.cpp}{squares.cpp}}
469 470 471 472
samples on what are the contours and how to use them.

\section{Data I/O}

473
\href{http://docs.opencv.org/modules/core/doc/xml_yaml_persistence.html\#xml-yaml-file-storages-writing-to-a-file-storage}{XML/YAML storages} are collections (possibly nested) of scalar values, structures and heterogeneous lists.
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505

\begin{tabbing}
\textbf{Wr}\=\textbf{iting data to YAML (or XML)}\\
\texttt{// Type of the file is determined from the extension}\\
\texttt{FileStorage fs("test.yml", FileStorage::WRITE);}\\
\texttt{fs << "i" << 5 << "r" << 3.1 << "str" << "ABCDEFGH";}\\
\texttt{fs << "mtx" << Mat::eye(3,3,CV\_32F);}\\
\texttt{fs << "mylist" << "[" << CV\_PI << "1+1" <<}\\
\>\texttt{"\{:" << "month" << 12 << "day" << 31 << "year"}\\
\>\texttt{<< 1969 << "\}" << "]";}\\
\texttt{fs << "mystruct" << "\{" << "x" << 1 << "y" << 2 <<}\\
\>\texttt{"width" << 100 << "height" << 200 << "lbp" << "[:";}\\
\texttt{const uchar arr[] = \{0, 1, 1, 0, 1, 1, 0, 1\};}\\
\texttt{fs.writeRaw("u", arr, (int)(sizeof(arr)/sizeof(arr[0])));}\\
\texttt{fs << "]" << "\}";}
\end{tabbing}

\emph{Scalars (integers, floating-point numbers, text strings), matrices, STL vectors of scalars and some other types can be written to the file storages using \texttt{<<} operator}

\begin{tabbing}
\textbf{Re}\=\textbf{ading the data back}\\
\texttt{// Type of the file is determined from the content}\\
\texttt{FileStorage fs("test.yml", FileStorage::READ);}\\
\texttt{int i1 = (int)fs["i"]; double r1 = (double)fs["r"];}\\
\texttt{string str1 = (string)fs["str"];}\\

\texttt{Mat M; fs["mtx"] >> M;}\\

\texttt{FileNode tl = fs["mylist"];}\\
\texttt{CV\_Assert(tl.type() == FileNode::SEQ \&\& tl.size() == 3);}\\
\texttt{double tl0 = (double)tl[0]; string tl1 = (string)tl[1];}\\

Vadim Pisarevsky's avatar
Vadim Pisarevsky committed
506
\texttt{int m = (int)tl[2]["month"], d = (int)tl[2]["day"];}\\
507 508 509 510 511 512
\texttt{int year = (int)tl[2]["year"];}\\

\texttt{FileNode tm = fs["mystruct"];}\\

\texttt{Rect r; r.x = (int)tm["x"], r.y = (int)tm["y"];}\\
\texttt{r.width = (int)tm["width"], r.height = (int)tm["height"];}\\
513

514 515 516 517 518 519 520 521 522 523 524
\texttt{int lbp\_val = 0;}\\
\texttt{FileNodeIterator it = tm["lbp"].begin();}\\

\texttt{for(int k = 0; k < 8; k++, ++it)}\\
\>\texttt{lbp\_val |= ((int)*it) << k;}\\
\end{tabbing}

\emph{Scalars are read using the corresponding FileNode's cast operators. Matrices and some other types are read using \texttt{>>} operator. Lists can be read using FileNodeIterator's.}

\begin{tabbing}
\textbf{Wr}\=\textbf{iting and reading raster images}\\
525 526 527
\texttt{\href{http://docs.opencv.org/modules/highgui/doc/reading_and_writing_images_and_video.html\#imwrite}{imwrite}("myimage.jpg", image);}\\
\texttt{Mat image\_color\_copy = \href{http://docs.opencv.org/modules/highgui/doc/reading_and_writing_images_and_video.html\#imread}{imread}("myimage.jpg", 1);}\\
\texttt{Mat image\_grayscale\_copy = \href{http://docs.opencv.org/modules/highgui/doc/reading_and_writing_images_and_video.html\#imread}{imread}("myimage.jpg", 0);}\\
528 529
\end{tabbing}

530
\emph{The functions can read/write images in the following formats: \textbf{BMP (.bmp), JPEG (.jpg, .jpeg), TIFF (.tif, .tiff), PNG (.png), PBM/PGM/PPM (.p?m), Sun Raster (.sr), JPEG 2000 (.jp2)}. Every format supports 8-bit, 1- or 3-channel images. Some formats (PNG, JPEG 2000) support 16 bits per channel.}
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547

\begin{tabbing}
\textbf{Re}\=\textbf{ading video from a file or from a camera}\\
\texttt{VideoCapture cap;}\\
\texttt{if(argc > 1) cap.open(string(argv[1])); else cap.open(0)};\\
\texttt{Mat frame; namedWindow("video", 1);}\\
\texttt{for(;;) \{}\\
\>\texttt{cap >> frame; if(!frame.data) break;}\\
\>\texttt{imshow("video", frame); if(waitKey(30) >= 0) break;}\\
\texttt{\} }
\end{tabbing}

\section{Simple GUI (highgui module)}

\begin{tabular}{@{}p{\the\MyLen}%
                @{}p{\linewidth-\the\MyLen}@{}}

548
\texttt{\href{http://docs.opencv.org/modules/highgui/doc/user_interface.html\#namedwindow}{namedWindow(winname,flags)}} & \ \ \ \ \ \ \ \ \ \ Create named highgui window \\
549

550
\texttt{\href{http://docs.opencv.org/modules/highgui/doc/user_interface.html\#destroywindow}{destroyWindow(winname)}} & \ \ \ Destroy the specified window \\
551

552
\texttt{\href{http://docs.opencv.org/modules/highgui/doc/user_interface.html\#imshow}{imshow(winname, mtx)}} & Show image in the window \\
553

554
\texttt{\href{http://docs.opencv.org/modules/highgui/doc/user_interface.html\#waitkey}{waitKey(delay)}} & Wait for a key press during the specified time interval (or forever). Process events while waiting. \emph{Do not forget to call this function several times a second in your code.} \\
555

556
\texttt{\href{http://docs.opencv.org/modules/highgui/doc/user_interface.html\#createtrackbar}{createTrackbar(...)}} & Add trackbar (slider) to the specified window \\
557

558
\texttt{\href{http://docs.opencv.org/modules/highgui/doc/user_interface.html\#setmousecallback}{setMouseCallback(...)}} & \ \ Set the callback on mouse clicks and movements in the specified window \\
559 560 561

\end{tabular}

562
See \texttt{\href{https://github.com/Itseez/opencv/tree/master/samples/cpp/camshiftdemo.cpp}{camshiftdemo.cpp}} and other \href{https://github.com/Itseez/opencv/tree/master/samples/}{OpenCV samples} on how to use the GUI functions.
563 564 565 566 567 568

\section{Camera Calibration, Pose Estimation and Depth Estimation}

\begin{tabular}{@{}p{\the\MyLen}%
                @{}p{\linewidth-\the\MyLen}@{}}

569
\texttt{\href{http://docs.opencv.org/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html\#calibratecamera}{calibrateCamera()}} & Calibrate camera from several views of a calibration pattern. \\
570

571
\texttt{\href{http://docs.opencv.org/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html\#findchessboardcorners}{findChessboardCorners()}} & \ \ \ \ \ \ Find feature points on the checkerboard calibration pattern. \\
572

573
\texttt{\href{http://docs.opencv.org/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html\#solvepnp}{solvePnP()}} & Find the object pose from the known projections of its feature points. \\
574

575
\texttt{\href{http://docs.opencv.org/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html\#stereocalibrate}{stereoCalibrate()}} & Calibrate stereo camera. \\
576

577
\texttt{\href{http://docs.opencv.org/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html\#stereorectify}{stereoRectify()}} & Compute the rectification transforms for a calibrated stereo camera.\\
578

579
\texttt{\href{http://docs.opencv.org/modules/imgproc/doc/geometric_transformations.html\#initundistortrectifymap}{initUndistortRectifyMap()}} & \ \ \ \ \ \ Compute rectification map (for \texttt{remap()}) for each stereo camera head.\\
580

581
\texttt{\href{http://docs.opencv.org/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html\#StereoBM}{StereoBM}}, \texttt{\href{http://docs.opencv.org/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html\#StereoSGBM}{StereoSGBM}} & The stereo correspondence engines to be run on rectified stereo pairs.\\
582

583
\texttt{\href{http://docs.opencv.org/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html\#reprojectimageto3d}{reprojectImageTo3D()}} & Convert disparity map to 3D point cloud.\\
584

585
\texttt{\href{http://docs.opencv.org/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html\#findhomography}{findHomography()}} & Find best-fit perspective transformation between two 2D point sets. \\
586 587 588

\end{tabular}

589 590
To calibrate a camera, you can use \texttt{\href{https://github.com/Itseez/opencv/tree/master/samples/cpp/calibration.cpp}{calibration.cpp}} or
\texttt{\href{https://github.com/Itseez/opencv/tree/master/samples/cpp/stereo\_calib.cpp}{stereo\_calib.cpp}} samples.
591
To get the disparity maps and the point clouds, use
592
\texttt{\href{https://github.com/Itseez/opencv/tree/master/samples/cpp/stereo\_match.cpp}{stereo\_match.cpp}} sample.
593 594 595 596 597

\section{Object Detection}

\begin{tabular}{@{}p{\the\MyLen}%
                @{}p{\linewidth-\the\MyLen}@{}}
598
                \texttt{\href{http://docs.opencv.org/modules/imgproc/doc/object_detection.html\#matchtemplate}{matchTemplate}} & Compute proximity map for given template.\\
599

600
\texttt{\href{http://docs.opencv.org/modules/objdetect/doc/cascade_classification.html\#cascadeclassifier}{CascadeClassifier}} & Viola's Cascade of Boosted classifiers using Haar or LBP features. Suits for detecting faces, facial features and some other objects without diverse textures. See \texttt{\href{https://github.com/Itseez/opencv/tree/master/samples/c/facedetect.cpp}{facedetect.cpp}}\\
601

602
\texttt{{HOGDescriptor}} & N. Dalal's object detector using Histogram-of-Oriented-Gradients (HOG) features. Suits for detecting people, cars and other objects with well-defined silhouettes. See \texttt{\href{https://github.com/Itseez/opencv/tree/master/samples/cpp/peopledetect.cpp}{peopledetect.cpp}}\\
603 604 605

\end{tabular}

606
%
607 608
%    feature detection:
%        features2d toolbox
609
%
610 611 612
%    object detection:
%        using a classifier running on a sliding window: cascadeclassifier + hog.
%        using salient point features: features2d -> matching
613
%
614 615 616 617 618 619 620
%    statistical data processing:
%        clustering (k-means),
%        classification + regression (SVM, boosting, k-nearest),
%        compressing data (PCA)

\end{multicols}
\end{document}