cascadeclassifier_nvidia_api.cpp 13.4 KB
Newer Older
1
#pragma warning( disable : 4201 4408 4127 4100)
2 3
#include <cstdio>

4
#include "cvconfig.h"
5 6
#if !defined(HAVE_CUDA)
    int main( int argc, const char** argv ) { return printf("Please compile the library with CUDA support."), -1; }
7
#else
8

9 10
#include <cuda_runtime.h>
#include "opencv2/opencv.hpp"
11 12 13 14
#include "NCVHaarObjectDetection.hpp"

using namespace cv;

15 16 17 18
const Size2i preferredVideoFrameSize(640, 480);

std::string preferredClassifier = "haarcascade_frontalface_alt.xml";
std::string wndTitle = "NVIDIA Computer Vision SDK :: Face Detection in Video Feed";
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35


void printSyntax(void)
{
    printf("Syntax: FaceDetectionFeed.exe [-c cameranum | -v filename] classifier.xml\n");
}

void imagePrintf(Mat& img, int lineOffsY, Scalar color, const char *format, ...)
{    
    int fontFace = CV_FONT_HERSHEY_PLAIN;
    double fontScale = 1;       
    
    int baseline;
    Size textSize = cv::getTextSize("T", fontFace, fontScale, 1, &baseline);

    va_list arg_ptr;
    va_start(arg_ptr, format);
36 37 38

    char strBuf[4096];
    vsprintf(&strBuf[0], format, arg_ptr);
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

    Point org(1, 3 * textSize.height * (lineOffsY + 1) / 2);    
    putText(img, &strBuf[0], org, fontFace, fontScale, color);
    va_end(arg_ptr);    
}

NCVStatus process(Mat *srcdst,
                  Ncv32u width, Ncv32u height,
                  NcvBool bShowAllHypotheses, NcvBool bLargestFace,
                  HaarClassifierCascadeDescriptor &haar,
                  NCVVector<HaarStage64> &d_haarStages, NCVVector<HaarClassifierNode128> &d_haarNodes,
                  NCVVector<HaarFeature64> &d_haarFeatures, NCVVector<HaarStage64> &h_haarStages,
                  INCVMemAllocator &gpuAllocator,
                  INCVMemAllocator &cpuAllocator,
                  cudaDeviceProp &devProp)
{
    ncvAssertReturn(!((srcdst == NULL) ^ gpuAllocator.isCounting()), NCV_NULL_PTR);

    NCVStatus ncvStat;

    NCV_SET_SKIP_COND(gpuAllocator.isCounting());

    NCVMatrixAlloc<Ncv8u> d_src(gpuAllocator, width, height);
    ncvAssertReturn(d_src.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC);
    NCVMatrixAlloc<Ncv8u> h_src(cpuAllocator, width, height);
    ncvAssertReturn(h_src.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC);
65
    NCVVectorAlloc<NcvRect32u> d_rects(gpuAllocator, 100);
66 67
    ncvAssertReturn(d_rects.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC);

68 69 70 71 72 73
    NCV_SKIP_COND_BEGIN

    for (Ncv32u i=0; i<(Ncv32u)srcdst->rows; i++)
    {
        memcpy(h_src.ptr() + i * h_src.stride(), srcdst->ptr(i), srcdst->cols);
    }
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

    ncvStat = h_src.copySolid(d_src, 0);
    ncvAssertReturnNcvStat(ncvStat);
    ncvAssertCUDAReturn(cudaStreamSynchronize(0), NCV_CUDA_ERROR);

    NCV_SKIP_COND_END

    NcvSize32u roi;
    roi.width = d_src.width();
    roi.height = d_src.height();

    Ncv32u numDetections;
    ncvStat = ncvDetectObjectsMultiScale_device(
        d_src, roi, d_rects, numDetections, haar, h_haarStages,
        d_haarStages, d_haarNodes, d_haarFeatures,
        haar.ClassifierSize,
        bShowAllHypotheses ? 0 : 4,
        1.2f, 1,
92 93 94
        (bLargestFace ? NCVPipeObjDet_FindLargestObject : 0)
        | NCVPipeObjDet_VisualizeInPlace,
        gpuAllocator, cpuAllocator, devProp, 0);
95 96 97 98 99 100 101 102 103
    ncvAssertReturnNcvStat(ncvStat);
    ncvAssertCUDAReturn(cudaStreamSynchronize(0), NCV_CUDA_ERROR);

    NCV_SKIP_COND_BEGIN

    ncvStat = d_src.copySolid(h_src, 0);
    ncvAssertReturnNcvStat(ncvStat);
    ncvAssertCUDAReturn(cudaStreamSynchronize(0), NCV_CUDA_ERROR);

104 105 106 107 108
    for (Ncv32u i=0; i<(Ncv32u)srcdst->rows; i++)
    {
        memcpy(srcdst->ptr(i), h_src.ptr() + i * h_src.stride(), srcdst->cols);
    }

109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
    NCV_SKIP_COND_END

    return NCV_SUCCESS;
}

int main( int argc, const char** argv )
{
    NCVStatus ncvStat;

    printf("NVIDIA Computer Vision SDK\n");
    printf("Face Detection in video and live feed\n");
    printf("=========================================\n");
    printf("  Esc   - Quit\n");
    printf("  Space - Switch between NCV and OpenCV\n");
    printf("  L     - Switch between FullSearch and LargestFace modes\n");
    printf("  U     - Toggle unfiltered hypotheses visualization in FullSearch\n");
125
	
126
    VideoCapture capture;    
127 128 129
    bool bQuit = false;

    Size2i frameSize;
130

131 132 133 134 135 136 137
    if (argc != 4 && argc != 1)
    {
        printSyntax();
        return -1;
    }

   if (argc == 1 || strcmp(argv[1], "-c") == 0)
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
    {
        // Camera input is specified
        int camIdx = (argc == 3) ? atoi(argv[2]) : 0;
        if(!capture.open(camIdx))        
            return printf("Error opening camera\n"), -1;        
            
        capture.set(CV_CAP_PROP_FRAME_WIDTH, preferredVideoFrameSize.width);
        capture.set(CV_CAP_PROP_FRAME_HEIGHT, preferredVideoFrameSize.height);
        capture.set(CV_CAP_PROP_FPS, 25);
        frameSize = preferredVideoFrameSize;
    }
    else if (strcmp(argv[1], "-v") == 0)
    {
        // Video file input (avi)
        if(!capture.open(argv[2]))
            return printf("Error opening video file\n"), -1;

        frameSize.width  = (int)capture.get(CV_CAP_PROP_FRAME_WIDTH);
        frameSize.height = (int)capture.get(CV_CAP_PROP_FRAME_HEIGHT);
    }
    else
        return printSyntax(), -1;

    NcvBool bUseOpenCV = true;
162 163
    NcvBool bLargestFace = false; //LargestFace=true is used usually during training
    NcvBool bShowAllHypotheses = false;
164 165

    CascadeClassifier classifierOpenCV;
166 167 168 169 170 171 172 173 174 175
    std::string classifierFile;
    if (argc == 1)
    {
        classifierFile = preferredClassifier;
    }
    else
    {
        classifierFile.assign(argv[3]);
    }

176
    if (!classifierOpenCV.load(classifierFile))
177 178 179 180 181
    {
        printf("Error (in OpenCV) opening classifier\n");
        printSyntax();
        return -1;
    }
182 183 184 185 186 187 188 189 190 191 192 193 194 195

    int devId;
    ncvAssertCUDAReturn(cudaGetDevice(&devId), -1);
    cudaDeviceProp devProp;
    ncvAssertCUDAReturn(cudaGetDeviceProperties(&devProp, devId), -1);
    printf("Using GPU %d %s, arch=%d.%d\n", devId, devProp.name, devProp.major, devProp.minor);

    //==============================================================================
    //
    // Load the classifier from file (assuming its size is about 1 mb)
    // using a simple allocator
    //
    //==============================================================================

196
    NCVMemNativeAllocator gpuCascadeAllocator(NCVMemoryTypeDevice, devProp.textureAlignment);
197
    ncvAssertPrintReturn(gpuCascadeAllocator.isInitialized(), "Error creating cascade GPU allocator", -1);
198
    NCVMemNativeAllocator cpuCascadeAllocator(NCVMemoryTypeHostPinned, devProp.textureAlignment);
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
    ncvAssertPrintReturn(cpuCascadeAllocator.isInitialized(), "Error creating cascade CPU allocator", -1);

    Ncv32u haarNumStages, haarNumNodes, haarNumFeatures;
    ncvStat = ncvHaarGetClassifierSize(classifierFile, haarNumStages, haarNumNodes, haarNumFeatures);
    ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error reading classifier size (check the file)", -1);

    NCVVectorAlloc<HaarStage64> h_haarStages(cpuCascadeAllocator, haarNumStages);
    ncvAssertPrintReturn(h_haarStages.isMemAllocated(), "Error in cascade CPU allocator", -1);
    NCVVectorAlloc<HaarClassifierNode128> h_haarNodes(cpuCascadeAllocator, haarNumNodes);
    ncvAssertPrintReturn(h_haarNodes.isMemAllocated(), "Error in cascade CPU allocator", -1);
    NCVVectorAlloc<HaarFeature64> h_haarFeatures(cpuCascadeAllocator, haarNumFeatures);
    ncvAssertPrintReturn(h_haarFeatures.isMemAllocated(), "Error in cascade CPU allocator", -1);

    HaarClassifierCascadeDescriptor haar;
    ncvStat = ncvHaarLoadFromFile_host(classifierFile, haar, h_haarStages, h_haarNodes, h_haarFeatures);
    ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error loading classifier", -1);

    NCVVectorAlloc<HaarStage64> d_haarStages(gpuCascadeAllocator, haarNumStages);
    ncvAssertPrintReturn(d_haarStages.isMemAllocated(), "Error in cascade GPU allocator", -1);
    NCVVectorAlloc<HaarClassifierNode128> d_haarNodes(gpuCascadeAllocator, haarNumNodes);
    ncvAssertPrintReturn(d_haarNodes.isMemAllocated(), "Error in cascade GPU allocator", -1);
    NCVVectorAlloc<HaarFeature64> d_haarFeatures(gpuCascadeAllocator, haarNumFeatures);
    ncvAssertPrintReturn(d_haarFeatures.isMemAllocated(), "Error in cascade GPU allocator", -1);

    ncvStat = h_haarStages.copySolid(d_haarStages, 0);
    ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error copying cascade to GPU", -1);
    ncvStat = h_haarNodes.copySolid(d_haarNodes, 0);
    ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error copying cascade to GPU", -1);
    ncvStat = h_haarFeatures.copySolid(d_haarFeatures, 0);
    ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error copying cascade to GPU", -1);

    //==============================================================================
    //
    // Calculate memory requirements and create real allocators
    //
    //==============================================================================

    NCVMemStackAllocator gpuCounter(devProp.textureAlignment);
    ncvAssertPrintReturn(gpuCounter.isInitialized(), "Error creating GPU memory counter", -1);
    NCVMemStackAllocator cpuCounter(devProp.textureAlignment);
    ncvAssertPrintReturn(cpuCounter.isInitialized(), "Error creating CPU memory counter", -1);

    ncvStat = process(NULL, frameSize.width, frameSize.height,
                      false, false, haar,
                      d_haarStages, d_haarNodes,
                      d_haarFeatures, h_haarStages,
                      gpuCounter, cpuCounter, devProp);
    ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error in memory counting pass", -1);

    NCVMemStackAllocator gpuAllocator(NCVMemoryTypeDevice, gpuCounter.maxSize(), devProp.textureAlignment);
    ncvAssertPrintReturn(gpuAllocator.isInitialized(), "Error creating GPU memory allocator", -1);
    NCVMemStackAllocator cpuAllocator(NCVMemoryTypeHostPinned, cpuCounter.maxSize(), devProp.textureAlignment);
    ncvAssertPrintReturn(cpuAllocator.isInitialized(), "Error creating CPU memory allocator", -1);

    printf("Initialized for frame size [%dx%d]\n", frameSize.width, frameSize.height);

    //==============================================================================
    //
    // Main processing loop
    //
    //==============================================================================

261
	namedWindow(wndTitle, 1);
262 263
    Mat frame, gray, frameDisp;

264
    do
265
    {
266
		// For camera and video file, capture the next image                
267 268 269
        capture >> frame;
        if (frame.empty())
            break;
270 271

        Mat gray;
272 273
        cvtColor(frame, gray, CV_BGR2GRAY);

274
        //
275
        // process
276 277
        //

278 279 280 281 282 283
        NcvSize32u minSize = haar.ClassifierSize;
        if (bLargestFace)
        {
            Ncv32u ratioX = preferredVideoFrameSize.width / minSize.width;
            Ncv32u ratioY = preferredVideoFrameSize.height / minSize.height;
            Ncv32u ratioSmallest = std::min(ratioX, ratioY);
284
            ratioSmallest = std::max((Ncv32u)(ratioSmallest / 2.5f), (Ncv32u)1);
285 286 287
            minSize.width *= ratioSmallest;
            minSize.height *= ratioSmallest;
        }
288 289

        Ncv32f avgTime;
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
        NcvTimer timer = ncvStartTimer();

        if (!bUseOpenCV)
        {
            ncvStat = process(&gray, frameSize.width, frameSize.height,
                              bShowAllHypotheses, bLargestFace, haar,
                              d_haarStages, d_haarNodes,
                              d_haarFeatures, h_haarStages,
                              gpuAllocator, cpuAllocator, devProp);
            ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error in memory counting pass", -1);
        }
        else
        {
            vector<Rect> rectsOpenCV;

            classifierOpenCV.detectMultiScale(
                gray,
                rectsOpenCV,
                1.2f,
                bShowAllHypotheses && !bLargestFace ? 0 : 4,
310 311
                (bLargestFace ? CV_HAAR_FIND_BIGGEST_OBJECT : 0)
                | CV_HAAR_SCALE_IMAGE,
312 313 314 315 316 317
                Size(minSize.width, minSize.height));

            for (size_t rt = 0; rt < rectsOpenCV.size(); ++rt)
                rectangle(gray, rectsOpenCV[rt], Scalar(255));
        }

318 319
        avgTime = (Ncv32f)ncvEndQueryTimerMs(timer);

320 321 322 323 324 325 326 327 328
        cvtColor(gray, frameDisp, CV_GRAY2BGR);

        imagePrintf(frameDisp, 0, CV_RGB(255,  0,0), "Space - Switch NCV%s / OpenCV%s", bUseOpenCV?"":" (ON)", bUseOpenCV?" (ON)":"");
        imagePrintf(frameDisp, 1, CV_RGB(255,  0,0), "L - Switch FullSearch%s / LargestFace%s modes", bLargestFace?"":" (ON)", bLargestFace?" (ON)":"");
        imagePrintf(frameDisp, 2, CV_RGB(255,  0,0), "U - Toggle unfiltered hypotheses visualization in FullSearch %s", bShowAllHypotheses?"(ON)":"(OFF)");
        imagePrintf(frameDisp, 3, CV_RGB(118,185,0), "   Running at %f FPS on %s", 1000.0f / avgTime, bUseOpenCV?"CPU":"GPU");

        cv::imshow(wndTitle, frameDisp);

329
        switch (cvWaitKey(3))
330 331 332 333
        {
        case ' ':
            bUseOpenCV = !bUseOpenCV;
            break;
334 335
        case 'L':
        case 'l':
336 337
            bLargestFace = !bLargestFace;
            break;
338 339
        case 'U':
        case 'u':
340 341 342
            bShowAllHypotheses = !bShowAllHypotheses;
            break;
        case 27:
343 344
            bQuit = true;
            break;
345
        }
346 347 348 349 350

    } while (!bQuit);

    cvDestroyWindow(wndTitle.c_str());

351 352
    return 0;
}
353 354


355
#endif