
OpenCV User Guide

v2.2

December, 2010



2



Contents

I C++ API Reference 5

1 cv::Mat. Basic operations with images. 7
1.1 Basic operations with images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Input/Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Accessing pixel intensity values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Index 8

3



4 CONTENTS



Part I

C++ API Reference

5





Chapter 1

cv::Mat. Basic operations with images.

1.1 Basic operations with images

Input/Output
Load an image from a file:

Mat img = imread(filename);

If you read a jpg file, a 3 channel image is created by default. If you need a grayscale image,
use:

Mat img = imread(filename, 0);

Save an image to a file:

Mat img = imwrite(filename);

Accessing pixel intensity values
In order to get pixel intensity value, you have to know the type of an image and the number
of channels. Here is an example for a single channel grey scale image (type 8UC1) and pixel
coordinates x and y:

Scalar intensity = img.at<uchar>(x, y);

intensity.val[0] contains a value from 0 to 255.
Now let us consider a 3 channel image with bgr color ordering (the default format returned by

imread):

Vec3b intensity = img.at<Vec3b>(x, y);
uchar blue = intensity.val[0];

7



8 CHAPTER 1. CV::MAT. BASIC OPERATIONS WITH IMAGES.

uchar green = intensity.val[1];
uchar red = intensity.val[2];

You can use the same method for floating-point images (for example, you can get such an
image by running Sobel on a 3 channel image):

Vec3f intensity = img.at<Vec3f>(x, y);
float blue = intensity.val[0];
float green = intensity.val[1];
float red = intensity.val[2];

The same method can be used to change pixel intensities:

img.at<uchar>(x, y) = 128;

There are functions in OpenCV, especially from calib3d module, such as projectPoints,
that take an array of 2D or 3D points in the form of Mat. Matrix should contain exactly one column,
each row corresponds to a point, matrix type should be 32FC2 or 32FC3 correspondingly. Such a
matrix can be easily constructed from std::vector:

vector<Point2f> points;
//... fill the array
Mat _points = Mat(points);

One can access a point in this matrix using the same method Mat::at:

Point2f point = _points.at<Point2f>(i, 0);


	I C++ API Reference
	cv::Mat. Basic operations with images.
	Basic operations with images
	Input/Output
	Accessing pixel intensity values



	Index

