//***************************************************************************** // Copyright 2017-2019 Intel Corporation // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. //***************************************************************************** #include <algorithm> #include <cinttypes> #include <cmath> #include <cstdlib> #include <random> #include <string> #include "gtest/gtest.h" #include "ngraph/ngraph.hpp" #include "util/all_close.hpp" #include "util/all_close_f.hpp" #include "util/ndarray.hpp" #include "util/random.hpp" #include "util/test_control.hpp" #include "util/test_tools.hpp" using namespace std; using namespace ngraph; static string s_manifest = "${MANIFEST}"; NGRAPH_TEST(${BACKEND_NAME}, max_pool_1d_1channel_1image) { Shape shape_a{1, 1, 14}; Shape window_shape{3}; auto A = make_shared<op::Parameter>(element::f32, shape_a); Shape shape_r{1, 1, 12}; auto f = make_shared<Function>(make_shared<op::MaxPool>(A, window_shape), ParameterVector{A}); auto backend = runtime::Backend::create("${BACKEND_NAME}"); // Create some tensors for input/output auto a = backend->create_tensor(element::f32, shape_a); copy_data(a, test::NDArray<float, 3>{{{0, 1, 0, 2, 1, 0, 3, 2, 0, 0, 2, 0, 0, 0}}}.get_vector()); auto result = backend->create_tensor(element::f32, shape_r); auto handle = backend->compile(f); handle->call_with_validate({result}, {a}); EXPECT_TRUE(test::all_close_f( (test::NDArray<float, 3>({{{1, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 0}}}).get_vector()), read_vector<float>(result), MIN_FLOAT_TOLERANCE_BITS)); } NGRAPH_TEST(${BACKEND_NAME}, max_pool_uint8) { vector<uint8_t> a_data = {0, 1, 0, 2, 1, 0, 3, 2, 0, 0, 2, 0, 0, 0, 1}; Shape shape_a{1, 1, 3, 5}; Shape window_shape{2, 3}; auto window_movement_strides = Strides{1, 1}; Shape padding_below{0, 0}; Shape padding_above{0, 0}; Shape shape_r{1, 1, 2, 3}; auto A = make_shared<op::Parameter>(element::u8, shape_a); auto QMP = make_shared<ngraph::op::MaxPool>( A, window_shape, window_movement_strides, padding_below, padding_above); auto f = make_shared<Function>(NodeVector{QMP}, ParameterVector{A}); auto backend = runtime::Backend::create("${BACKEND_NAME}"); // Create some tensors for input/output auto a = backend->create_tensor(element::u8, shape_a); copy_data(a, a_data); auto result = backend->create_tensor(element::u8, shape_r); auto handle = backend->compile(f); handle->call_with_validate({result}, {a}); EXPECT_EQ((vector<uint8_t>{3, 3, 2, 3, 3, 2}), read_vector<uint8_t>(result)); } NGRAPH_TEST(${BACKEND_NAME}, max_pool_int8) { vector<int8_t> a_data = {0, 1, 0, -2, 1, 0, -3, 2, 0, 0, 2, 0, 0, 0, 1}; Shape shape_a{1, 1, 3, 5}; Shape window_shape{2, 3}; auto window_movement_strides = Strides{1, 1}; Shape padding_below{0, 0}; Shape padding_above{0, 0}; Shape shape_r{1, 1, 2, 3}; auto A = make_shared<op::Parameter>(element::i8, shape_a); auto QMP = make_shared<ngraph::op::MaxPool>( A, window_shape, window_movement_strides, padding_below, padding_above); auto f = make_shared<Function>(NodeVector{QMP}, ParameterVector{A}); auto backend = runtime::Backend::create("${BACKEND_NAME}"); // Create some tensors for input/output auto a = backend->create_tensor(element::i8, shape_a); copy_data(a, a_data); auto result = backend->create_tensor(element::i8, shape_r); auto handle = backend->compile(f); handle->call_with_validate({result}, {a}); EXPECT_EQ((vector<int8_t>{2, 2, 2, 2, 2, 2}), read_vector<int8_t>(result)); } NGRAPH_TEST(${BACKEND_NAME}, avg_pool_uint8) { vector<uint8_t> a_data = {0, 1, 0, 2, 1, 0, 3, 2, 0, 0, 2, 0, 0, 0, 1}; Shape shape_a{1, 1, 3, 5}; Shape window_shape{2, 3}; auto window_movement_strides = Strides{1, 1}; Shape padding_below{0, 0}; Shape padding_above{0, 0}; Shape shape_r{1, 1, 2, 3}; auto A = make_shared<op::Parameter>(element::u8, shape_a); auto QAP = make_shared<ngraph::op::AvgPool>( A, window_shape, window_movement_strides, padding_below, padding_above); auto f = make_shared<Function>(NodeVector{QAP}, ParameterVector{A}); auto backend = runtime::Backend::create("${BACKEND_NAME}"); // Create some tensors for input/output auto a = backend->create_tensor(element::u8, shape_a); copy_data(a, a_data); auto result = backend->create_tensor(element::u8, shape_r); auto handle = backend->compile(f); handle->call_with_validate({result}, {a}); EXPECT_EQ((vector<uint8_t>{1, 1, 1, 1, 1, 0}), read_vector<uint8_t>(result)); } NGRAPH_TEST(${BACKEND_NAME}, avg_pool_int8) { vector<int8_t> a_data = {10, 1, 0, -2, 1, 0, -3, 4, 0, 0, 2, 0, 0, 0, 1}; Shape shape_a{1, 1, 3, 5}; Shape window_shape{2, 3}; auto window_movement_strides = Strides{1, 1}; Shape padding_below{0, 0}; Shape padding_above{0, 0}; Shape shape_r{1, 1, 2, 3}; auto A = make_shared<op::Parameter>(element::i8, shape_a); auto QAP = make_shared<ngraph::op::AvgPool>( A, window_shape, window_movement_strides, padding_below, padding_above); auto f = make_shared<Function>(NodeVector{QAP}, ParameterVector{A}); auto backend = runtime::Backend::create("${BACKEND_NAME}"); // Create some tensors for input/output auto a = backend->create_tensor(element::i8, shape_a); copy_data(a, a_data); auto result = backend->create_tensor(element::i8, shape_r); auto handle = backend->compile(f); handle->call_with_validate({result}, {a}); EXPECT_EQ((vector<int8_t>{2, 0, 0, 0, 0, 1}), read_vector<int8_t>(result)); } NGRAPH_TEST(${BACKEND_NAME}, max_pool_1d_1channel_2image) { Shape shape_a{2, 1, 14}; Shape window_shape{3}; auto A = make_shared<op::Parameter>(element::f32, shape_a); Shape shape_r{2, 1, 12}; auto f = make_shared<Function>(make_shared<op::MaxPool>(A, window_shape), ParameterVector{A}); auto backend = runtime::Backend::create("${BACKEND_NAME}"); // Create some tensors for input/output auto a = backend->create_tensor(element::f32, shape_a); copy_data(a, test::NDArray<float, 3>({{{0, 1, 0, 2, 1, 0, 3, 2, 0, 0, 2, 0, 0, 0}}, {{0, 2, 1, 1, 0, 0, 0, 2, 0, 1, 0, 0, 1, 2}}}) .get_vector()); auto result = backend->create_tensor(element::f32, shape_r); auto handle = backend->compile(f); handle->call_with_validate({result}, {a}); EXPECT_TRUE(test::all_close_f((test::NDArray<float, 3>({{{1, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 0}}, {{2, 2, 1, 1, 0, 2, 2, 2, 1, 1, 1, 2}}}) .get_vector()), read_vector<float>(result), MIN_FLOAT_TOLERANCE_BITS)); } NGRAPH_TEST(${BACKEND_NAME}, max_pool_1d_2channel_2image) { Shape shape_a{2, 2, 14}; Shape window_shape{3}; auto A = make_shared<op::Parameter>(element::f32, shape_a); Shape shape_r{2, 2, 12}; auto f = make_shared<Function>(make_shared<op::MaxPool>(A, window_shape), ParameterVector{A}); auto backend = runtime::Backend::create("${BACKEND_NAME}"); // Create some tensors for input/output auto a = backend->create_tensor(element::f32, shape_a); copy_data(a, test::NDArray<float, 3>({{{0, 1, 0, 2, 1, 0, 3, 2, 0, 0, 2, 0, 0, 0}, {0, 0, 0, 2, 0, 0, 2, 3, 0, 1, 2, 0, 1, 0}}, {{0, 2, 1, 1, 0, 0, 0, 2, 0, 1, 0, 0, 1, 2}, {2, 1, 0, 0, 1, 0, 2, 0, 0, 0, 1, 1, 2, 0}}}) .get_vector()); auto result = backend->create_tensor(element::f32, shape_r); auto handle = backend->compile(f); handle->call_with_validate({result}, {a}); EXPECT_TRUE(test::all_close_f( (test::NDArray<float, 3>( {{{1, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 0}, {0, 2, 2, 2, 2, 3, 3, 3, 2, 2, 2, 1}}, {{2, 2, 1, 1, 0, 2, 2, 2, 1, 1, 1, 2}, {2, 1, 1, 1, 2, 2, 2, 0, 1, 1, 2, 2}}}) .get_vector()), read_vector<float>(result), MIN_FLOAT_TOLERANCE_BITS)); } NGRAPH_TEST(${BACKEND_NAME}, max_pool_2d_2channel_2image) { Shape shape_a{2, 2, 5, 5}; Shape window_shape{2, 3}; auto A = make_shared<op::Parameter>(element::f32, shape_a); Shape shape_r{2, 2, 4, 3}; auto f = make_shared<Function>(make_shared<op::MaxPool>(A, window_shape), ParameterVector{A}); auto backend = runtime::Backend::create("${BACKEND_NAME}"); // Create some tensors for input/output auto a = backend->create_tensor(element::f32, shape_a); copy_data(a, test::NDArray<float, 4>({{{{0, 1, 0, 2, 1}, // img 0 chan 0 {0, 3, 2, 0, 0}, {2, 0, 0, 0, 1}, {2, 0, 1, 1, 2}, {0, 2, 1, 0, 0}}, {{0, 0, 0, 2, 0}, // img 0 chan 1 {0, 2, 3, 0, 1}, {2, 0, 1, 0, 2}, {3, 1, 0, 0, 0}, {2, 0, 0, 0, 0}}}, {{{0, 2, 1, 1, 0}, // img 1 chan 0 {0, 0, 2, 0, 1}, {0, 0, 1, 2, 3}, {2, 0, 0, 3, 0}, {0, 0, 0, 0, 0}}, {{2, 1, 0, 0, 1}, // img 1 chan 1 {0, 2, 0, 0, 0}, {1, 1, 2, 0, 2}, {1, 1, 1, 0, 1}, {1, 0, 0, 0, 2}}}}) .get_vector()); auto result = backend->create_tensor(element::f32, shape_r); auto handle = backend->compile(f); handle->call_with_validate({result}, {a}); EXPECT_TRUE(test::all_close_f((test::NDArray<float, 4>({{{{3, 3, 2}, // img 0 chan 0 {3, 3, 2}, {2, 1, 2}, {2, 2, 2}}, {{3, 3, 3}, // img 0 chan 1 {3, 3, 3}, {3, 1, 2}, {3, 1, 0}}}, {{{2, 2, 2}, // img 1 chan 0 {2, 2, 3}, {2, 3, 3}, {2, 3, 3}}, {{2, 2, 1}, // img 1 chan 1 {2, 2, 2}, {2, 2, 2}, {1, 1, 2}}}}) .get_vector()), read_vector<float>(result), MIN_FLOAT_TOLERANCE_BITS)); } // this test cover the case with multiple image and with asymetric pad // one bug been found on GPU side is covered by this test NGRAPH_TEST(${BACKEND_NAME}, max_pool_2d_2channel_2image_asym_pad) { Shape shape_a{2, 2, 4, 4}; Shape window_shape{3, 3}; auto window_movement_strides = Strides{2, 2}; Shape padding_below{0, 0}; Shape padding_above{1, 1}; auto A = make_shared<op::Parameter>(element::f32, shape_a); Shape shape_r{2, 2, 2, 2}; auto f = make_shared<Function>( make_shared<op::MaxPool>( A, window_shape, window_movement_strides, padding_below, padding_above), ParameterVector{A}); auto backend = runtime::Backend::create("${BACKEND_NAME}"); // Create some tensors for input/output auto a = backend->create_tensor(element::f32, shape_a); copy_data(a, test::NDArray<float, 4>({{{{0, 1, 0, 2}, // img 0 chan 0 {0, 3, 2, 0}, {2, 0, 0, 0}, {0, 2, 1, 0}}, {{0, 0, 0, 2}, // img 0 chan 1 {0, 2, 3, 0}, {2, 0, 1, 0}, {2, 0, 0, 0}}}, {{{0, 2, 1, 1}, // img 1 chan 0 {0, 0, 2, 0}, {0, 0, 1, 2}, {0, 0, 0, 0}}, {{2, 1, 0, 0}, // img 1 chan 1 {0, 2, 0, 0}, {1, 1, 2, 0}, {1, 0, 0, 0}}}}) .get_vector()); auto result = backend->create_tensor(element::f32, shape_r); auto handle = backend->compile(f); handle->call_with_validate({result}, {a}); EXPECT_TRUE(test::all_close_f((test::NDArray<float, 4>({{{{3, 2}, // img 0 chan 0 {2, 1}}, {{3, 3}, // img 0 chan 1 {2, 1}}}, {{{2, 2}, // img 1 chan 0 {1, 2}}, {{2, 2}, // img 1 chan 1 {2, 2}}}}) .get_vector()), read_vector<float>(result), MIN_FLOAT_TOLERANCE_BITS)); } // MaxPool2D1ChannelTests test fixture for test setup reuse class MaxPool2D1ChannelTests : public testing::Test { public: Shape shape_a{1, 1, 5, 5}; Shape window_shape{2, 3}; Strides window_movement_strides{1, 1}; protected: virtual void SetUp() override {} }; NGRAPH_TEST_F(${BACKEND_NAME}, MaxPool2D1ChannelTests, max_pool_2d_1channel_1image_overpadded) { Shape padding_below{2, 0}; Shape padding_above{1, 2}; auto A = make_shared<op::Parameter>(element::f32, shape_a); Shape shape_r{1, 1, 7, 5}; auto f = make_shared<Function>( make_shared<op::MaxPool>( A, window_shape, window_movement_strides, padding_below, padding_above), ParameterVector{A}); auto backend = runtime::Backend::create("${BACKEND_NAME}"); // Create some tensors for input/output auto a = backend->create_tensor(element::f32, shape_a); copy_data(a, test::NDArray<float, 4>({{{{0, 1, 0, 2, 1}, {0, 3, 2, 0, 0}, {2, 0, 0, 0, 1}, {2, 0, 1, 1, 2}, {0, 2, 1, 0, 0}}}}) .get_vector()); auto result = backend->create_tensor(element::f32, shape_r); auto handle = backend->compile(f); handle->call_with_validate({result}, {a}); auto min = std::numeric_limits<float>::lowest(); EXPECT_TRUE(test::all_close_f(test::NDArray<float, 4>({{{{min, min, min, min, min}, {1, 2, 2, 2, 1}, {3, 3, 2, 2, 1}, {3, 3, 2, 1, 1}, {2, 1, 2, 2, 2}, {2, 2, 2, 2, 2}, {2, 2, 1, 0, 0}}}}) .get_vector(), read_vector<float>(result), MIN_FLOAT_TOLERANCE_BITS)); } NGRAPH_TEST_F(${BACKEND_NAME}, MaxPool2D1ChannelTests, max_pool_2d_1channel_1image_padded) { Shape padding_below{1, 0}; Shape padding_above{1, 2}; auto A = make_shared<op::Parameter>(element::f32, shape_a); Shape shape_r{1, 1, 6, 5}; auto f = make_shared<Function>( make_shared<op::MaxPool>( A, window_shape, window_movement_strides, padding_below, padding_above), ParameterVector{A}); auto backend = runtime::Backend::create("${BACKEND_NAME}"); // Create some tensors for input/output auto a = backend->create_tensor(element::f32, shape_a); copy_data(a, test::NDArray<float, 4>({{{{0, 1, 0, 2, 1}, {0, 3, 2, 0, 0}, {2, 0, 0, 0, 1}, {2, 0, 1, 1, 2}, {0, 2, 1, 0, 0}}}}) .get_vector()); auto result = backend->create_tensor(element::f32, shape_r); auto handle = backend->compile(f); handle->call_with_validate({result}, {a}); EXPECT_TRUE(test::all_close_f((test::NDArray<float, 4>({{{{1, 2, 2, 2, 1}, {3, 3, 2, 2, 1}, {3, 3, 2, 1, 1}, {2, 1, 2, 2, 2}, {2, 2, 2, 2, 2}, {2, 2, 1, 0, 0}}}}) .get_vector()), read_vector<float>(result), MIN_FLOAT_TOLERANCE_BITS)); } // Test to make sure that negative elements and padding are handled properly. Added this because // mkldnn calls its padding "zero padding" but apparently that is not technically true (negative // values still "win" versus out-of-bounds values), which is good. NGRAPH_TEST(${BACKEND_NAME}, max_pool_2d_1channel_1image_padded_negative_values) { auto shape_a = Shape{1, 1, 1, 14}; // 1 image, 1 channel, 1 row, 14 columns (if it's 1D we don't // get mkldnn as of this writing) Shape window_shape{1, 3}; auto window_movement_strides = Strides{1, 1}; Shape padding_below{0, 1}; Shape padding_above{0, 2}; auto A = make_shared<op::Parameter>(element::f32, shape_a); Shape shape_r{1, 1, 1, 15}; auto f = make_shared<Function>( make_shared<op::MaxPool>( A, window_shape, window_movement_strides, padding_below, padding_above), ParameterVector{A}); auto backend = runtime::Backend::create("${BACKEND_NAME}"); // Create some tensors for input/output auto a = backend->create_tensor(element::f32, shape_a); copy_data(a, test::NDArray<float, 4>{{{{-1, -2, -3, -3, -2, -1, -3, -2, -2, -2, -2, -3, -4, -5}}}} .get_vector()); auto result = backend->create_tensor(element::f32, shape_r); auto handle = backend->compile(f); handle->call_with_validate({result}, {a}); EXPECT_TRUE(test::all_close_f( (test::NDArray<float, 4>({{{{-1, -1, -2, -2, -1, -1, -1, -2, -2, -2, -2, -2, -3, -4, -5}}}}) .get_vector()), read_vector<float>(result), MIN_FLOAT_TOLERANCE_BITS)); } NGRAPH_TEST(${BACKEND_NAME}, max_pool_2d_1channel_1image_strided) { Shape shape_a{1, 1, 8, 8}; Shape window_shape{2, 3}; auto window_movement_strides = Strides{3, 2}; auto A = make_shared<op::Parameter>(element::f32, shape_a); Shape shape_r{1, 1, 3, 3}; auto f = make_shared<Function>( make_shared<op::MaxPool>(A, window_shape, window_movement_strides), ParameterVector{A}); auto backend = runtime::Backend::create("${BACKEND_NAME}"); // Create some tensors for input/output auto a = backend->create_tensor(element::f32, shape_a); copy_data(a, test::NDArray<float, 4>({{{{0, 1, 0, 2, 1, 2, 0, 0}, {0, 3, 2, 0, 0, 0, 1, 0}, {2, 0, 0, 0, 1, 0, 0, 0}, {2, 0, 1, 1, 2, 2, 3, 0}, {0, 2, 1, 0, 0, 0, 1, 0}, {2, 0, 3, 1, 0, 0, 0, 0}, {1, 2, 0, 0, 0, 1, 2, 0}, {1, 0, 2, 0, 0, 0, 1, 0}}}}) .get_vector()); auto result = backend->create_tensor(element::f32, shape_r); auto handle = backend->compile(f); handle->call_with_validate({result}, {a}); EXPECT_TRUE(test::all_close_f( (test::NDArray<float, 4>({{{{3, 2, 2}, {2, 2, 3}, {2, 2, 2}}}}).get_vector()), read_vector<float>(result), MIN_FLOAT_TOLERANCE_BITS)); } NGRAPH_TEST(${BACKEND_NAME}, max_pool_3d) { Shape shape_a{64, 3, 7, 8, 10}; Shape window_shape{2, 3, 2}; auto move_strides = Strides{2, 3, 4}; Shape padding_below{5, 6, 4}; Shape padding_above{6, 4, 5}; auto A = make_shared<op::Parameter>(element::f32, shape_a); auto B = make_shared<op::Parameter>(element::f32, shape_a); auto cpu_f = make_shared<Function>( make_shared<op::MaxPool>(A, window_shape, move_strides, padding_below, padding_above), ParameterVector{A}); auto int_f = make_shared<Function>( make_shared<op::MaxPool>(B, window_shape, move_strides, padding_below, padding_above), ParameterVector{B}); test::Uniform<float> rng(0.0f, 1.0f); vector<vector<float>> args; for (shared_ptr<op::Parameter> param : int_f->get_parameters()) { vector<float> tensor_val(shape_size(param->get_shape())); rng.initialize(tensor_val); args.push_back(tensor_val); } auto int_results = execute(int_f, args, "INTERPRETER"); auto cpu_results = execute(cpu_f, args, "${BACKEND_NAME}"); for (size_t i = 0; i < cpu_results.size(); i++) { EXPECT_TRUE( test::all_close_f(cpu_results.at(i), int_results.at(i), MIN_FLOAT_TOLERANCE_BITS)); } } NGRAPH_TEST(${BACKEND_NAME}, avg_pool_1d_1channel_1image) { Shape shape_a{1, 1, 14}; Shape window_shape{3}; auto A = make_shared<op::Parameter>(element::f32, shape_a); Shape shape_r{1, 1, 12}; auto f = make_shared<Function>(make_shared<op::AvgPool>(A, window_shape), ParameterVector{A}); auto backend = runtime::Backend::create("${BACKEND_NAME}"); // Create some tensors for input/output auto a = backend->create_tensor(element::f32, shape_a); copy_data(a, test::NDArray<float, 3>{{{0, 1, 0, 2, 1, 0, 3, 2, 0, 0, 2, 0, 0, 0}}}.get_vector()); auto result = backend->create_tensor(element::f32, shape_r); float denom = 3.0; auto handle = backend->compile(f); handle->call_with_validate({result}, {a}); EXPECT_TRUE(test::all_close_f(test::NDArray<float, 3>({{{1 / denom, 3 / denom, 3 / denom, 3 / denom, 4 / denom, 5 / denom, 5 / denom, 2 / denom, 2 / denom, 2 / denom, 2 / denom, 0 / denom}}}) .get_vector(), read_vector<float>(result))); } NGRAPH_TEST(${BACKEND_NAME}, avg_pool_1d_1channel_2image) { Shape shape_a{2, 1, 14}; Shape window_shape{3}; auto A = make_shared<op::Parameter>(element::f32, shape_a); Shape shape_r{2, 1, 12}; auto f = make_shared<Function>(make_shared<op::AvgPool>(A, window_shape), ParameterVector{A}); auto backend = runtime::Backend::create("${BACKEND_NAME}"); // Create some tensors for input/output auto a = backend->create_tensor(element::f32, shape_a); copy_data(a, test::NDArray<float, 3>({{{0, 1, 0, 2, 1, 0, 3, 2, 0, 0, 2, 0, 0, 0}}, {{0, 2, 1, 1, 0, 0, 0, 2, 0, 1, 0, 0, 1, 2}}}) .get_vector()); auto result = backend->create_tensor(element::f32, shape_r); float denom = 3.0; auto handle = backend->compile(f); handle->call_with_validate({result}, {a}); EXPECT_TRUE(test::all_close_f(test::NDArray<float, 3>({{{1 / denom, 3 / denom, 3 / denom, 3 / denom, 4 / denom, 5 / denom, 5 / denom, 2 / denom, 2 / denom, 2 / denom, 2 / denom, 0 / denom}}, {{3 / denom, 4 / denom, 2 / denom, 1 / denom, 0 / denom, 2 / denom, 2 / denom, 3 / denom, 1 / denom, 1 / denom, 1 / denom, 3 / denom}}}) .get_vector(), read_vector<float>(result))); } NGRAPH_TEST(${BACKEND_NAME}, avg_pool_1d_2channel_2image) { Shape shape_a{2, 2, 14}; Shape window_shape{3}; auto A = make_shared<op::Parameter>(element::f32, shape_a); Shape shape_r{2, 2, 12}; auto f = make_shared<Function>(make_shared<op::AvgPool>(A, window_shape), ParameterVector{A}); auto backend = runtime::Backend::create("${BACKEND_NAME}"); // Create some tensors for input/output auto a = backend->create_tensor(element::f32, shape_a); copy_data(a, test::NDArray<float, 3>({{{0, 1, 0, 2, 1, 0, 3, 2, 0, 0, 2, 0, 0, 0}, {0, 0, 0, 2, 0, 0, 2, 3, 0, 1, 2, 0, 1, 0}}, {{0, 2, 1, 1, 0, 0, 0, 2, 0, 1, 0, 0, 1, 2}, {2, 1, 0, 0, 1, 0, 2, 0, 0, 0, 1, 1, 2, 0}}}) .get_vector()); auto result = backend->create_tensor(element::f32, shape_r); float denom = 3.0; auto handle = backend->compile(f); handle->call_with_validate({result}, {a}); EXPECT_TRUE(test::all_close_f(test::NDArray<float, 3>({{{1 / denom, 3 / denom, 3 / denom, 3 / denom, 4 / denom, 5 / denom, 5 / denom, 2 / denom, 2 / denom, 2 / denom, 2 / denom, 0 / denom}, {0 / denom, 2 / denom, 2 / denom, 2 / denom, 2 / denom, 5 / denom, 5 / denom, 4 / denom, 3 / denom, 3 / denom, 3 / denom, 1 / denom}}, {{3 / denom, 4 / denom, 2 / denom, 1 / denom, 0 / denom, 2 / denom, 2 / denom, 3 / denom, 1 / denom, 1 / denom, 1 / denom, 3 / denom}, {3 / denom, 1 / denom, 1 / denom, 1 / denom, 3 / denom, 2 / denom, 2 / denom, 0 / denom, 1 / denom, 2 / denom, 4 / denom, 3 / denom}}}) .get_vector(), read_vector<float>(result))); } NGRAPH_TEST(${BACKEND_NAME}, avg_pool_2d_2channel_2image) { Shape shape_a{2, 2, 5, 5}; Shape window_shape{2, 3}; auto A = make_shared<op::Parameter>(element::f32, shape_a); Shape shape_r{2, 2, 4, 3}; auto f = make_shared<Function>(make_shared<op::AvgPool>(A, window_shape), ParameterVector{A}); auto backend = runtime::Backend::create("${BACKEND_NAME}"); // Create some tensors for input/output auto a = backend->create_tensor(element::f32, shape_a); copy_data(a, test::NDArray<float, 4>({{{{0, 1, 0, 2, 1}, // img 0 chan 0 {0, 3, 2, 0, 0}, {2, 0, 0, 0, 1}, {2, 0, 1, 1, 2}, {0, 2, 1, 0, 0}}, {{0, 0, 0, 2, 0}, // img 0 chan 1 {0, 2, 3, 0, 1}, {2, 0, 1, 0, 2}, {3, 1, 0, 0, 0}, {2, 0, 0, 0, 0}}}, {{{0, 2, 1, 1, 0}, // img 1 chan 0 {0, 0, 2, 0, 1}, {0, 0, 1, 2, 3}, {2, 0, 0, 3, 0}, {0, 0, 0, 0, 0}}, {{2, 1, 0, 0, 1}, // img 1 chan 1 {0, 2, 0, 0, 0}, {1, 1, 2, 0, 2}, {1, 1, 1, 0, 1}, {1, 0, 0, 0, 2}}}}) .get_vector()); auto result = backend->create_tensor(element::f32, shape_r); float denom = 2 * 3; auto handle = backend->compile(f); handle->call_with_validate({result}, {a}); EXPECT_TRUE(test::all_close_f( test::NDArray<float, 4>({{{{6 / denom, 8 / denom, 5 / denom}, // img 0 chan 0 {7 / denom, 5 / denom, 3 / denom}, {5 / denom, 2 / denom, 5 / denom}, {6 / denom, 5 / denom, 5 / denom}}, {{5 / denom, 7 / denom, 6 / denom}, // img 0 chan 1 {8 / denom, 6 / denom, 7 / denom}, {7 / denom, 2 / denom, 3 / denom}, {6 / denom, 1 / denom, 0 / denom}}}, {{{5 / denom, 6 / denom, 5 / denom}, // img 1 chan 0 {3 / denom, 5 / denom, 9 / denom}, {3 / denom, 6 / denom, 9 / denom}, {2 / denom, 3 / denom, 3 / denom}}, {{5 / denom, 3 / denom, 1 / denom}, // img 1 chan 1 {6 / denom, 5 / denom, 4 / denom}, {7 / denom, 5 / denom, 6 / denom}, {4 / denom, 2 / denom, 4 / denom}}}}) .get_vector(), read_vector<float>(result))); } NGRAPH_TEST(${BACKEND_NAME}, avg_pool_2d_1channel_1image_strided) { Shape shape_a{1, 1, 8, 8}; Shape window_shape{2, 3}; auto window_movement_strides = Strides{3, 2}; auto A = make_shared<op::Parameter>(element::f32, shape_a); Shape shape_r{1, 1, 3, 3}; auto f = make_shared<Function>( make_shared<op::AvgPool>(A, window_shape, window_movement_strides), ParameterVector{A}); auto backend = runtime::Backend::create("${BACKEND_NAME}"); // Create some tensors for input/output auto a = backend->create_tensor(element::f32, shape_a); copy_data(a, test::NDArray<float, 4>({{{{0, 1, 0, 2, 1, 2, 0, 0}, {0, 3, 2, 0, 0, 0, 1, 0}, {2, 0, 0, 0, 1, 0, 0, 0}, {2, 0, 1, 1, 2, 2, 3, 0}, {0, 2, 1, 0, 0, 0, 1, 0}, {2, 0, 3, 1, 0, 0, 0, 0}, {1, 2, 0, 0, 0, 1, 2, 0}, {1, 0, 2, 0, 0, 0, 1, 0}}}}) .get_vector()); auto result = backend->create_tensor(element::f32, shape_r); float denom = 2 * 3; auto handle = backend->compile(f); handle->call_with_validate({result}, {a}); EXPECT_TRUE(test::all_close_f(test::NDArray<float, 4>({{{{6 / denom, 5 / denom, 4 / denom}, {6 / denom, 5 / denom, 8 / denom}, {6 / denom, 2 / denom, 4 / denom}}}}) .get_vector(), read_vector<float>(result))); } NGRAPH_TEST(${BACKEND_NAME}, avg_pool_2d_1channel_1image_padded_do_not_include_in_computation) { Shape shape_a{1, 1, 3, 3}; Shape window_shape{2, 2}; auto window_movement_strides = Strides{1, 1}; Shape padding_below{1, 1}; Shape padding_above{1, 1}; auto A = make_shared<op::Parameter>(element::f32, shape_a); Shape shape_r{1, 1, 4, 4}; auto f = make_shared<Function>( make_shared<op::AvgPool>( A, window_shape, window_movement_strides, padding_below, padding_above, false), ParameterVector{A}); auto backend = runtime::Backend::create("${BACKEND_NAME}"); // Create some tensors for input/output auto a = backend->create_tensor(element::f32, shape_a); copy_data(a, test::NDArray<float, 4>({{{{0, 1, 0}, {0, 3, 2}, {2, 0, 0}}}}).get_vector()); auto result = backend->create_tensor(element::f32, shape_r); auto handle = backend->compile(f); handle->call_with_validate({result}, {a}); EXPECT_TRUE( test::all_close(test::NDArray<float, 4>({{{{0.0f / 1, 1.0f / 2, 1.0f / 2, 0.0f / 1}, {0.0f / 2, 4.0f / 4, 6.0f / 4, 2.0f / 2}, {2.0f / 2, 5.0f / 4, 5.0f / 4, 2.0f / 2}, {2.0f / 1, 2.0f / 2, 0.0f / 2, 0.0f / 1}}}}) .get_vector(), read_vector<float>(result))); } NGRAPH_TEST(${BACKEND_NAME}, avg_pool_2d_1channel_1image_padded_include_in_computation) { Shape shape_a{1, 1, 3, 3}; Shape window_shape{2, 2}; auto window_movement_strides = Strides{1, 1}; Shape padding_below{1, 1}; Shape padding_above{1, 1}; auto A = make_shared<op::Parameter>(element::f32, shape_a); Shape shape_r{1, 1, 4, 4}; auto f = make_shared<Function>( make_shared<op::AvgPool>( A, window_shape, window_movement_strides, padding_below, padding_above, true), ParameterVector{A}); auto backend = runtime::Backend::create("${BACKEND_NAME}"); // Create some tensors for input/output auto a = backend->create_tensor(element::f32, shape_a); copy_data(a, test::NDArray<float, 4>({{{{0, 1, 0}, {0, 3, 2}, {2, 0, 0}}}}).get_vector()); auto result = backend->create_tensor(element::f32, shape_r); auto handle = backend->compile(f); handle->call_with_validate({result}, {a}); EXPECT_TRUE( test::all_close(test::NDArray<float, 4>({{{{0.0f / 4, 1.0f / 4, 1.0f / 4, 0.0f / 4}, {0.0f / 4, 4.0f / 4, 6.0f / 4, 2.0f / 4}, {2.0f / 4, 5.0f / 4, 5.0f / 4, 2.0f / 4}, {2.0f / 4, 2.0f / 4, 0.0f / 4, 0.0f / 4}}}}) .get_vector(), read_vector<float>(result))); } NGRAPH_TEST(${BACKEND_NAME}, avg_pool_2d_2channel_2image_padded_do_not_include_in_computation) { Shape shape_a{2, 1, 3, 3}; Shape window_shape{2, 2}; auto window_movement_strides = Strides{1, 1}; Shape padding_below{1, 1}; Shape padding_above{1, 1}; auto A = make_shared<op::Parameter>(element::f32, shape_a); Shape shape_r{2, 1, 4, 4}; auto f = make_shared<Function>( make_shared<op::AvgPool>( A, window_shape, window_movement_strides, padding_below, padding_above, false), ParameterVector{A}); auto backend = runtime::Backend::create("${BACKEND_NAME}"); // Create some tensors for input/output auto a = backend->create_tensor(element::f32, shape_a); copy_data(a, test::NDArray<float, 4>( {{{{0, 1, 0}, {0, 3, 2}, {2, 0, 0}}, {{3, 5, 2}, {2, 0, 9}, {3, 6, 5}}}}) .get_vector()); auto result = backend->create_tensor(element::f32, shape_r); auto handle = backend->compile(f); handle->call_with_validate({result}, {a}); EXPECT_TRUE( test::all_close(test::NDArray<float, 4>({{{{0.0f / 1, 1.0f / 2, 1.0f / 2, 0.0f / 1}, {0.0f / 2, 4.0f / 4, 6.0f / 4, 2.0f / 2}, {2.0f / 2, 5.0f / 4, 5.0f / 4, 2.0f / 2}, {2.0f / 1, 2.0f / 2, 0.0f / 2, 0.0f / 1}}, {{3.0f / 1, 8.0f / 2, 7.0f / 2, 2.0f / 1}, {5.0f / 2, 10.0f / 4, 16.0f / 4, 11.0f / 2}, {5.0f / 2, 11.0f / 4, 20.0f / 4, 14.0f / 2}, {3.0f / 1, 9.0f / 2, 11.0f / 2, 5.0f / 1}}}}) .get_vector(), read_vector<float>(result))); } NGRAPH_TEST(${BACKEND_NAME}, avg_pool_2d_2channel_2image_padded_include_in_computation) { Shape shape_a{2, 1, 3, 3}; Shape window_shape{2, 2}; auto window_movement_strides = Strides{1, 1}; Shape padding_below{1, 1}; Shape padding_above{1, 1}; auto A = make_shared<op::Parameter>(element::f32, shape_a); Shape shape_r{2, 1, 4, 4}; auto f = make_shared<Function>( make_shared<op::AvgPool>( A, window_shape, window_movement_strides, padding_below, padding_above, true), ParameterVector{A}); auto backend = runtime::Backend::create("${BACKEND_NAME}"); // Create some tensors for input/output auto a = backend->create_tensor(element::f32, shape_a); copy_data(a, test::NDArray<float, 4>( {{{{0, 1, 0}, {0, 3, 2}, {2, 0, 0}}, {{3, 5, 2}, {2, 0, 9}, {3, 6, 5}}}}) .get_vector()); auto result = backend->create_tensor(element::f32, shape_r); auto handle = backend->compile(f); handle->call_with_validate({result}, {a}); EXPECT_TRUE( test::all_close(test::NDArray<float, 4>({{{{0.0f / 4, 1.0f / 4, 1.0f / 4, 0.0f / 4}, {0.0f / 4, 4.0f / 4, 6.0f / 4, 2.0f / 4}, {2.0f / 4, 5.0f / 4, 5.0f / 4, 2.0f / 4}, {2.0f / 4, 2.0f / 4, 0.0f / 4, 0.0f / 4}}, {{3.0f / 4, 8.0f / 4, 7.0f / 4, 2.0f / 4}, {5.0f / 4, 10.0f / 4, 16.0f / 4, 11.0f / 4}, {5.0f / 4, 11.0f / 4, 20.0f / 4, 14.0f / 4}, {3.0f / 4, 9.0f / 4, 11.0f / 4, 5.0f / 4}}}}) .get_vector(), read_vector<float>(result))); } NGRAPH_TEST(${BACKEND_NAME}, avg_pool_2d_2channel_2image_padded_only_below_do_not_include_in_computation) { Shape shape_a{2, 1, 3, 3}; Shape window_shape{2, 2}; auto window_movement_strides = Strides{1, 1}; Shape padding_below{1, 1}; Shape padding_above{0, 0}; auto A = make_shared<op::Parameter>(element::f32, shape_a); Shape shape_r{2, 1, 3, 3}; auto f = make_shared<Function>( make_shared<op::AvgPool>( A, window_shape, window_movement_strides, padding_below, padding_above, false), ParameterVector{A}); auto backend = runtime::Backend::create("${BACKEND_NAME}"); // Create some tensors for input/output auto a = backend->create_tensor(element::f32, shape_a); copy_data(a, test::NDArray<float, 4>( {{{{0, 1, 0}, {0, 3, 2}, {2, 0, 0}}, {{3, 5, 2}, {2, 0, 9}, {3, 6, 5}}}}) .get_vector()); auto result = backend->create_tensor(element::f32, shape_r); auto handle = backend->compile(f); handle->call_with_validate({result}, {a}); EXPECT_TRUE(test::all_close(test::NDArray<float, 4>({{{{0.0f / 1, 1.0f / 2, 1.0f / 2}, {0.0f / 2, 4.0f / 4, 6.0f / 4}, {2.0f / 2, 5.0f / 4, 5.0f / 4}}, {{3.0f / 1, 8.0f / 2, 7.0f / 2}, {5.0f / 2, 10.0f / 4, 16.0f / 4}, {5.0f / 2, 11.0f / 4, 20.0f / 4}}}}) .get_vector(), read_vector<float>(result))); } NGRAPH_TEST(${BACKEND_NAME}, avg_pool_2d_2channel_2image_padded_only_below_include_in_computation) { Shape shape_a{2, 1, 3, 3}; Shape window_shape{2, 2}; auto window_movement_strides = Strides{1, 1}; Shape padding_below{1, 1}; Shape padding_above{0, 0}; auto A = make_shared<op::Parameter>(element::f32, shape_a); Shape shape_r{2, 1, 3, 3}; auto f = make_shared<Function>( make_shared<op::AvgPool>( A, window_shape, window_movement_strides, padding_below, padding_above, true), ParameterVector{A}); auto backend = runtime::Backend::create("${BACKEND_NAME}"); // Create some tensors for input/output auto a = backend->create_tensor(element::f32, shape_a); copy_data(a, test::NDArray<float, 4>( {{{{0, 1, 0}, {0, 3, 2}, {2, 0, 0}}, {{3, 5, 2}, {2, 0, 9}, {3, 6, 5}}}}) .get_vector()); auto result = backend->create_tensor(element::f32, shape_r); auto handle = backend->compile(f); handle->call_with_validate({result}, {a}); EXPECT_TRUE(test::all_close(test::NDArray<float, 4>({{{{0.0f / 4, 1.0f / 4, 1.0f / 4}, {0.0f / 4, 4.0f / 4, 6.0f / 4}, {2.0f / 4, 5.0f / 4, 5.0f / 4}}, {{3.0f / 4, 8.0f / 4, 7.0f / 4}, {5.0f / 4, 10.0f / 4, 16.0f / 4}, {5.0f / 4, 11.0f / 4, 20.0f / 4}}}}) .get_vector(), read_vector<float>(result))); } NGRAPH_TEST(${BACKEND_NAME}, avg_pool_2d_2channel_2image_padded_only_above_do_not_include_in_computation) { Shape shape_a{2, 1, 3, 3}; Shape window_shape{2, 2}; auto window_movement_strides = Strides{1, 1}; Shape padding_below{0, 0}; Shape padding_above{1, 1}; auto A = make_shared<op::Parameter>(element::f32, shape_a); Shape shape_r{2, 1, 3, 3}; auto f = make_shared<Function>( make_shared<op::AvgPool>( A, window_shape, window_movement_strides, padding_below, padding_above, false), ParameterVector{A}); auto backend = runtime::Backend::create("${BACKEND_NAME}"); // Create some tensors for input/output auto a = backend->create_tensor(element::f32, shape_a); copy_data(a, test::NDArray<float, 4>( {{{{0, 1, 0}, {0, 3, 2}, {2, 0, 0}}, {{3, 5, 2}, {2, 0, 9}, {3, 6, 5}}}}) .get_vector()); auto result = backend->create_tensor(element::f32, shape_r); auto handle = backend->compile(f); handle->call_with_validate({result}, {a}); EXPECT_TRUE(test::all_close(test::NDArray<float, 4>({{{{4.0f / 4, 6.0f / 4, 2.0f / 2}, {5.0f / 4, 5.0f / 4, 2.0f / 2}, {2.0f / 2, 0.0f / 2, 0.0f / 1}}, {{10.0f / 4, 16.0f / 4, 11.0f / 2}, {11.0f / 4, 20.0f / 4, 14.0f / 2}, {9.0f / 2, 11.0f / 2, 5.0f / 1}}}}) .get_vector(), read_vector<float>(result))); } NGRAPH_TEST(${BACKEND_NAME}, avg_pool_2d_2channel_2image_padded_only_above_include_in_computation) { Shape shape_a{2, 1, 3, 3}; Shape window_shape{2, 2}; auto window_movement_strides = Strides{1, 1}; Shape padding_below{0, 0}; Shape padding_above{1, 1}; auto A = make_shared<op::Parameter>(element::f32, shape_a); Shape shape_r{2, 1, 3, 3}; auto f = make_shared<Function>( make_shared<op::AvgPool>( A, window_shape, window_movement_strides, padding_below, padding_above, true), ParameterVector{A}); auto backend = runtime::Backend::create("${BACKEND_NAME}"); // Create some tensors for input/output auto a = backend->create_tensor(element::f32, shape_a); copy_data(a, test::NDArray<float, 4>( {{{{0, 1, 0}, {0, 3, 2}, {2, 0, 0}}, {{3, 5, 2}, {2, 0, 9}, {3, 6, 5}}}}) .get_vector()); auto result = backend->create_tensor(element::f32, shape_r); auto handle = backend->compile(f); handle->call_with_validate({result}, {a}); EXPECT_TRUE(test::all_close(test::NDArray<float, 4>({{{{4.0f / 4, 6.0f / 4, 2.0f / 4}, {5.0f / 4, 5.0f / 4, 2.0f / 4}, {2.0f / 4, 0.0f / 4, 0.0f / 4}}, {{10.0f / 4, 16.0f / 4, 11.0f / 4}, {11.0f / 4, 20.0f / 4, 14.0f / 4}, {9.0f / 4, 11.0f / 4, 5.0f / 4}}}}) .get_vector(), read_vector<float>(result))); } NGRAPH_TEST(${BACKEND_NAME}, avg_pool_2d_2channel_2image_3x3_padded_do_not_include_in_computation) { Shape shape_a{2, 1, 3, 3}; Shape window_shape{3, 3}; auto window_movement_strides = Strides{1, 1}; Shape padding_below{2, 2}; Shape padding_above{2, 2}; auto A = make_shared<op::Parameter>(element::f32, shape_a); Shape shape_r{2, 1, 5, 5}; auto f = make_shared<Function>( make_shared<op::AvgPool>( A, window_shape, window_movement_strides, padding_below, padding_above, false), ParameterVector{A}); auto backend = runtime::Backend::create("${BACKEND_NAME}"); // Create some tensors for input/output auto a = backend->create_tensor(element::f32, shape_a); copy_data(a, test::NDArray<float, 4>( {{{{0, 1, 0}, {0, 3, 2}, {2, 0, 0}}, {{3, 5, 2}, {2, 0, 9}, {3, 6, 5}}}}) .get_vector()); auto result = backend->create_tensor(element::f32, shape_r); auto handle = backend->compile(f); handle->call_with_validate({result}, {a}); EXPECT_TRUE(test::all_close_f( test::NDArray<float, 4>({{{{0.0f / 1, 1.0f / 2, 1.0f / 3, 1.0f / 2, 0.0f / 1}, {0.0f / 2, 4.0f / 4, 6.0f / 6, 6.0f / 4, 2.0f / 2}, {2.0f / 3, 6.0f / 6, 8.0f / 9, 6.0f / 6, 2.0f / 3}, {2.0f / 2, 5.0f / 4, 7.0f / 6, 5.0f / 4, 2.0f / 2}, {2.0f / 1, 2.0f / 2, 2.0f / 3, 0.0f / 2, 0.0f / 1}}, {{3.0f / 1, 8.0f / 2, 10.0f / 3, 7.0f / 2, 2.0f / 1}, {5.0f / 2, 10.0f / 4, 21.0f / 6, 16.0f / 4, 11.0f / 2}, {8.0f / 3, 19.0f / 6, 35.0f / 9, 27.0f / 6, 16.0f / 3}, {5.0f / 2, 11.0f / 4, 25.0f / 6, 20.0f / 4, 14.0f / 2}, {3.0f / 1, 9.0f / 2, 14.0f / 3, 11.0f / 2, 5.0f / 1}}}}) .get_vector(), read_vector<float>(result))); } NGRAPH_TEST(${BACKEND_NAME}, avg_pool_2d_2channel_2image_3x3_padded_include_in_computation) { Shape shape_a{2, 1, 3, 3}; Shape window_shape{3, 3}; auto window_movement_strides = Strides{1, 1}; Shape padding_below{2, 2}; Shape padding_above{2, 2}; auto A = make_shared<op::Parameter>(element::f32, shape_a); Shape shape_r{2, 1, 5, 5}; auto f = make_shared<Function>( make_shared<op::AvgPool>( A, window_shape, window_movement_strides, padding_below, padding_above, true), ParameterVector{A}); auto backend = runtime::Backend::create("${BACKEND_NAME}"); // Create some tensors for input/output auto a = backend->create_tensor(element::f32, shape_a); copy_data(a, test::NDArray<float, 4>( {{{{0, 1, 0}, {0, 3, 2}, {2, 0, 0}}, {{3, 5, 2}, {2, 0, 9}, {3, 6, 5}}}}) .get_vector()); auto result = backend->create_tensor(element::f32, shape_r); auto handle = backend->compile(f); handle->call_with_validate({result}, {a}); EXPECT_TRUE(test::all_close_f( test::NDArray<float, 4>({{{{0.0f / 9, 1.0f / 9, 1.0f / 9, 1.0f / 9, 0.0f / 9}, {0.0f / 9, 4.0f / 9, 6.0f / 9, 6.0f / 9, 2.0f / 9}, {2.0f / 9, 6.0f / 9, 8.0f / 9, 6.0f / 9, 2.0f / 9}, {2.0f / 9, 5.0f / 9, 7.0f / 9, 5.0f / 9, 2.0f / 9}, {2.0f / 9, 2.0f / 9, 2.0f / 9, 0.0f / 9, 0.0f / 9}}, {{3.0f / 9, 8.0f / 9, 10.0f / 9, 7.0f / 9, 2.0f / 9}, {5.0f / 9, 10.0f / 9, 21.0f / 9, 16.0f / 9, 11.0f / 9}, {8.0f / 9, 19.0f / 9, 35.0f / 9, 27.0f / 9, 16.0f / 9}, {5.0f / 9, 11.0f / 9, 25.0f / 9, 20.0f / 9, 14.0f / 9}, {3.0f / 9, 9.0f / 9, 14.0f / 9, 11.0f / 9, 5.0f / 9}}}}) .get_vector(), read_vector<float>(result))); } NGRAPH_TEST(${BACKEND_NAME}, avg_pool_2d_2channel_2image_3x3_strided_padded_do_not_include_in_computation) { Shape shape_a{2, 1, 3, 3}; Shape window_shape{3, 3}; auto window_movement_strides = Strides{2, 2}; Shape padding_below{2, 2}; Shape padding_above{2, 2}; auto A = make_shared<op::Parameter>(element::f32, shape_a); Shape shape_r{2, 1, 3, 3}; auto f = make_shared<Function>( make_shared<op::AvgPool>( A, window_shape, window_movement_strides, padding_below, padding_above, false), ParameterVector{A}); auto backend = runtime::Backend::create("${BACKEND_NAME}"); // Create some tensors for input/output auto a = backend->create_tensor(element::f32, shape_a); copy_data(a, test::NDArray<float, 4>( {{{{0, 1, 0}, {0, 3, 2}, {2, 0, 0}}, {{3, 5, 2}, {2, 0, 9}, {3, 6, 5}}}}) .get_vector()); auto result = backend->create_tensor(element::f32, shape_r); auto handle = backend->compile(f); handle->call_with_validate({result}, {a}); EXPECT_TRUE(test::all_close_f(test::NDArray<float, 4>({{{{0.0f / 1, 1.0f / 3, 0.0f / 1}, {2.0f / 3, 8.0f / 9, 2.0f / 3}, {2.0f / 1, 2.0f / 3, 0.0f / 1}}, {{3.0f / 1, 10.0f / 3, 2.0f / 1}, {8.0f / 3, 35.0f / 9, 16.0f / 3}, {3.0f / 1, 14.0f / 3, 5.0f / 1}}}}) .get_vector(), read_vector<float>(result))); } NGRAPH_TEST(${BACKEND_NAME}, avg_pool_2d_2channel_2image_3x3_strided_padded_include_in_computation) { Shape shape_a{2, 1, 3, 3}; Shape window_shape{3, 3}; auto window_movement_strides = Strides{2, 2}; Shape padding_below{2, 2}; Shape padding_above{2, 2}; auto A = make_shared<op::Parameter>(element::f32, shape_a); Shape shape_r{2, 1, 3, 3}; auto f = make_shared<Function>( make_shared<op::AvgPool>( A, window_shape, window_movement_strides, padding_below, padding_above, true), ParameterVector{A}); auto backend = runtime::Backend::create("${BACKEND_NAME}"); // Create some tensors for input/output auto a = backend->create_tensor(element::f32, shape_a); copy_data(a, test::NDArray<float, 4>( {{{{0, 1, 0}, {0, 3, 2}, {2, 0, 0}}, {{3, 5, 2}, {2, 0, 9}, {3, 6, 5}}}}) .get_vector()); auto result = backend->create_tensor(element::f32, shape_r); auto handle = backend->compile(f); handle->call_with_validate({result}, {a}); EXPECT_TRUE(test::all_close_f(test::NDArray<float, 4>({{{{0.0f / 9, 1.0f / 9, 0.0f / 9}, {2.0f / 9, 8.0f / 9, 2.0f / 9}, {2.0f / 9, 2.0f / 9, 0.0f / 9}}, {{3.0f / 9, 10.0f / 9, 2.0f / 9}, {8.0f / 9, 35.0f / 9, 16.0f / 9}, {3.0f / 9, 14.0f / 9, 5.0f / 9}}}}) .get_vector(), read_vector<float>(result))); } NGRAPH_TEST(${BACKEND_NAME}, avg_pool_2d_2channel_2image_3x3_strided_uneven_padded_do_not_include_in_computation) { Shape shape_a{2, 1, 3, 3}; Shape window_shape{3, 3}; auto window_movement_strides = Strides{2, 3}; Shape padding_below{2, 2}; Shape padding_above{2, 2}; auto A = make_shared<op::Parameter>(element::f32, shape_a); Shape shape_r{2, 1, 3, 2}; auto f = make_shared<Function>( make_shared<op::AvgPool>( A, window_shape, window_movement_strides, padding_below, padding_above, false), ParameterVector{A}); auto backend = runtime::Backend::create("${BACKEND_NAME}"); // Create some tensors for input/output auto a = backend->create_tensor(element::f32, shape_a); copy_data(a, test::NDArray<float, 4>( {{{{0, 1, 0}, {0, 3, 2}, {2, 0, 0}}, {{3, 5, 2}, {2, 0, 9}, {3, 6, 5}}}}) .get_vector()); auto result = backend->create_tensor(element::f32, shape_r); auto handle = backend->compile(f); handle->call_with_validate({result}, {a}); EXPECT_TRUE(test::all_close_f( test::NDArray<float, 4>( {{{{0.0f / 1, 1.0f / 2}, {2.0f / 3, 6.0f / 6}, {2.0f / 1, 0.0f / 2}}, {{3.0f / 1, 7.0f / 2}, {8.0f / 3, 27.0f / 6}, {3.0f / 1, 11.0f / 2}}}}) .get_vector(), read_vector<float>(result))); } NGRAPH_TEST(${BACKEND_NAME}, avg_pool_2d_2channel_2image_3x3_strided_uneven_padded_include_in_computation) { Shape shape_a{2, 1, 3, 3}; Shape window_shape{3, 3}; auto window_movement_strides = Strides{2, 3}; Shape padding_below{2, 2}; Shape padding_above{2, 2}; auto A = make_shared<op::Parameter>(element::f32, shape_a); Shape shape_r{2, 1, 3, 2}; auto f = make_shared<Function>( make_shared<op::AvgPool>( A, window_shape, window_movement_strides, padding_below, padding_above, true), ParameterVector{A}); auto backend = runtime::Backend::create("${BACKEND_NAME}"); // Create some tensors for input/output auto a = backend->create_tensor(element::f32, shape_a); copy_data(a, test::NDArray<float, 4>( {{{{0, 1, 0}, {0, 3, 2}, {2, 0, 0}}, {{3, 5, 2}, {2, 0, 9}, {3, 6, 5}}}}) .get_vector()); auto result = backend->create_tensor(element::f32, shape_r); auto handle = backend->compile(f); handle->call_with_validate({result}, {a}); EXPECT_TRUE(test::all_close_f( test::NDArray<float, 4>( {{{{0.0f / 9, 1.0f / 9}, {2.0f / 9, 6.0f / 9}, {2.0f / 9, 0.0f / 9}}, {{3.0f / 9, 7.0f / 9}, {8.0f / 9, 27.0f / 9}, {3.0f / 9, 11.0f / 9}}}}) .get_vector(), read_vector<float>(result))); } // Params to drive avg_pool_3d testing variations class avg_pool_3d_params : public ::testing::TestWithParam<bool> { protected: avg_pool_3d_params() { include_pad = GetParam(); } bool include_pad; }; // avg_pool_3d test code using params NGRAPH_TEST_P(${BACKEND_NAME}, avg_pool_3d_params, avg_pool_3d_uneven_strided_padded) { Shape shape_a{64, 3, 12, 13, 15}; Shape window_shape{4, 5, 4}; auto move_strides = Strides{2, 3, 4}; Shape padding_below{2, 3, 1}; Shape padding_above{3, 1, 2}; auto A = make_shared<op::Parameter>(element::f32, shape_a); auto B = make_shared<op::Parameter>(element::f32, shape_a); auto cpu_f = make_shared<Function>( make_shared<op::AvgPool>( A, window_shape, move_strides, padding_below, padding_above, include_pad), ParameterVector{A}); auto int_f = make_shared<Function>( make_shared<op::AvgPool>( B, window_shape, move_strides, padding_below, padding_above, include_pad), ParameterVector{B}); test::Uniform<float> rng(0.0f, 1.0f); vector<vector<float>> args; for (shared_ptr<op::Parameter> param : int_f->get_parameters()) { vector<float> tensor_val(shape_size(param->get_shape())); rng.initialize(tensor_val); args.push_back(tensor_val); } auto int_results = execute(int_f, args, "INTERPRETER"); auto backend_results = execute(cpu_f, args, "${BACKEND_NAME}"); for (size_t i = 0; i < backend_results.size(); i++) { EXPECT_TRUE(test::all_close_f( backend_results.at(i), int_results.at(i), DEFAULT_FLOAT_TOLERANCE_BITS + 1)); } } // avg_pool_3d case generation NGRAPH_INSTANTIATE_TEST_CASE_P(${BACKEND_NAME}, include_pad, avg_pool_3d_params, testing::Bool());