//***************************************************************************** // Copyright 2017-2018 Intel Corporation // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. //***************************************************************************** #include #include #include #include #include #include "gtest/gtest.h" #include "ngraph/ngraph.hpp" #include "ngraph/op/constant.hpp" #include "ngraph/op/experimental/quantized_avg_pool.hpp" #include "ngraph/op/experimental/quantized_conv.hpp" #include "ngraph/op/experimental/quantized_conv_bias.hpp" #include "ngraph/op/experimental/quantized_conv_relu.hpp" #include "ngraph/op/experimental/quantized_max_pool.hpp" #include "ngraph/op/get_output_element.hpp" #include "util/all_close.hpp" #include "util/all_close_f.hpp" #include "util/ndarray.hpp" #include "util/random.hpp" #include "util/test_control.hpp" #include "util/test_tools.hpp" using namespace std; using namespace ngraph; TEST(quantize_cpu, quantize_max_pool_2d_unsigned) { vector a_data = {0, 1, 0, 2, 1, 0, 3, 2, 0, 0, 2, 0, 0, 0, 1}; Shape shape_a{1, 1, 3, 5}; Shape window_shape{2, 3}; auto window_movement_strides = Strides{1, 1}; Shape padding_below{0, 0}; Shape padding_above{0, 0}; auto A = make_shared(element::u8, shape_a); Shape shape_r{1, 1, 2, 3}; auto QMP = make_shared( A, window_shape, window_movement_strides, padding_below, padding_above); auto f = make_shared(NodeVector{QMP}, op::ParameterVector{A}); auto backend = runtime::Backend::create("CPU"); // Create some tensors for input/output auto a = backend->create_tensor(element::u8, shape_a); copy_data(a, a_data); auto result = backend->create_tensor(element::u8, shape_r); backend->call_with_validate(f, {result}, {a}); EXPECT_EQ((vector{3, 3, 2, 3, 3, 2}), read_vector(result)); } TEST(quantize_cpu, quantize_max_pool_2d_signed) { vector a_data = {0, 1, 0, -2, 1, 0, -3, 2, 0, 0, 2, 0, 0, 0, 1}; Shape shape_a{1, 1, 3, 5}; Shape window_shape{2, 3}; auto window_movement_strides = Strides{1, 1}; Shape padding_below{0, 0}; Shape padding_above{0, 0}; auto A = make_shared(element::i8, shape_a); Shape shape_r{1, 1, 2, 3}; auto QMP = make_shared( A, window_shape, window_movement_strides, padding_below, padding_above); auto f = make_shared(NodeVector{QMP}, op::ParameterVector{A}); auto backend = runtime::Backend::create("CPU"); // Create some tensors for input/output auto a = backend->create_tensor(element::i8, shape_a); copy_data(a, a_data); auto result = backend->create_tensor(element::i8, shape_r); backend->call_with_validate(f, {result}, {a}); EXPECT_EQ((vector{2, 2, 2, 2, 2, 2}), read_vector(result)); } TEST(quantize_cpu, quantize_avg_pool_2d_unsigned) { vector a_data = {0, 1, 0, 2, 1, 0, 3, 2, 0, 0, 2, 0, 0, 0, 1}; Shape shape_a{1, 1, 3, 5}; Shape window_shape{2, 3}; auto window_movement_strides = Strides{1, 1}; Shape padding_below{0, 0}; Shape padding_above{0, 0}; auto A = make_shared(element::u8, shape_a); Shape shape_r{1, 1, 2, 3}; auto QMP = make_shared( A, window_shape, window_movement_strides, padding_below, padding_above, false); auto f = make_shared(NodeVector{QMP}, op::ParameterVector{A}); auto backend = runtime::Backend::create("CPU"); // Create some tensors for input/output auto a = backend->create_tensor(element::u8, shape_a); copy_data(a, a_data); auto result = backend->create_tensor(element::u8, shape_r); backend->call_with_validate(f, {result}, {a}); EXPECT_EQ((vector{1, 1, 1, 1, 1, 0}), read_vector(result)); } TEST(quantize_cpu, quantize_avg_pool_2d_signed) { vector a_data = {10, 1, 0, -2, 1, 0, -3, 4, 0, 0, 2, 0, 0, 0, 1}; Shape shape_a{1, 1, 3, 5}; Shape window_shape{2, 3}; auto window_movement_strides = Strides{1, 1}; Shape padding_below{0, 0}; Shape padding_above{0, 0}; auto A = make_shared(element::i8, shape_a); Shape shape_r{1, 1, 2, 3}; auto QMP = make_shared( A, window_shape, window_movement_strides, padding_below, padding_above, false); auto f = make_shared(NodeVector{QMP}, op::ParameterVector{A}); auto backend = runtime::Backend::create("CPU"); // Create some tensors for input/output auto a = backend->create_tensor(element::i8, shape_a); copy_data(a, a_data); auto result = backend->create_tensor(element::i8, shape_r); backend->call_with_validate(f, {result}, {a}); EXPECT_EQ((vector{2, 0, 0, 0, 0, 1}), read_vector(result)); } TEST(quantize_cpu, quantizedConv2D_small) { Shape shape_a{1, 1, 3, 4}; // input shape Shape shape_b{1, 1, 3, 3}; // filter shape Shape shape_r{1, 1, 3, 4}; // output shape vector a_data = {1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4}; vector b_data = {1, 2, 3, 4, 5, 0, 0, 1, 2}; auto A = make_shared(element::u8, shape_a); auto B = make_shared(element::i8, shape_b); auto C = op::Constant::create(element::f32, Shape{1}, {1.41664f}); auto CV = make_shared(A, B, Strides{1, 1}, // move_strides Strides{1, 1}, // filter_dilation CoordinateDiff{1, 1}, // below_pads CoordinateDiff{1, 1}, // above_pads Strides{1, 1}, // data_dilation C); auto f = make_shared(NodeVector{CV}, op::ParameterVector{A, B}); auto backend = runtime::Backend::create("CPU"); // Create some tensors for input/output auto a = backend->create_tensor(element::u8, shape_a); copy_data(a, a_data); auto b = backend->create_tensor(element::i8, shape_b); copy_data(b, b_data); auto result = backend->create_tensor(element::i8, shape_r); backend->call_with_validate(f, {result}, {a, b}); EXPECT_EQ((vector{31, 48, 42, 45, 54, 102, 127, 61, 47, 74, 61, 55}), read_vector(result)); } TEST(quantize_cpu, quantizedConv2D_with_relu) { Shape shape_a{1, 1, 3, 4}; // input shape Shape shape_b{1, 1, 3, 3}; // filter shape Shape shape_r{1, 1, 3, 4}; // output shape vector a_data = {1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4}; vector b_data = {1, 2, 3, 4, 5, 0, 0, 1, 2}; auto A = make_shared(element::u8, shape_a); auto B = make_shared(element::i8, shape_b); auto C = op::Constant::create(element::f32, Shape{1}, {1.41664f}); auto CV = make_shared(A, B, Strides{1, 1}, // move_strides Strides{1, 1}, // filter_dilation CoordinateDiff{1, 1}, // below_pads CoordinateDiff{1, 1}, // above_pads Strides{1, 1}, // data_dilation C); auto f = make_shared(NodeVector{CV}, op::ParameterVector{A, B}); auto backend = runtime::Backend::create("CPU"); // Create some tensors for input/output auto a = backend->create_tensor(element::u8, shape_a); copy_data(a, a_data); auto b = backend->create_tensor(element::i8, shape_b); copy_data(b, b_data); auto result = backend->create_tensor(element::u8, shape_r); backend->call_with_validate(f, {result}, {a, b}); EXPECT_EQ((vector{31, 48, 42, 45, 54, 102, 127, 61, 47, 74, 61, 55}), read_vector(result)); } TEST(quantize_cpu, quantizedConv2D_fused_relu) { Shape shape_a{1, 1, 3, 3}; // input shape Shape shape_b{1, 1, 3, 3}; // filter shape Shape shape_r{1, 1, 3, 3}; // output shape vector a_data = {1, 2, 3, 4, 5, 6, 7, 8, 9}; vector b_data = {1, 2, 1, 0, 0, 0, -1, -2, -1}; auto A = make_shared(element::u8, shape_a); auto B = make_shared(element::i8, shape_b); auto C = op::Constant::create(element::f32, Shape{1}, {5.31242f}); auto CV = make_shared(A, B, Strides{1, 1}, // move_strides Strides{1, 1}, // filter_dilation CoordinateDiff{1, 1}, // below_pads CoordinateDiff{1, 1}, // above_pads Strides{1, 1}, // data_dilation C); auto f = make_shared(NodeVector{CV}, op::ParameterVector{A, B}); auto backend = runtime::Backend::create("CPU"); // Create some tensors for input/output auto a = backend->create_tensor(element::u8, shape_a); copy_data(a, a_data); auto b = backend->create_tensor(element::i8, shape_b); copy_data(b, b_data); auto result = backend->create_tensor(element::u8, shape_r); backend->call_with_validate(f, {result}, {a, b}); EXPECT_EQ((vector{0, 0, 0, 0, 0, 0, 69, 106, 90}), read_vector(result)); } TEST(quantize_cpu, quantizedConv2D_with_bias) { Shape shape_a{1, 1, 3, 4}; // input shape Shape shape_b{1, 1, 3, 3}; // filter shape Shape shape_r{1, 1, 3, 4}; // output shape vector a_data = {1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4}; vector b_data = {1, 2, 3, 4, 5, 0, 0, 1, 2}; vector c_data = {5}; auto A = make_shared(element::u8, shape_a); auto B = make_shared(element::i8, shape_b); auto Bias = make_shared(element::i32, Shape{1}); auto C = op::Constant::create(element::f32, Shape{1}, {1.41664f}); auto CV = make_shared(A, B, Bias, Strides{1, 1}, // move_strides Strides{1, 1}, // filter_dilation CoordinateDiff{1, 1}, // below_pads CoordinateDiff{1, 1}, // above_pads Strides{1, 1}, // data_dilation C); auto f = make_shared(NodeVector{CV}, op::ParameterVector{A, B, Bias}); auto backend = runtime::Backend::create("CPU"); // Create some tensors for input/output auto a = backend->create_tensor(element::u8, shape_a); copy_data(a, a_data); auto b = backend->create_tensor(element::i8, shape_b); copy_data(b, b_data); auto c = backend->create_tensor(element::i32, Shape{1}); copy_data(c, c_data); auto result = backend->create_tensor(element::i8, shape_r); backend->call_with_validate(f, {result}, {a, b, c}); EXPECT_EQ((vector{38, 55, 50, 52, 61, 109, 127, 68, 54, 81, 68, 62}), read_vector(result)); } TEST(quantize_cpu, quantizedConv2D_with_bias_and_relu) { Shape shape_a{1, 1, 3, 3}; // input shape Shape shape_b{1, 1, 3, 3}; // filter shape Shape shape_r{1, 1, 3, 3}; // output shape vector a_data = {1, 2, 3, 4, 5, 6, 7, 8, 9}; vector b_data = {1, 2, 1, 0, 0, 0, -1, -2, -1}; vector c_data = {5}; auto A = make_shared(element::u8, shape_a); auto B = make_shared(element::i8, shape_b); auto Bias = make_shared(element::i32, Shape{1}); auto C = op::Constant::create(element::f32, Shape{1}, {5.31242f}); auto CV = make_shared(A, B, Bias, Strides{1, 1}, // move_strides Strides{1, 1}, // filter_dilation CoordinateDiff{1, 1}, // below_pads CoordinateDiff{1, 1}, // above_pads Strides{1, 1}, // data_dilation C, true); auto f = make_shared(NodeVector{CV}, op::ParameterVector{A, B, Bias}); auto backend = runtime::Backend::create("CPU"); // Create some tensors for input/output auto a = backend->create_tensor(element::u8, shape_a); copy_data(a, a_data); auto b = backend->create_tensor(element::i8, shape_b); copy_data(b, b_data); auto c = backend->create_tensor(element::i32, Shape{1}); copy_data(c, c_data); auto result = backend->create_tensor(element::u8, shape_r); backend->call_with_validate(f, {result}, {a, b, c}); EXPECT_EQ((vector{0, 0, 0, 0, 0, 0, 96, 133, 117}), read_vector(result)); }