//***************************************************************************** // Copyright 2017-2019 Intel Corporation // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. //***************************************************************************** #include <algorithm> #include <cinttypes> #include <cmath> #include <cstdlib> #include <random> #include <string> // clang-format off #ifdef ${BACKEND_NAME}_FLOAT_TOLERANCE_BITS #define DEFAULT_FLOAT_TOLERANCE_BITS ${BACKEND_NAME}_FLOAT_TOLERANCE_BITS #endif #ifdef ${BACKEND_NAME}_DOUBLE_TOLERANCE_BITS #define DEFAULT_DOUBLE_TOLERANCE_BITS ${BACKEND_NAME}_DOUBLE_TOLERANCE_BITS #endif // clang-format on #include "gtest/gtest.h" #include "ngraph/ngraph.hpp" #include "util/all_close.hpp" #include "util/all_close_f.hpp" #include "util/ndarray.hpp" #include "util/test_control.hpp" #include "util/test_tools.hpp" using namespace std; using namespace ngraph; static string s_manifest = "${MANIFEST}"; NGRAPH_TEST(${BACKEND_NAME}, tanh) { Shape shape{6}; auto A = make_shared<op::Parameter>(element::f32, shape); auto f = make_shared<Function>(make_shared<op::Tanh>(A), ParameterVector{A}); auto backend = runtime::Backend::create("${BACKEND_NAME}"); // Create some tensors for input/output auto a = backend->create_tensor(element::f32, shape); vector<float> input{1.0f, 0.0f, -0.0f, -1.0f, 0.5f, -0.5f}; copy_data(a, input); auto result = backend->create_tensor(element::f32, shape); std::transform( input.begin(), input.end(), input.begin(), [](float x) -> float { return tanhf(x); }); auto handle = backend->compile(f); handle->call_with_validate({result}, {a}); EXPECT_TRUE(test::all_close_f(input, read_vector<float>(result))); }