//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************

#pragma once

#include <exception>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <list>
#include <memory>
#include <random>
#include <vector>

#include "gtest/gtest.h"

#include "ngraph/descriptor/layout/tensor_layout.hpp"
#include "ngraph/file_util.hpp"
#include "ngraph/log.hpp"
#include "ngraph/runtime/backend.hpp"
#include "ngraph/runtime/tensor.hpp"
#include "ngraph/serializer.hpp"

namespace ngraph
{
    class Node;
    class Function;
}

bool validate_list(const std::list<std::shared_ptr<ngraph::Node>>& nodes);
std::shared_ptr<ngraph::Function> make_test_graph();
#ifndef NGRAPH_JSON_DISABLE
std::shared_ptr<ngraph::Function> make_function_from_file(const std::string& file_name);
#endif

template <typename T>
void copy_data(std::shared_ptr<ngraph::runtime::Tensor> tv, const std::vector<T>& data)
{
    size_t data_size = data.size() * sizeof(T);
    tv->write(data.data(), data_size);
}

template <typename T>
std::vector<T> read_vector(std::shared_ptr<ngraph::runtime::Tensor> tv)
{
    if (ngraph::element::from<T>() != tv->get_element_type())
    {
        throw std::invalid_argument("read_vector type must match Tensor type");
    }
    size_t element_count = ngraph::shape_size(tv->get_shape());
    size_t size = element_count * sizeof(T);
    std::vector<T> rc(element_count);
    tv->read(rc.data(), size);
    return rc;
}

std::vector<float> read_float_vector(std::shared_ptr<ngraph::runtime::Tensor> tv);

template <typename T>
void write_vector(std::shared_ptr<ngraph::runtime::Tensor> tv, const std::vector<T>& values)
{
    tv->write(values.data(), values.size() * sizeof(T));
}

template <typename T>
std::vector<std::shared_ptr<T>> get_ops_of_type(std::shared_ptr<ngraph::Function> f)
{
    std::vector<std::shared_ptr<T>> ops;
    for (auto op : f->get_ops())
    {
        if (auto cop = std::dynamic_pointer_cast<T>(op))
        {
            ops.push_back(cop);
        }
    }

    return ops;
}

template <typename T>
size_t count_ops_of_type(std::shared_ptr<ngraph::Function> f)
{
    size_t count = 0;
    for (auto op : f->get_ops())
    {
        if (std::dynamic_pointer_cast<T>(op))
        {
            count++;
        }
    }

    return count;
}

template <typename T>
void init_int_tv(ngraph::runtime::Tensor* tv, std::default_random_engine& engine, T min, T max)
{
    size_t size = tv->get_element_count();
    std::uniform_int_distribution<T> dist(min, max);
    std::vector<T> vec(size);
    for (T& element : vec)
    {
        element = dist(engine);
    }
    tv->write(vec.data(), vec.size() * sizeof(T));
}

template <typename T>
void init_real_tv(ngraph::runtime::Tensor* tv, std::default_random_engine& engine, T min, T max)
{
    size_t size = tv->get_element_count();
    std::uniform_real_distribution<T> dist(min, max);
    std::vector<T> vec(size);
    for (T& element : vec)
    {
        element = dist(engine);
    }
    tv->write(vec.data(), vec.size() * sizeof(T));
}

void random_init(ngraph::runtime::Tensor* tv, std::default_random_engine& engine);

template <typename T1, typename T2>
std::vector<std::shared_ptr<ngraph::runtime::Tensor>>
    prepare_and_run(const std::shared_ptr<ngraph::Function>& function,
                    std::vector<std::vector<T1>> t1args,
                    std::vector<std::vector<T2>> t2args,
                    const std::string& backend_id)
{
    auto backend = ngraph::runtime::Backend::create(backend_id);

    auto parms = function->get_parameters();

    if (parms.size() != t1args.size() + t2args.size())
    {
        throw ngraph::ngraph_error("number of parameters and arguments don't match");
    }

    std::vector<std::shared_ptr<ngraph::runtime::Tensor>> arg_tensors(t1args.size() +
                                                                      t2args.size());

    size_t total_arg_count = 0;
    for (size_t i = 0; i < t1args.size(); i++)
    {
        auto t = backend->create_tensor(parms.at(total_arg_count)->get_element_type(),
                                        parms.at(total_arg_count)->get_shape());
        auto x = t1args.at(i);
        copy_data(t, x);
        arg_tensors.at(total_arg_count) = t;
        total_arg_count++;
    }

    for (size_t i = 0; i < t2args.size(); i++)
    {
        auto t = backend->create_tensor(parms.at(total_arg_count)->get_element_type(),
                                        parms.at(total_arg_count)->get_shape());
        copy_data(t, t2args.at(i));
        arg_tensors.at(total_arg_count) = t;
        total_arg_count++;
    }

    auto results = function->get_results();
    std::vector<std::shared_ptr<ngraph::runtime::Tensor>> result_tensors(results.size());

    for (size_t i = 0; i < results.size(); i++)
    {
        result_tensors.at(i) =
            backend->create_tensor(results.at(i)->get_element_type(), results.at(i)->get_shape());
    }

    auto handle = backend->compile(function);
    handle->call_with_validate(result_tensors, arg_tensors);

    return result_tensors;
}

template <typename T>
std::vector<std::shared_ptr<ngraph::runtime::Tensor>>
    prepare_and_run(const std::shared_ptr<ngraph::Function>& function,
                    std::vector<std::vector<T>> args,
                    const std::string& backend_id)
{
    std::vector<std::vector<T>> emptyargs;
    return prepare_and_run<T, T>(function, args, emptyargs, backend_id);
}

template <typename TIN1, typename TIN2, typename TOUT>
std::vector<std::vector<TOUT>> execute(const std::shared_ptr<ngraph::Function>& function,
                                       std::vector<std::vector<TIN1>> t1args,
                                       std::vector<std::vector<TIN2>> t2args,
                                       const std::string& backend_id)
{
    std::vector<std::shared_ptr<ngraph::runtime::Tensor>> result_tensors =
        prepare_and_run(function, t1args, t2args, backend_id);

    std::vector<std::vector<TOUT>> result_vectors;
    for (auto rt : result_tensors)
    {
        result_vectors.push_back(read_vector<TOUT>(rt));
    }
    return result_vectors;
}

template <typename TIN, typename TOUT = TIN>
std::vector<std::vector<TOUT>> execute(const std::shared_ptr<ngraph::Function>& function,
                                       std::vector<std::vector<TIN>> args,
                                       const std::string& backend_id)
{
    std::vector<std::vector<TIN>> emptyargs;
    return execute<TIN, TIN, TOUT>(function, args, emptyargs, backend_id);
}

template <typename T>
std::string get_results_str(const std::vector<T>& ref_data,
                            const std::vector<T>& actual_data,
                            size_t max_results = 16)
{
    std::stringstream ss;
    size_t num_results = std::min(static_cast<size_t>(max_results), ref_data.size());
    ss << "First " << num_results << " results";
    for (size_t i = 0; i < num_results; ++i)
    {
        ss << std::endl
           // use unary + operator to force integral values to be displayed as numbers
           << std::setw(4) << i << " ref: " << std::setw(16) << std::left << +ref_data[i]
           << "  actual: " << std::setw(16) << std::left << +actual_data[i];
    }
    ss << std::endl;

    return ss.str();
}

template <>
std::string get_results_str(const std::vector<char>& ref_data,
                            const std::vector<char>& actual_data,
                            size_t max_results);

/// \brief      Reads a binary file to a vector.
///
/// \param[in]  path  The path where the file is located.
///
/// \tparam     T     The type we want to interpret as the elements in binary file.
///
/// \return     Return vector of data read from input binary file.
///
template <typename T>
std::vector<T> read_binary_file(const std::string& path)
{
    std::vector<T> file_content;
    std::ifstream inputs_fs{path, std::ios::in | std::ios::binary};
    if (!inputs_fs)
    {
        throw std::runtime_error("Failed to open the file: " + path);
    }

    inputs_fs.seekg(0, std::ios::end);
    auto size = inputs_fs.tellg();
    inputs_fs.seekg(0, std::ios::beg);
    if (size % sizeof(T) != 0)
    {
        throw std::runtime_error(
            "Error reading binary file content: Input file size (in bytes) "
            "is not a multiple of requested data type size.");
    }
    file_content.resize(size / sizeof(T));
    inputs_fs.read(reinterpret_cast<char*>(file_content.data()), size);
    return file_content;
}

testing::AssertionResult test_ordered_ops(std::shared_ptr<ngraph::Function> f,
                                          const ngraph::NodeVector& required_ops);