//***************************************************************************** // Copyright 2017-2019 Intel Corporation // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. //***************************************************************************** #include <gtest/gtest.h> #include "ngraph/op/add.hpp" #include "ngraph/runtime/backend.hpp" #include "ngraph/util.hpp" #include "util/test_tools.hpp" using namespace ngraph; using namespace std; TEST(async, execute) { Shape shape{100000}; auto A = make_shared<op::Parameter>(element::f32, shape); auto B = make_shared<op::Parameter>(element::f32, shape); auto f = make_shared<Function>(make_shared<op::Add>(A, B), ParameterVector{A, B}); auto backend = runtime::Backend::create("INTERPRETER"); vector<float> data(shape_size(shape), 2); vector<float> result_data(shape_size(shape), 0); // Create some tensors for input/output shared_ptr<runtime::Tensor> a = backend->create_tensor(element::f32, shape, data.data()); shared_ptr<runtime::Tensor> b = backend->create_tensor(element::f32, shape, data.data()); shared_ptr<runtime::Tensor> r = backend->create_tensor(element::f32, shape, result_data.data()); auto handle = backend->compile(f); auto future = handle->begin_execute({r}, {a, b}); ASSERT_TRUE(future.valid()); bool rc = future.get(); for (float x : result_data) { ASSERT_EQ(x, 4); } } TEST(async, tensor_write) { Shape shape{100000}; auto A = make_shared<op::Parameter>(element::f32, shape); auto B = make_shared<op::Parameter>(element::f32, shape); auto f = make_shared<Function>(make_shared<op::Add>(A, B), ParameterVector{A, B}); auto backend = runtime::Backend::create("INTERPRETER"); auto handle = backend->compile(f); vector<float> data(shape_size(shape), 2); vector<float> result_data(shape_size(shape), 0); // Create some tensors for input/output shared_ptr<runtime::Tensor> a = backend->create_tensor(element::f32, shape); shared_ptr<runtime::Tensor> b = backend->create_tensor(element::f32, shape); shared_ptr<runtime::Tensor> r = backend->create_tensor(element::f32, shape, result_data.data()); auto future_a = a->begin_write(data.data(), data.size() * sizeof(float)); auto future_b = b->begin_write(data.data(), data.size() * sizeof(float)); ASSERT_TRUE(future_a.valid()); ASSERT_TRUE(future_b.valid()); chrono::milliseconds ten_ms(10); EXPECT_EQ(future_a.wait_for(ten_ms), future_status::timeout); EXPECT_EQ(future_b.wait_for(ten_ms), future_status::timeout); this_thread::sleep_for(chrono::milliseconds(500)); EXPECT_EQ(future_a.wait_for(ten_ms), future_status::timeout); EXPECT_EQ(future_b.wait_for(ten_ms), future_status::timeout); auto future = handle->begin_execute({r}, {a, b}); bool rc = future.get(); EXPECT_EQ(future_a.wait_for(ten_ms), future_status::ready); EXPECT_EQ(future_b.wait_for(ten_ms), future_status::ready); for (float x : result_data) { ASSERT_EQ(x, 4); } } TEST(async, tensor_read) { }