//***************************************************************************** // Copyright 2017-2019 Intel Corporation // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. //***************************************************************************** #include <algorithm> #include <cmath> #include <cstdint> #include <fstream> #include <iterator> #include <limits> #include <sstream> #include <stdexcept> #include <vector> #include "gtest/gtest.h" #include "ngraph/frontend/onnx_import/onnx.hpp" #include "ngraph/ngraph.hpp" #include "util/all_close.hpp" #include "util/all_close_f.hpp" #include "util/ndarray.hpp" #include "util/test_case.hpp" #include "util/test_control.hpp" #include "util/test_tools.hpp" using namespace ngraph; static std::string s_manifest = "${MANIFEST}"; using Inputs = std::vector<std::vector<float>>; using Outputs = std::vector<std::vector<float>>; static std::vector<std::vector<float>> conv2d_execute(const std::shared_ptr<Function>& function) { std::vector<std::vector<float>> args; // data (1, 1, 7, 5) input tensor args.emplace_back(test::NDArray<float, 4>{{{{{0.f, 1.f, 2.f, 3.f, 4.f}, {5.f, 6.f, 7.f, 8.f, 9.f}, {10.f, 11.f, 12.f, 13.f, 14.f}, {15.f, 16.f, 17.f, 18.f, 19.f}, {20.f, 21.f, 22.f, 23.f, 24.f}, {25.f, 26.f, 27.f, 28.f, 29.f}, {30.f, 31.f, 32.f, 33.f, 34.f}}}}} .get_vector()); // filters (1, 1, 3, 3) aka convolution weights args.emplace_back( test::NDArray<float, 4>{{{{{1.f, 1.f, 1.f}, {1.f, 1.f, 1.f}, {1.f, 1.f, 1.f}}}}} .get_vector()); return execute(function, args, "${BACKEND_NAME}"); } NGRAPH_TEST(onnx_${BACKEND_NAME}, model_conv2d_strides_padding) { // Convolution with strides=2 and padding=1 auto function = onnx_import::import_onnx_model( file_util::path_join(SERIALIZED_ZOO, "onnx/conv_with_strides_padding.prototxt")); // (1, 1, 4, 3) auto expected_output = test::NDArray<float, 4>({{{{12.f, 27.f, 24.f}, {63.f, 108.f, 81.f}, {123.f, 198.f, 141.f}, {112.f, 177.f, 124.f}}}}) .get_vector(); auto result = conv2d_execute(function); EXPECT_EQ(expected_output, result.front()); } NGRAPH_TEST(onnx_${BACKEND_NAME}, model_conv2d_strides_no_padding) { // Convolution with strides=2 and padding=1 auto function = onnx_import::import_onnx_model( file_util::path_join(SERIALIZED_ZOO, "onnx/conv_with_strides_no_padding.prototxt")); // (1, 1, 3, 2) auto expected_output = test::NDArray<float, 4>({{{{54.f, 72.f}, {144.f, 162.f}, {234.f, 252.f}}}}).get_vector(); auto result = conv2d_execute(function); EXPECT_EQ(expected_output, result.front()); } NGRAPH_TEST(onnx_${BACKEND_NAME}, model_conv2d_strides_assymetric_padding) { // Convolution with strides=2 and padding=1 auto function = onnx_import::import_onnx_model(file_util::path_join( SERIALIZED_ZOO, "onnx/conv_with_strides_and_asymmetric_padding.prototxt")); // (1, 1, 4, 2) auto expected_output = test::NDArray<float, 4>({{{{21.f, 33.f}, {99.f, 117.f}, {189.f, 207.f}, {171.f, 183.f}}}}) .get_vector(); auto result = conv2d_execute(function); EXPECT_EQ(expected_output, result.front()); } NGRAPH_TEST(onnx_${BACKEND_NAME}, model_conv2d_dilation_assymetric_pads_strides) { auto function = onnx_import::import_onnx_model( file_util::path_join(SERIALIZED_ZOO, "onnx/conv2d_dilation_assym_pads_strides.prototxt")); // "", // auto_pad // vector<int64_t>{1, 1}, // dilations // 1, // group // vector<int64_t>{3, 3}, // kernel_shape // vector<int64_t>{1, 1, 1, 2}, // pads // vector<int64_t>{3, 1} // strides Inputs inputs; // {2, 1, 1, 1} inputs.emplace_back( test::NDArray<float, 4>({{{{-0.09103918075561523f}}}, {{{-0.32513630390167236f}}}}) .get_vector()); // {2, 1, 3, 3} inputs.emplace_back( test::NDArray<float, 4>( {{{{0.4312484860420227f, -0.12559029459953308f, 0.44889551401138306f}, {-0.3100617825984955f, 0.13522827625274658f, -0.06791308522224426f}, {0.22671669721603394f, -0.17391827702522278f, -0.31299442052841187f}}}, {{{-0.31545522809028625f, 0.06560015678405762f, 0.2656586766242981f}, {0.41363757848739624f, 0.31231558322906494f, -0.376018226146698f}, {-0.005708813667297363f, 0.34922850131988525f, 0.45095211267471313f}}}}) .get_vector()); // {2, 2, 1, 2} Outputs expected_output{ test::NDArray<float, 4>({{{{-0.012311071157455444f, 0.02822777070105076f}}, {{-0.028432954102754593f, -0.037657227367162704f}}}, {{{-0.04396762326359749f, 0.10081233829259872f}}, {{-0.10154513269662857f, -0.13448859751224518f}}}}) .get_vector()}; Outputs outputs{execute(function, inputs, "${BACKEND_NAME}")}; EXPECT_TRUE(test::all_close_f(expected_output.front(), outputs.front())); } NGRAPH_TEST(onnx_${BACKEND_NAME}, model_conv3d_bias) { auto function = onnx_import::import_onnx_model( file_util::path_join(SERIALIZED_ZOO, "onnx/conv3d_bias.prototxt")); // "", // auto_pad // vector<int64_t>{2, 2, 2}, // dilations // 1, // group // vector<int64_t>{2, 2, 2}, // kernel_shape // vector<int64_t>{2, 2, 2, 2, 2, 2}, // pads // vector<int64_t>{2, 2, 2} // strides Inputs inputs; // X: {2, 1, 4, 4, 4} inputs.emplace_back( std::vector<float>{0.46796226501464844f, -0.4613912105560303f, 0.33512794971466064f, -0.4010460674762726f, 0.41722816228866577f, -0.048133403062820435f, 0.20415884256362915f, 0.03189706802368164f, -0.04779183864593506f, -0.0795503556728363f, 0.4987630844116211f, 0.3506373167037964f, 0.48065757751464844f, 0.269855260848999f, -0.2463444471359253f, 0.19044137001037598f, -0.11830493807792664f, -0.2576887905597687f, -0.33940935134887695f, -0.257951021194458f, -0.08279827237129211f, 0.3513314127922058f, -0.29122066497802734f, -0.43358397483825684f, -0.13429927825927734f, 0.44032156467437744f, 0.05308258533477783f, -0.3499870300292969f, -0.28474611043930054f, -0.44209951162338257f, -0.07418054342269897f, -0.10919415950775146f, 0.2845439314842224f, 0.3498746156692505f, -0.19313520193099976f, 0.32609254121780396f, 0.4880145788192749f, 0.05574071407318115f, -0.46457427740097046f, -0.02524462342262268f, -0.18780940771102905f, -0.14720159769058228f, 0.207585871219635f, 0.47157740592956543f, -0.05567386746406555f, -0.49871665239334106f, 0.2274145483970642f, 0.4589425325393677f, -0.4725189805030823f, -0.4358765780925751f, 0.2841453552246094f, -0.27037882804870605f, 0.34227508306503296f, 0.33575427532196045f, -0.19485199451446533f, -0.27679920196533203f, -0.4238079786300659f, -0.4385119676589966f, 0.43724071979522705f, 0.3065117597579956f, 0.45696544647216797f, 0.05291992425918579f, -0.023618370294570923f, -0.1860884726047516f, 0.08669537305831909f, 0.32541000843048096f, 0.1846179962158203f, -0.1984834372997284f, -0.2754465937614441f, 0.32004624605178833f, -0.34846532344818115f, 0.0999596118927002f, -0.11374691128730774f, 0.21225297451019287f, -0.02315312623977661f, 0.1671370267868042f, 0.22319108247756958f, 0.03609824180603027f, -0.1587022840976715f, 0.059984564781188965f, -0.03951650857925415f, -0.4841443598270416f, 0.32919085025787354f, -0.23115816712379456f, 0.39441078901290894f, -0.3554944396018982f, -0.17022761702537537f, -0.055081307888031006f, 0.15856128931045532f, -0.4183449149131775f, -0.2474445104598999f, 0.03603637218475342f, -0.2836887538433075f, 0.4602506160736084f, 0.29092925786972046f, -0.199321448802948f, 0.380856454372406f, -0.13847029209136963f, -0.238397479057312f, -0.1907123327255249f, -0.11061936616897583f, -0.08717870712280273f, 0.24449139833450317f, -0.14727482199668884f, 0.1437196135520935f, 0.3955056071281433f, -0.12538021802902222f, 0.11590522527694702f, 0.4598066806793213f, -0.30005723237991333f, -0.46578651666641235f, -0.33955082297325134f, -0.2671887278556824f, 0.3611910939216614f, -0.11423084139823914f, -0.08382436633110046f, -0.31819307804107666f, 0.14515334367752075f, 0.3157258629798889f, 0.33179205656051636f, -0.2558857202529907f, 0.11888682842254639f, 0.12824326753616333f, -0.33106181025505066f, 0.2549159526824951f, -0.46760573983192444f, -0.11983257532119751f, 0.1834418773651123f}); // W: {2, 1, 2, 2, 2} inputs.emplace_back(std::vector<float>{0.388077974319458f, -0.16366064548492432f, -0.42871910333633423f, 0.4276432394981384f, 0.21517693996429443f, 0.007908165454864502f, 0.33897721767425537f, 0.21843165159225464f, 0.34095364809036255f, -0.17043980956077576f, -0.013571739196777344f, -0.26793742179870605f, -0.34863436222076416f, -0.2672275900840759f, -0.36691007018089294f, 0.37296557426452637f}); // B: {2} inputs.emplace_back(std::vector<float>{0.4310183525085449f, -0.4564093053340912f}); // {2, 2, 3, 3, 3} Outputs expected_output{std::vector<float>{ 0.5332361459732056f, 0.6628494262695312f, 0.544619083404541f, 0.4242798388004303f, 0.6271085739135742f, 0.6721994876861572f, 0.43064039945602417f, 0.4246789515018463f, 0.53834068775177f, 0.6932926177978516f, 0.42797625064849854f, 0.2218741625547409f, 0.29522019624710083f, 0.8329390287399292f, 0.37605351209640503f, 0.43735477328300476f, 0.2920728623867035f, 0.6692450046539307f, 0.5527016520500183f, 0.22643595933914185f, 0.5138190984725952f, 0.3041342794895172f, 0.7423423528671265f, 0.26707080006599426f, 0.4617553651332855f, 0.32416003942489624f, 0.511577844619751f, -0.28187549114227295f, -0.5031181573867798f, -0.5793710947036743f, -0.5992864370346069f, -0.5055556893348694f, -0.7562476396560669f, -0.44363799691200256f, -0.5730307102203369f, -0.6302952766418457f, -0.4756688177585602f, -0.728988528251648f, -0.3900943398475647f, -0.6694478988647461f, -0.38822290301322937f, -0.35774707794189453f, -0.39807581901550293f, -0.547709047794342f, -0.35872578620910645f, -0.5326492786407471f, -0.40852290391921997f, -0.4537881314754486f, -0.4545857608318329f, -0.379546195268631f, -0.5250767469406128f, -0.42439910769462585f, -0.5558245182037354f, -0.38563215732574463f, 0.44995537400245667f, 0.5007325410842896f, 0.49359965324401855f, 0.40685802698135376f, 0.407518208026886f, 0.4628955125808716f, 0.4301188290119171f, 0.40635955333709717f, 0.4260363280773163f, 0.55128413438797f, 0.5498291254043579f, 0.27105778455734253f, 0.40259143710136414f, 0.5747092962265015f, 0.4187920391559601f, 0.4507707953453064f, 0.420598566532135f, 0.3950541913509369f, 0.593889057636261f, 0.16578882932662964f, 0.5332239270210266f, 0.43014785647392273f, 0.50260329246521f, 0.39225444197654724f, 0.4074971079826355f, 0.5073125958442688f, 0.3823610544204712f, -0.4240749180316925f, -0.41936254501342773f, -0.5241475105285645f, -0.5220003724098206f, -0.502869725227356f, -0.5122783780097961f, -0.4260129928588867f, -0.4105660617351532f, -0.4483373165130615f, -0.33759188652038574f, -0.735706090927124f, -0.3714444637298584f, -0.4888814687728882f, -0.6191370487213135f, -0.2640320658683777f, -0.47542816400527954f, -0.5078460574150085f, -0.4205915927886963f, -0.5584549903869629f, -0.39770257472991943f, -0.45317384600639343f, -0.5598302483558655f, -0.2542789578437805f, -0.5359901785850525f, -0.48090484738349915f, -0.38603779673576355f, -0.4991581439971924f}}; Outputs outputs{execute(function, inputs, "${BACKEND_NAME}")}; EXPECT_TRUE(test::all_close_f(expected_output.front(), outputs.front())); } NGRAPH_TEST(onnx_${BACKEND_NAME}, model_conv_transpose_w_groups) { auto function = onnx_import::import_onnx_model( file_util::path_join(SERIALIZED_ZOO, "onnx/conv_transpose_w_groups.prototxt")); Inputs inputs; inputs.emplace_back(std::vector<float>{ 0.f, 1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f, 8.f, 9.f, 10.f, 11.f, 12.f, 13.f, 14.f, 15.f}); inputs.emplace_back(std::vector<float>{0.f, 1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f, 8.f, 9.f, 10.f, 11.f, 12.f, 13.f, 14.f, 15.f, 16.f, 17.f, 18.f, 19.f, 20.f, 21.f, 22.f, 23.f, 24.f, 25.f, 26.f, 27.f, 28.f, 29.f, 30.f, 31.0f}); Outputs expected_output{ std::vector<float>{28.f, 34.f, 252.f, 274.f, 732.f, 770.f, 1468.f, 1522.f}}; Outputs outputs{execute(function, inputs, "${BACKEND_NAME}")}; EXPECT_TRUE(test::all_close_f(expected_output.front(), outputs.front())); } NGRAPH_TEST(onnx_${BACKEND_NAME}, model_average_pool_2d) { // Pooling with strides=2 and no padding auto function = onnx_import::import_onnx_model( file_util::path_join(SERIALIZED_ZOO, "onnx/average_pool_2d.prototxt")); // input data shape (1, 1, 4, 4) Inputs inputs; inputs.push_back(test::NDArray<float, 4>({{{{0.f, 1.f, 2.f, 3.f}, {4.f, 5.f, 6.f, 7.f}, {8.f, 9.f, 10.f, 11.f}, {12.f, 13.f, 14.f, 15.f}}}}) .get_vector()); // (1, 1, 2, 2) auto expected_output = test::NDArray<float, 4>({{{{2.5f, 4.5f}, {10.5f, 12.5f}}}}).get_vector(); Outputs outputs{execute(function, inputs, "${BACKEND_NAME}")}; EXPECT_EQ(expected_output, outputs.front()); } NGRAPH_TEST(onnx_${BACKEND_NAME}, model_average_pool_2d_pads) { // Pooling with strides=2 and padding=1 auto function = onnx_import::import_onnx_model( file_util::path_join(SERIALIZED_ZOO, "onnx/average_pool_2d_pads.prototxt")); // input data shape (1, 1, 4, 4) Inputs inputs; inputs.push_back(test::NDArray<float, 4>({{{{0.f, 1.f, 2.f, 3.f}, {4.f, 5.f, 6.f, 7.f}, {8.f, 9.f, 10.f, 11.f}, {12.f, 13.f, 14.f, 15.f}}}}) .get_vector()); // (1, 1, 3, 3) auto expected_output = test::NDArray<float, 4>({{{{0.f, 1.5f, 3.f}, {6.f, 7.5f, 9.f}, {12.f, 13.5f, 15.f}}}}) .get_vector(); Outputs outputs = execute(function, inputs, "${BACKEND_NAME}"); EXPECT_EQ(expected_output, outputs.front()); } NGRAPH_TEST(onnx_${BACKEND_NAME}, model_max_pool_2d_pads) { // Pooling with strides=2 and padding=1 auto function = onnx_import::import_onnx_model( file_util::path_join(SERIALIZED_ZOO, "onnx/max_pool_2d_pads.prototxt")); // input data shape (1, 1, 4, 4) Inputs inputs; inputs.push_back(test::NDArray<float, 4>({{{{0.f, 1.f, 2.f, 3.f}, {4.f, 5.f, 6.f, 7.f}, {8.f, 9.f, 10.f, 11.f}, {12.f, 13.f, 14.f, 15.f}}}}) .get_vector()); // (1, 1, 3, 3) auto expected_output = test::NDArray<float, 4>({{{{0.f, 2.f, 3.f}, {8.f, 10.f, 11.f}, {12.f, 14.f, 15.f}}}}) .get_vector(); Outputs outputs{execute(function, inputs, "${BACKEND_NAME}")}; EXPECT_EQ(expected_output, outputs.front()); } NGRAPH_TEST(onnx_${BACKEND_NAME}, model_global_lp_pool_p0) { auto function = onnx_import::import_onnx_model( file_util::path_join(SERIALIZED_ZOO, "onnx/global_lp_pool_p0.prototxt")); std::vector<std::vector<std::int64_t>> inputs{std::vector<std::int64_t>{ 1, 0, -4, 0, 2, 1, -6, 1, 0, 0, 0, 0, -7, 1, -1, 0, -1, 8, 0, 10, 9, 0, 0, 5}}; std::vector<std::vector<std::int64_t>> expected_outputs{std::vector<std::int64_t>{6, 8}}; std::vector<std::vector<std::int64_t>> outputs{execute(function, inputs, "${BACKEND_NAME}")}; EXPECT_TRUE(test::all_close(expected_outputs.front(), outputs.front())); } NGRAPH_TEST(onnx_${BACKEND_NAME}, model_global_lp_pool_p1) { auto function = onnx_import::import_onnx_model( file_util::path_join(SERIALIZED_ZOO, "onnx/global_lp_pool_p1.prototxt")); Inputs inputs{std::vector<float>(2 * 3 * 4)}; std::iota(std::begin(inputs.front()), std::end(inputs.front()), 0.f); Outputs expected_outputs{std::vector<float>{66.f, 210.f}}; Outputs outputs{execute(function, inputs, "${BACKEND_NAME}")}; EXPECT_TRUE(test::all_close_f(expected_outputs.front(), outputs.front())); } NGRAPH_TEST(onnx_${BACKEND_NAME}, model_global_lp_pool_p2) { auto function = onnx_import::import_onnx_model( file_util::path_join(SERIALIZED_ZOO, "onnx/global_lp_pool_p2.prototxt")); Inputs inputs{std::vector<float>(2 * 3 * 4)}; std::iota(std::begin(inputs.front()), std::end(inputs.front()), 0.f); Outputs expected_outputs{std::vector<float>{22.494444f, 61.789967f}}; Outputs outputs{execute(function, inputs, "${BACKEND_NAME}")}; EXPECT_TRUE(test::all_close_f(expected_outputs.front(), outputs.front())); } NGRAPH_TEST(onnx_${BACKEND_NAME}, model_global_lp_pool_p3) { auto function = onnx_import::import_onnx_model( file_util::path_join(SERIALIZED_ZOO, "onnx/global_lp_pool_p3.prototxt")); Inputs inputs{std::vector<float>(2 * 3 * 4)}; std::iota(std::begin(inputs.front()), std::end(inputs.front()), 0.f); Outputs expected_outputs{std::vector<float>{16.331620904278438f, 41.56697946707537f}}; Outputs outputs{execute(function, inputs, "${BACKEND_NAME}")}; EXPECT_TRUE(test::all_close_f(expected_outputs.front(), outputs.front())); } NGRAPH_TEST(onnx_${BACKEND_NAME}, model_convtranspose_output_shape) { auto conv_transpose_fn = onnx_import::import_onnx_model( file_util::path_join(SERIALIZED_ZOO, "onnx/convtranspose_output_shape.prototxt")); auto test_case = ngraph::test::NgraphTestCase(conv_transpose_fn, "${BACKEND_NAME}"); test_case.add_input_from_file<float>(TEST_FILES, "onnx/convtranspose_output_shape/x.bin"); test_case.add_input_from_file<float>(TEST_FILES, "onnx/convtranspose_output_shape/w.bin"); test_case.add_expected_output_from_file<float>( {1, 2, 10, 8}, TEST_FILES, "onnx/convtranspose_output_shape/y.bin"); test_case.dump_results(); test_case.run(); }