1. 16 Feb, 2020 1 commit
    • Tomasz Dołbniak's avatar
      POC enabling Resnet50 with dynamic batch dimension (#4298) · b2da4cee
      Tomasz Dołbniak authored
      * Constify the onnx importer conv
      
      * Extract and fix the groups attribute validation for Conv
      
      * Check if the convolution's data input rank is static
      
      * Validate the groups attribute against channels and filters
      
      * Validate the conv operation in a separate function
      
      * Dynamically broadcast the conv bias if needed
      
      * Import a test model with dynamic batch conv op
      
      * Run a conv test with dynamic batch
      
      * Cleanup of conv bias handling code
      
      * Use a proper Broadcast constructor for bias in onnx conv
      
      * Handle dynamic ReduceMean with statically defined rank
      
      * Use the target shape rank to construct the default output shape for Broadcast
      
      * Handle ONNX Squeeze with dynamic input and static rank
      
      * Handle ONNX Shape with dynamic input and static rank
      
      * Handle the dynamic target shape in ONNX Reshape
      
      * Fix for the ONNX Shape input validation
      
      * Handle ONNX Softmax with dynamic input and static rank
      
      * Fix the failing Broadcast type prop test
      
      * Code formatting
      
      * Dont broadcast bias before adding it to the conv node
      
      * Drop the conv node validation and rely on the core op implementation checks
      
      * Code review feedback
      
      * Revert the Broadcast op changes
      
      * More code review feedback
      
      * Dynamic conv test using ng test case
      
      * Obsolete headers removal
      
      * Code formatting
      
      * Variable names refactor
      
      * Disable model_conv_with_dynamic_batch test on GPU
      
      * Code formatting
      Co-authored-by: 's avatarSang Ik Lee <sang.ik.lee@intel.com>
      b2da4cee
  2. 14 Feb, 2020 4 commits
  3. 13 Feb, 2020 7 commits
  4. 12 Feb, 2020 11 commits
  5. 11 Feb, 2020 7 commits
  6. 10 Feb, 2020 4 commits
  7. 07 Feb, 2020 3 commits
    • Diego Caballero's avatar
      [MLIR] MLIR repo update (#4249) · efa46641
      Diego Caballero authored
      * [MLIR] MLIR repo update
      
      * Revert test
      
      * More MLIR repo forward
      
      * Move MLIR repo forward
      
      * Add Loop-to-Std lowering pass to nGraph pipeline
      Co-authored-by: 's avatarRobert Kimball <robert.kimball@intel.com>
      Co-authored-by: 's avatarScott Cyphers <diyessi@users.noreply.github.com>
      efa46641
    • Robert Kimball's avatar
      Allow topological sort in Function to be replaced (#4206) · 2da03f8a
      Robert Kimball authored
      * Add replaceable topological sort to Function
      
      * Cleanup
      
      * Cleanup unit test
      
      * Address review comment
      
      * Fix missed item in merge
      Co-authored-by: 's avatarScott Cyphers <diyessi@users.noreply.github.com>
      2da03f8a
    • Adam Osewski's avatar
      Use GroupConvolutionBackpropData v1 in ONNX ConvTranspose. (#4158) · d80c8e42
      Adam Osewski authored
      * Use ConvolutionBackpropData in ONNX ConvTranspose operator.
      
      * Replace deprecated functions and update documentation.
      
      * Remove GroupConvolutionTranspose fused op.
      
      * Add more UT for GroupConvolutionBackpropData.
      
      - They're transformed from GroupConvolutionTranspose
      
      * Fix validate_and_infed types for ConvolutionBackpropData v1.
      
      * Add new constructor for GroupConvolutionBackpropData
      
      - Additionally do some code formatting.
      
      * Improve validation in GroupConvBackprop v0.
      
      * Update/fix upgrade & downgrade passes for
      (Group)ConvolutionBackpropData.
      
      * Add decomposition and validation for GroupConvolutionBackpropData:v1
      
      * Type properties UT for GroupConvolutionBackprop v1
      
      * Remove include of deleted header.
      
      * Add squeeze to opset1::builder.
      
      * Use opset1 squeeze.
      
      * Helper functions for padding and output spatial shape inference.
      
      These helper functions are specialized only for *ConvolutionBackpropData operators.
      
      * Update documentation.
      
      * Add more checks and remove deprecated assert.
      
      * Refactor GroupConvolutionBackpropData validation.
      
      - Use helper functions to infer padding and output shape.
      - Change get_output_shape to return only spatial features dimensions
      
      * Remove unnecessary code from donwgrade pass.
      
      The GroupConvolutionBackpropData node has already computed all those required
      information.
      
      * Call Node API. Small review suggestions.
      
      * Work only on spatial dimensions inside helper functions.
      
      * Enhance documentation for ConvolutionBackpropData
      
      * Refactoring.
      
      * Reuse values computed in downgraded operator.
      
      * Check for correct filters input shape.
      
      * Add additional check on auto pad value.
      
      * Remove unused variables.
      
      * Rename helper function.
      
      * Add more checks.
      
      * Override is dynamic and add more restrictive check.
      
      * Fix merge artifact and force unsigned type for argument.
      
      * Review comments: renaming.
      
      * Change Convolution + bias pattern.
      
      Change from bias broadcasting to appropriate convolution output shape
      into reshape into (1, C, 1, 1) shape, which sould work better.
      
      * Add few more test cases for ONNX ConvTranspose op.
      
      * Skip one UT failing on PlaidML backend due to accuracy.
      d80c8e42
  8. 06 Feb, 2020 2 commits
  9. 05 Feb, 2020 1 commit