1. 31 Mar, 2020 1 commit
  2. 25 Mar, 2020 2 commits
  3. 24 Mar, 2020 1 commit
  4. 23 Mar, 2020 1 commit
  5. 18 Mar, 2020 1 commit
    • Scott Cyphers's avatar
      GetOutputElement removal preparation (#4425) · 0af33226
      Scott Cyphers authored
      * GetOutputElement removal preparation
      
      Not all outputs are used so don't force them to be connected in replace
      Add pattern that matches on any output
      Remove GOEs by default, allow to disable
      Fix failing core passes/tests with GOE dependency
      
      * Fix MLIR call
      
      * Fix value handle assignment
      
      * Cleanup
      
      * style
      
      * review comments
      
      * Fix onnx tests
      
      * Allow simplifcations to work on multi-values nodes
      
      * Disable goe removal for MLIR test
      
      * null init of Output
      Co-authored-by: 's avatarnmostafa <nagy.h.mostafa@intel.com>
      0af33226
  6. 12 Mar, 2020 1 commit
  7. 10 Mar, 2020 1 commit
  8. 27 Feb, 2020 2 commits
  9. 16 Feb, 2020 1 commit
    • Tomasz Dołbniak's avatar
      POC enabling Resnet50 with dynamic batch dimension (#4298) · b2da4cee
      Tomasz Dołbniak authored
      * Constify the onnx importer conv
      
      * Extract and fix the groups attribute validation for Conv
      
      * Check if the convolution's data input rank is static
      
      * Validate the groups attribute against channels and filters
      
      * Validate the conv operation in a separate function
      
      * Dynamically broadcast the conv bias if needed
      
      * Import a test model with dynamic batch conv op
      
      * Run a conv test with dynamic batch
      
      * Cleanup of conv bias handling code
      
      * Use a proper Broadcast constructor for bias in onnx conv
      
      * Handle dynamic ReduceMean with statically defined rank
      
      * Use the target shape rank to construct the default output shape for Broadcast
      
      * Handle ONNX Squeeze with dynamic input and static rank
      
      * Handle ONNX Shape with dynamic input and static rank
      
      * Handle the dynamic target shape in ONNX Reshape
      
      * Fix for the ONNX Shape input validation
      
      * Handle ONNX Softmax with dynamic input and static rank
      
      * Fix the failing Broadcast type prop test
      
      * Code formatting
      
      * Dont broadcast bias before adding it to the conv node
      
      * Drop the conv node validation and rely on the core op implementation checks
      
      * Code review feedback
      
      * Revert the Broadcast op changes
      
      * More code review feedback
      
      * Dynamic conv test using ng test case
      
      * Obsolete headers removal
      
      * Code formatting
      
      * Variable names refactor
      
      * Disable model_conv_with_dynamic_batch test on GPU
      
      * Code formatting
      Co-authored-by: 's avatarSang Ik Lee <sang.ik.lee@intel.com>
      b2da4cee
  10. 12 Feb, 2020 1 commit
  11. 11 Feb, 2020 1 commit
  12. 07 Feb, 2020 1 commit
    • Adam Osewski's avatar
      Use GroupConvolutionBackpropData v1 in ONNX ConvTranspose. (#4158) · d80c8e42
      Adam Osewski authored
      * Use ConvolutionBackpropData in ONNX ConvTranspose operator.
      
      * Replace deprecated functions and update documentation.
      
      * Remove GroupConvolutionTranspose fused op.
      
      * Add more UT for GroupConvolutionBackpropData.
      
      - They're transformed from GroupConvolutionTranspose
      
      * Fix validate_and_infed types for ConvolutionBackpropData v1.
      
      * Add new constructor for GroupConvolutionBackpropData
      
      - Additionally do some code formatting.
      
      * Improve validation in GroupConvBackprop v0.
      
      * Update/fix upgrade & downgrade passes for
      (Group)ConvolutionBackpropData.
      
      * Add decomposition and validation for GroupConvolutionBackpropData:v1
      
      * Type properties UT for GroupConvolutionBackprop v1
      
      * Remove include of deleted header.
      
      * Add squeeze to opset1::builder.
      
      * Use opset1 squeeze.
      
      * Helper functions for padding and output spatial shape inference.
      
      These helper functions are specialized only for *ConvolutionBackpropData operators.
      
      * Update documentation.
      
      * Add more checks and remove deprecated assert.
      
      * Refactor GroupConvolutionBackpropData validation.
      
      - Use helper functions to infer padding and output shape.
      - Change get_output_shape to return only spatial features dimensions
      
      * Remove unnecessary code from donwgrade pass.
      
      The GroupConvolutionBackpropData node has already computed all those required
      information.
      
      * Call Node API. Small review suggestions.
      
      * Work only on spatial dimensions inside helper functions.
      
      * Enhance documentation for ConvolutionBackpropData
      
      * Refactoring.
      
      * Reuse values computed in downgraded operator.
      
      * Check for correct filters input shape.
      
      * Add additional check on auto pad value.
      
      * Remove unused variables.
      
      * Rename helper function.
      
      * Add more checks.
      
      * Override is dynamic and add more restrictive check.
      
      * Fix merge artifact and force unsigned type for argument.
      
      * Review comments: renaming.
      
      * Change Convolution + bias pattern.
      
      Change from bias broadcasting to appropriate convolution output shape
      into reshape into (1, C, 1, 1) shape, which sould work better.
      
      * Add few more test cases for ONNX ConvTranspose op.
      
      * Skip one UT failing on PlaidML backend due to accuracy.
      d80c8e42
  13. 03 Feb, 2020 1 commit
  14. 31 Jan, 2020 1 commit
  15. 22 Jan, 2020 1 commit
  16. 11 Jan, 2020 1 commit
  17. 10 Jan, 2020 1 commit
  18. 01 Jan, 2020 1 commit
  19. 18 Dec, 2019 1 commit
  20. 17 Dec, 2019 1 commit
    • Ewa Tusień's avatar
      Add ScatterND FusedOp (#4018) · 46ff13c7
      Ewa Tusień authored
      * Added scatterND op to ONNX importer.
      
      * Added ScatterND FusedOp.
      
      * Removed unnecessary files.
      
      * Added op to config files.
      
      * Changed input order.
      
      * Fixed validation checking.
      
      * Added suport for int64 in ScatterNDAdd op.
      
      * Changed test.
      
      * Disabled test for plaidML.
      
      * Code refactoring
      
      * Added tests.
      46ff13c7
  21. 16 Dec, 2019 1 commit
    • Mateusz Bencer's avatar
      [SPEC] Add ND input data support for DepthToSpace and SpaceToDepth (#4003) · 8cf2bc6f
      Mateusz Bencer authored
      * First debug version of support ND input
      
      * Added type_prop tests
      
      * Implemented ND support for SpaceToDepth
      
      * Added type_prop tests for SpaceToDepth
      
      * Added fused op tests
      
      * code refactor
      
      * Fixed DepthToSpaceMode::BLOCKS_FIRST
      
      * Code review remarks introduced
      
      * Code review ramarks. Part.2
      
      * Using NODE_VALIDATION_CHECK introduced
      8cf2bc6f
  22. 11 Dec, 2019 1 commit
    • Robert Kimball's avatar
      Remove GOE from Adjoints class (#3973) · f803feb7
      Robert Kimball authored
      * Change generate_adjoints to take an OutputVector instead of a NodeVector for deltas.
      
      * Cleanup
      
      * Adjoints class convert to use Output<Node>
      
      * More cleanup
      
      * More cleanup
      
      * Post-merge build issues
      
      * Don't push initial bprops multiple times
      
      * Eliminate GOE correctly
      
      * back-compatibility, unit test
      f803feb7
  23. 06 Dec, 2019 1 commit
  24. 05 Dec, 2019 1 commit
  25. 03 Dec, 2019 4 commits
  26. 02 Dec, 2019 4 commits
    • Mateusz Bencer's avatar
      [SPEC] Add GatherTree:v1 (#3967) · 9b2095ed
      Mateusz Bencer authored
      * GatherTree introduced
      
      * Added GatherTree type_prop tests
      9b2095ed
    • Mateusz Bencer's avatar
      [SPEC] Add DeformablePSROIPooling v1 (#3954) · 95d072aa
      Mateusz Bencer authored
      * Initial commit
      
      * Moved DeformablePSROIPooling to v1
      
      * Moved DeformablePSROIPooling to v1. Part.2
      
      * Added missing fields
      
      * Added inferance shape
      
      * Added type prop UT
      
      * Added serialization
      
      * Doc + styles applied
      
      * Revert incorrect changes
      
      * Revert incorrect changes. Part.2
      
      * Moved to NGRAPH_API
      
      * integration with master
      
      * Code review remarks introduced
      
      * DeformablePSROIPooling updated to new spec
      95d072aa
    • Mateusz Bencer's avatar
      [SPEC] Adjust Split (#3943) · 371b47fb
      Mateusz Bencer authored
      * Changed axis to Node
      
      * Added using normalize from validation util
      
      * refactored split
      
      * Added typrop tests to Split
      
      * Added set_input_is_relevant_to_shape for Split
      
      * clang style applied
      
      * Fixed var name
      
      * Code refactor
      
      * mergre from master. part.2
      
      * Constructor to provide CI compatibility
      
      * CI compatibility
      
      * CI compatibility
      
      * Updated get_outputs
      
      * CI compitability
      
      * Fixed get_outputs function
      371b47fb
    • Pruthvi's avatar
      Relax check on LRN for rank requirement to be >=3 (#3952) · f2a8f6e5
      Pruthvi authored
      *  relax check for LRN for requirement rank should be >=3
      
      * rename unit test names
      
      * - Disable lrn unit test with axes for CPU backend
      
      * remove outdated unit test on rank requirement from type_prop
      
      * - disable newly added lrn unit test in plaidMl
      f2a8f6e5
  27. 28 Nov, 2019 2 commits
    • Tomasz Socha's avatar
      [SPEC] Adjust ConvolutionBackpropData op. (#3935) · 8f999289
      Tomasz Socha authored
      * [SPEC] Adjust ConvolutionBackpropData op.
      
      ```
      inputs:
        1. filters-------+
        2. output_delta  |  -> 1. data
                         +---> 2. filters
        3. data_batch_shape -> 3. output_shape(+optional)
      
      attributes:
        1. strides          -> 1. strides
        2. dilations-----+
        3. pads_begin    |  -> 2. pads_begin
        4. pads_end      |  -> 3. pads_end
                         +---> 4. dilations
      		      -> 5. +auto_pad(optional)[PadType::EXPLICIT]
      		      -> 6. +output_padding(optional)[zeros]
      ```
      
      * Review fix I
      8f999289
    • Mateusz Bencer's avatar
      [SPEC] Add negative axes support for ReverseSequence (#3926) · f3603647
      Mateusz Bencer authored
      * Added negative axes support for ReverseRequence
      
      * code review remarks introduced
      
      * Disable reverse sequence for PlaidMl tests
      
      * Fixed styles
      
      * Fixed axes assignment
      
      * Fixed normalized axes assignment
      f3603647
  28. 25 Nov, 2019 1 commit
    • Mateusz Bencer's avatar
      [SPEC] Add OneHot:v1 (#3884) · de27f2b1
      Mateusz Bencer authored
      * Moved OneHot to v0
      
      * Introduced OneHot:v1
      
      * Added shape calculation for OneHot:v1
      
      * Added element types checking
      
      * Added output shape tests
      
      * Added tests to checking if inputs are scalars
      
      * Updated OneHot:v1 doc
      
      * Implemented OneHot:v1 downgrade pass
      
      * Using OneHot:v1 in onnx_importer
      
      * Implemented OneHot:v0 upgrade
      
      * Fixed OneHot onnx_importer
      
      * Refactored normalize_axis
      
      * Added OneHot:v1 serialized
      
      * Code review remarks introduced
      
      * Added doc to normalize_axis
      de27f2b1
  29. 22 Nov, 2019 3 commits
    • Scott Cyphers's avatar
      CropAndResize op (#3893) (#3925) · effcc47d
      Scott Cyphers authored
      * Stub for CropAndResize
      
      * Cut and pasteo
      
      * Need a cast
      effcc47d
    • Tomasz Dołbniak's avatar
      [SPEC] HardSigmoid adjustments (#3857) · 28a96f83
      Tomasz Dołbniak authored
      * Construct HardSigmoid with alpha and beta as inputs
      
      * Switch to the new HardSigmoid constructor entirely
      
      * Broadcast with numpy style in hard sigmoid
      
      * Python bindings adjustment to the new constructor
      
      * Different way of creating constants
      
      * Accept scalars instead of 1D vectors for alpha and beta
      
      * Adjust the python tests to the new HardSigmoid constructor
      
      * Use v1 ops in fused HardSigmoid
      
      * Relax the static shape requirement for alpha and beta
      
      * Fix merge
      28a96f83
    • gaurides's avatar
      Fused_op: BatchMatMulTranspose (#3871) · db5b11c8
      gaurides authored
      * Initial commit
      
      * Add decompose_op and unit-test
      
      * Style fix
      
      * Fix CI error
      
      * Address review comments
      
      * Remove CPUBatchFusion
      
      * Address review feedback
      
      * Address review feedback
      
      * Added type_prop tests
      
      * Moved 1 test from cpu to core to keep together
      
      * Address PR comments
      
      * Fix style
      db5b11c8