Commit fea072b7 authored by Nick Korovaiko's avatar Nick Korovaiko Committed by Adam Procter

Disable CF on CPU (#2103)

parent df6d7281
......@@ -1096,7 +1096,7 @@ void runtime::cpu::CPU_ExternalFunction::register_common_passes(ngraph::pass::Ma
NodeVector nv_cwi; // We dont need CPUWorkspaceInsertion to return list of indices
REGISTER_KNOBBED_PASS_WITH_ARGS(CPUWorkspaceInsertion, true, runtime::cpu::pass, nv_cwi, false);
REGISTER_KNOBBED_PASS_WITH_ARGS(CPUAssignment, true, runtime::cpu::pass, this);
REGISTER_KNOBBED_PASS(ConstantFolding, true, ngraph::pass);
REGISTER_KNOBBED_PASS(ConstantFolding, false, ngraph::pass);
REGISTER_KNOBBED_PASS_WITH_ARGS(CPULayout, true, runtime::cpu::pass, this);
REGISTER_KNOBBED_PASS_WITH_ARGS(
CommonSubexpressionElimination, true, ngraph::pass, runtime::cpu::get_cse_handlers_map());
......
......@@ -24,6 +24,8 @@
#include "ngraph/builder/quantization.hpp"
#include "ngraph/ngraph.hpp"
#include "ngraph/op/constant.hpp"
#include "ngraph/pass/constant_folding.hpp"
#include "ngraph/pass/manager.hpp"
#include "util/all_close.hpp"
#include "util/all_close_f.hpp"
#include "util/ndarray.hpp"
......@@ -130,6 +132,13 @@ TEST(builder, scaled_QAP_signed)
EXPECT_EQ((vector<int8_t>{2, 0, 0, 0, 0, 1}), read_vector<int8_t>(result));
}
static void constant_fold(std::shared_ptr<Function> f)
{
pass::Manager pass_manager;
pass_manager.register_pass<pass::ConstantFolding>();
pass_manager.run_passes(f);
}
TEST(builder, scaled_QC)
{
Shape shape_a{1, 1, 3, 4}; // input shape
......@@ -159,6 +168,8 @@ TEST(builder, scaled_QC)
G,
H);
auto f = make_shared<Function>(NodeVector{CV}, ParameterVector{A, B});
constant_fold(f);
auto backend = runtime::Backend::create("CPU");
// Create some tensors for input/output
auto a = backend->create_tensor(element::u8, shape_a);
......@@ -200,6 +211,7 @@ TEST(builder, scaled_QC_with_relu)
G,
H);
auto f = make_shared<Function>(NodeVector{CV}, ParameterVector{A, B});
constant_fold(f);
auto backend = runtime::Backend::create("CPU");
// Create some tensors for input/output
auto a = backend->create_tensor(element::u8, shape_a);
......@@ -243,6 +255,7 @@ TEST(builder, scaled_QC_with_bias)
G,
H);
auto f = make_shared<Function>(NodeVector{CV}, ParameterVector{A, B, Bias});
constant_fold(f);
auto backend = runtime::Backend::create("CPU");
// Create some tensors for input/output
auto a = backend->create_tensor(element::u8, shape_a);
......@@ -290,6 +303,7 @@ TEST(builder, scaled_QC_with_bias_and_relu)
H,
true);
auto f = make_shared<Function>(NodeVector{CV}, ParameterVector{A, B, Bias});
constant_fold(f);
auto backend = runtime::Backend::create("CPU");
// Create some tensors for input/output
auto a = backend->create_tensor(element::u8, shape_a);
......@@ -336,6 +350,7 @@ TEST(builder, scaled_QC_with_f32_bias_and_relu)
H,
true);
auto f = make_shared<Function>(NodeVector{CV}, ParameterVector{A, B, Bias});
constant_fold(f);
auto backend = runtime::Backend::create("CPU");
// Create some tensors for input/output
auto a = backend->create_tensor(element::u8, shape_a);
......@@ -360,6 +375,7 @@ TEST(builder, scaled_Q_unsigned)
auto C = op::Constant::create(element::f32, Shape{}, {127.0f});
auto QT = ngraph::builder::ScaledQuantize(A, B, C, element::u8, quantization_axes, round_mode);
auto f = make_shared<Function>(NodeVector{QT}, ParameterVector{A});
constant_fold(f);
auto backend = runtime::Backend::create("CPU");
// Create some tensors for input/output
auto a = backend->create_tensor(element::f32, shape_a);
......@@ -404,6 +420,7 @@ TEST(builder, scaled_Q_signed)
auto C = op::Constant::create(element::f32, Shape{}, {127.0f});
auto QT = ngraph::builder::ScaledQuantize(A, B, C, element::i8, quantization_axes, round_mode);
auto f = make_shared<Function>(NodeVector{QT}, ParameterVector{A});
constant_fold(f);
auto backend = runtime::Backend::create("CPU");
// Create some tensors for input/output
auto a = backend->create_tensor(element::f32, shape_a);
......@@ -422,6 +439,7 @@ TEST(builder, scaled_DQ_signed)
auto C = op::Constant::create(element::f32, Shape{}, {300.0f});
auto r = ngraph::builder::ScaledDequantize(A, B, C, element::f32, quantization_axes);
auto f = make_shared<Function>(r, ParameterVector{A});
constant_fold(f);
auto backend = runtime::Backend::create("CPU");
// Create some tensors for input/output
auto a = backend->create_tensor(element::i8, Shape{1});
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment