Commit fd80d8ee authored by shssf's avatar shssf Committed by Robert Kimball

IntelGPU backend: Use custom eltwise kernel for signed integers (#1716)

parent 8d70e2a3
...@@ -161,9 +161,41 @@ static void do_eltwise_operation(cldnn::topology& topology, ...@@ -161,9 +161,41 @@ static void do_eltwise_operation(cldnn::topology& topology,
{ {
arguments_check(op, 2, 1); arguments_check(op, 2, 1);
const cldnn::eltwise op_add( if ((get_input_type(op) == element::i32 || get_input_type(op) == element::i64) &&
get_output_name(op), {get_input_name(op, 0), get_input_name(op, 1)}, mode); (mode == cldnn::eltwise_mode::min || mode == cldnn::eltwise_mode::max))
topology.add(op_add); {
string custom_op;
if (mode == cldnn::eltwise_mode::min)
{
custom_op = "min";
}
else if (mode == cldnn::eltwise_mode::max)
{
custom_op = "max";
}
else
{
custom_op = "not_implemented_operation";
}
runtime::intelgpu::do_eltwise_kernel(topology,
get_input_name(op, 0),
get_input_shape(op, 0),
get_input_type(op, 0),
get_input_name(op, 1),
get_input_shape(op, 1),
get_output_name(op),
get_output_shape(op),
get_output_type(op),
custom_op);
}
else
{
const cldnn::eltwise op_add(
get_output_name(op), {get_input_name(op, 0), get_input_name(op, 1)}, mode);
topology.add(op_add);
}
} }
static void do_unary_operation(cldnn::topology& topology, static void do_unary_operation(cldnn::topology& topology,
......
...@@ -1170,6 +1170,53 @@ void runtime::intelgpu::do_logic_kernel(cldnn::topology& topology, ...@@ -1170,6 +1170,53 @@ void runtime::intelgpu::do_logic_kernel(cldnn::topology& topology,
topology.add(op_logical); topology.add(op_logical);
} }
void runtime::intelgpu::do_eltwise_kernel(cldnn::topology& topology,
const string& input0_name,
const Shape& input0_shape,
const element::Type& input0_type,
const string& input1_name,
const Shape& input1_shape,
const string& output_name,
const Shape& output_shape,
const element::Type& output_type,
const string& operation)
{
const cldnn::layout layout = IntelGPULayout::create_cldnn_layout(output_type, output_shape);
const string entry_point_name = "eltwise_" + output_name;
codegen::CodeWriter writer;
vector<size_t> gws;
gen_func_def(writer,
entry_point_name,
{2, get_opencl_type_name(input0_type)},
{input0_shape, input1_shape},
get_opencl_type_name(output_type),
output_shape);
writer.block_begin();
{
// Main loops
gws = generate_loops(writer, output_shape, true);
writer << "output" << access_dims(output_shape) << " = " << operation << "(input0"
<< access_dims(input0_shape) << ", input1" << access_dims(input1_shape) << ");\n";
// Closing brackets for main loops
generate_loops(writer, output_shape, false);
}
writer.block_end();
const cldnn::custom_gpu_primitive op_logical(output_name,
{input0_name, input1_name},
{writer.get_code()},
entry_point_name,
get_kernel_args(2, 1),
"",
layout,
gws);
topology.add(op_logical);
}
void runtime::intelgpu::do_reverse_operation(cldnn::topology& topology, void runtime::intelgpu::do_reverse_operation(cldnn::topology& topology,
const string& input_name, const string& input_name,
const Shape& input_shape, const Shape& input_shape,
......
...@@ -106,6 +106,17 @@ namespace ngraph ...@@ -106,6 +106,17 @@ namespace ngraph
const element::Type& output_type, const element::Type& output_type,
const std::string& operation); const std::string& operation);
void do_eltwise_kernel(cldnn::topology& topology,
const std::string& input0_name,
const Shape& input0_shape,
const element::Type& input0_type,
const std::string& input1_name,
const Shape& input1_shape,
const std::string& output_name,
const Shape& output_shape,
const element::Type& output_type,
const std::string& operation);
void do_reverse_operation(cldnn::topology& topology, void do_reverse_operation(cldnn::topology& topology,
const std::string& input_name, const std::string& input_name,
const Shape& input_shape, const Shape& input_shape,
......
...@@ -1650,6 +1650,87 @@ NGRAPH_TEST(${BACKEND_NAME}, minimum) ...@@ -1650,6 +1650,87 @@ NGRAPH_TEST(${BACKEND_NAME}, minimum)
EXPECT_EQ((vector<float>{1, 2, -8, 8, -.5, 0, 1, 1}), read_vector<float>(result)); EXPECT_EQ((vector<float>{1, 2, -8, 8, -.5, 0, 1, 1}), read_vector<float>(result));
} }
NGRAPH_TEST(${BACKEND_NAME}, minimum_int32)
{
Shape shape{2, 2, 2};
auto A = make_shared<op::Parameter>(element::i32, shape);
auto B = make_shared<op::Parameter>(element::i32, shape);
auto f = make_shared<Function>(make_shared<op::Minimum>(A, B), op::ParameterVector{A, B});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::i32, shape);
copy_data(a, vector<int32_t>{1, 8, -8, 17, -5, 67635216, 2, 1});
auto b = backend->create_tensor(element::i32, shape);
copy_data(b, vector<int32_t>{1, 2, 4, 8, 0, 18448, 1, 6});
auto result = backend->create_tensor(element::i32, shape);
backend->call_with_validate(f, {result}, {a, b});
EXPECT_EQ((vector<int32_t>{1, 2, -8, 8, -5, 18448, 1, 1}), read_vector<int32_t>(result));
}
NGRAPH_TEST(${BACKEND_NAME}, minimum_int64)
{
Shape shape{2, 2, 2};
auto A = make_shared<op::Parameter>(element::i64, shape);
auto B = make_shared<op::Parameter>(element::i64, shape);
auto f = make_shared<Function>(make_shared<op::Minimum>(A, B), op::ParameterVector{A, B});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::i64, shape);
copy_data(a, vector<int64_t>{1, 8, -8, 17, -5, 67635216, 2, 17179887632});
auto b = backend->create_tensor(element::i64, shape);
copy_data(b, vector<int64_t>{1, 2, 4, 8, 0, 18448, 1, 280592});
auto result = backend->create_tensor(element::i64, shape);
backend->call_with_validate(f, {result}, {a, b});
EXPECT_EQ((vector<int64_t>{1, 2, -8, 8, -5, 18448, 1, 280592}), read_vector<int64_t>(result));
}
NGRAPH_TEST(${BACKEND_NAME}, maximum_int32)
{
Shape shape{2, 2, 2};
auto A = make_shared<op::Parameter>(element::i32, shape);
auto B = make_shared<op::Parameter>(element::i32, shape);
auto f = make_shared<Function>(make_shared<op::Maximum>(A, B), op::ParameterVector{A, B});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::i32, shape);
copy_data(a, vector<int32_t>{1, 8, -8, 17, -5, 67635216, 2, 1});
auto b = backend->create_tensor(element::i32, shape);
copy_data(b, vector<int32_t>{1, 2, 4, 8, 0, 18448, 1, 6});
auto result = backend->create_tensor(element::i32, shape);
backend->call_with_validate(f, {result}, {a, b});
EXPECT_EQ((vector<int32_t>{1, 8, 4, 17, 0, 67635216, 2, 6}), read_vector<int32_t>(result));
}
NGRAPH_TEST(${BACKEND_NAME}, maximum_int64)
{
Shape shape{2, 2, 2};
auto A = make_shared<op::Parameter>(element::i64, shape);
auto B = make_shared<op::Parameter>(element::i64, shape);
auto f = make_shared<Function>(make_shared<op::Maximum>(A, B), op::ParameterVector{A, B});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::i64, shape);
copy_data(a, vector<int64_t>{1, 8, -8, 17, -5, 67635216, 2, 17179887632});
auto b = backend->create_tensor(element::i64, shape);
copy_data(b, vector<int64_t>{1, 2, 4, 8, 0, 18448, 1, 280592});
auto result = backend->create_tensor(element::i64, shape);
backend->call_with_validate(f, {result}, {a, b});
EXPECT_EQ((vector<int64_t>{1, 8, 4, 17, 0, 67635216, 2, 17179887632}),
read_vector<int64_t>(result));
}
NGRAPH_TEST(${BACKEND_NAME}, negative) NGRAPH_TEST(${BACKEND_NAME}, negative)
{ {
Shape shape{2, 3}; Shape shape{2, 3};
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment