Commit f6f3a032 authored by Sang Ik Lee's avatar Sang Ik Lee Committed by Scott Cyphers

Pad: add pad mode SYMMETRIC (#3229)

* Pad: add pad mode SYMMETRIC

* Style.

* Disable UT on unsupported backends.
parent 42682914
......@@ -34,7 +34,7 @@ namespace ngraph
/// \param arg_pad_value The node producing the scalar value to be inserted for padding.
/// \param padding_below The padding-below widths.
/// \param padding_above The padding-above widths.
/// \param pad_mode The padding mode: CONSTANT(default), EDGE or REFLECT.
/// \param pad_mode The padding mode: CONSTANT(default), EDGE, REFLECT or SYMMETRIC.
Pad(const std::shared_ptr<Node>& arg,
const std::shared_ptr<Node>& arg_pad_value,
const CoordinateDiff& padding_below,
......
......@@ -3027,7 +3027,9 @@ namespace ngraph
case ngraph::op::PadMode::REFLECT:
pad_mode_string = "ngraph::op::PadMode::REFLECT";
break;
case ngraph::op::PadMode::SYMMETRIC: throw ngraph_error("Unsupported PadMode");
case ngraph::op::PadMode::SYMMETRIC:
pad_mode_string = "ngraph::op::PadMode::SYMMETRIC";
break;
}
writer << "reference::pad<" << out[0].get_type() << ">(" << args[0].get_name()
<< ",\n";
......
......@@ -123,6 +123,7 @@ pad_reflect_1d_bottom_neg_bigger_than_tensor
pad_reflect_1d_multi_reflect
pad_reflect_2d
pad_reflect_2d_with_neg
pad_symmetric
# Quantized operators are not supported on gpu backend
model_dequantize_linear
......
......@@ -40,6 +40,7 @@ pad_reflect_1d_bottom_neg_bigger_than_tensor
pad_reflect_1d_multi_reflect
pad_reflect_2d
pad_reflect_2d_with_neg
pad_symmetric
# Not implemented
batch_mat_mul_forward
......
......@@ -137,6 +137,7 @@ pad_reflect_2d_with_neg
pad_negative_exterior_2d
pad_negative_exterior_2d_all_negative
pad_negative_exterior_4d
pad_symmetric
max_trivial_int8
max_trivial_5d_int32
max_3d_to_scalar_double
......
......@@ -164,8 +164,31 @@ namespace ngraph
}
case op::PadMode::SYMMETRIC:
{
// TODO: Add support for Symmetric mode
throw ngraph_error("Symmetric mode padding not supported");
Coordinate c = in_coord; // have to copy because in_coord is const
for (size_t i = 0; i < c.size(); i++)
{
ptrdiff_t pos = padding_below[i] - (c[i] + 1);
if (pos >= 0)
{
c[i] = static_cast<size_t>(pos + padding_below[i]);
}
else
{
pos = -(pos + 1);
ptrdiff_t src_dim = static_cast<ptrdiff_t>(arg0_shape[i]);
if (pos < src_dim)
{
c[i] = static_cast<size_t>(pos + padding_below[i]);
}
else
{
c[i] = static_cast<size_t>(padding_below[i] + src_dim +
padding_above[i] - pos);
}
}
}
v = arg0[input_transform.index(c)];
break;
}
}
......
......@@ -939,3 +939,36 @@ NGRAPH_TEST(${BACKEND_NAME}, pad_2channel_2image_asym)
read_vector<float>(result),
MIN_FLOAT_TOLERANCE_BITS));
}
NGRAPH_TEST(${BACKEND_NAME}, pad_symmetric)
{
Shape shape_a{2, 3};
auto A = make_shared<op::Parameter>(element::f32, shape_a);
Shape shape_b{};
auto B = make_shared<op::Parameter>(element::f32, shape_b);
Shape shape_r{4, 7};
CoordinateDiff padding_below{1, 2};
CoordinateDiff padding_above{1, 2};
auto f = make_shared<Function>(
make_shared<op::Pad>(A, B, padding_below, padding_above, op::PadMode::SYMMETRIC),
ParameterVector{A, B});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::f32, shape_a);
copy_data(a, test::NDArray<float, 2>({{1, 2, 3}, {4, 5, 6}}).get_vector());
auto b = backend->create_tensor(element::f32, shape_b);
copy_data(b, vector<float>{2112});
auto result = backend->create_tensor(element::f32, shape_r);
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a, b});
EXPECT_TRUE(test::all_close_f((test::NDArray<float, 2>({{2, 1, 1, 2, 3, 3, 2},
{2, 1, 1, 2, 3, 3, 2},
{5, 4, 4, 5, 6, 6, 5},
{5, 4, 4, 5, 6, 6, 5}})
.get_vector()),
read_vector<float>(result),
MIN_FLOAT_TOLERANCE_BITS));
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment