Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
N
ngraph
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
ngraph
Commits
f60dd831
Commit
f60dd831
authored
Jul 20, 2018
by
Jaikrishnan Menon
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
CPU Direct Execution: Implement Dot
parent
045c1898
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
362 additions
and
0 deletions
+362
-0
dot.cpp
src/ngraph/runtime/cpu/builder/dot.cpp
+193
-0
dot.hpp
src/ngraph/runtime/cpu/kernel/dot.hpp
+169
-0
No files found.
src/ngraph/runtime/cpu/builder/dot.cpp
0 → 100644
View file @
f60dd831
/*******************************************************************************
* Copyright 2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#include <cstring>
#include "ngraph/op/dot.hpp"
#include "ngraph/runtime/cpu/cpu_builder.hpp"
#include "ngraph/runtime/cpu/kernel/dot.hpp"
using
namespace
std
;
using
namespace
ngraph
;
namespace
ngraph
{
namespace
runtime
{
namespace
cpu
{
template
<>
void
Builder
::
BUILDER_DECL
(
ngraph
::
op
::
Dot
)
{
auto
dot
=
static_cast
<
const
ngraph
::
op
::
Dot
*>
(
node
);
auto
&
functors
=
external_function
->
get_functors
();
auto
&
tensor_data
=
external_function
->
get_tensor_data
();
auto
arg0_shape
=
args
[
0
].
get_shape
();
auto
arg1_shape
=
args
[
1
].
get_shape
();
auto
result_shape
=
out
[
0
].
get_shape
();
auto
&
arg0_tensor
=
tensor_data
[
args
[
0
].
get_name
()];
auto
&
arg1_tensor
=
tensor_data
[
args
[
1
].
get_name
()];
auto
&
out_tensor
=
tensor_data
[
out
[
0
].
get_name
()];
auto
reduction_axes_count
=
dot
->
get_reduction_axes_count
();
if
(
!
shape_size
(
result_shape
))
{
auto
functor
=
[](
CPURuntimeContext
*
ctx
)
{};
functors
.
emplace_back
(
functor
);
return
;
}
if
(
!
shape_size
(
arg0_shape
)
||
!
shape_size
(
arg1_shape
))
{
auto
size
=
shape_size
(
result_shape
)
*
out
[
0
].
get_element_type
().
size
();
auto
functor
=
[
&
,
size
](
CPURuntimeContext
*
ctx
)
{
memset
(
out_tensor
,
0
,
size
);
};
functors
.
emplace_back
(
functor
);
return
;
}
if
(
arg0_shape
.
empty
()
||
arg1_shape
.
empty
())
{
auto
first
=
(
arg0_shape
.
empty
()
?
args
[
0
]
:
args
[
1
]);
auto
second
=
(
arg0_shape
.
empty
()
?
args
[
1
]
:
args
[
0
]);
auto
&
first_tensor
=
tensor_data
[
first
.
get_name
()];
auto
&
second_tensor
=
tensor_data
[
second
.
get_name
()];
std
::
function
<
decltype
(
runtime
::
cpu
::
kernel
::
dot_scalar
<
float
>
)
>
kernel
;
SELECT_KERNEL
(
kernel
,
out
[
0
].
get_element_type
(),
runtime
::
cpu
::
kernel
::
dot_scalar
);
auto
element_count
=
shape_size
(
second
.
get_shape
());
auto
functor
=
[
&
,
kernel
,
element_count
](
CPURuntimeContext
*
ctx
)
{
kernel
(
first_tensor
,
second_tensor
,
out_tensor
,
element_count
);
};
functors
.
emplace_back
(
functor
);
return
;
}
if
((
arg0_shape
.
size
()
==
1
)
&&
(
arg1_shape
.
size
()
==
1
)
&&
reduction_axes_count
==
1
)
{
std
::
function
<
decltype
(
runtime
::
cpu
::
kernel
::
dot_1d_1d_1rd
<
float
>
)
>
kernel
;
SELECT_KERNEL
(
kernel
,
out
[
0
].
get_element_type
(),
runtime
::
cpu
::
kernel
::
dot_1d_1d_1rd
);
auto
functor
=
[
&
,
kernel
,
arg0_shape
,
arg1_shape
,
result_shape
](
CPURuntimeContext
*
ctx
)
{
kernel
(
arg0_tensor
,
arg1_tensor
,
out_tensor
,
arg0_shape
,
arg1_shape
,
result_shape
);
};
functors
.
emplace_back
(
functor
);
return
;
}
if
((
arg0_shape
.
size
()
==
2
)
&&
(
arg1_shape
.
size
()
==
1
)
&&
reduction_axes_count
==
1
)
{
std
::
function
<
decltype
(
runtime
::
cpu
::
kernel
::
dot_2d_1d_1rd
<
float
>
)
>
kernel
;
SELECT_KERNEL
(
kernel
,
out
[
0
].
get_element_type
(),
runtime
::
cpu
::
kernel
::
dot_2d_1d_1rd
);
auto
functor
=
[
&
,
kernel
,
arg0_shape
,
arg1_shape
,
result_shape
](
CPURuntimeContext
*
ctx
)
{
kernel
(
arg0_tensor
,
arg1_tensor
,
out_tensor
,
arg0_shape
,
arg1_shape
,
result_shape
);
};
functors
.
emplace_back
(
functor
);
return
;
}
if
((
arg0_shape
.
size
()
==
3
)
&&
(
arg1_shape
.
size
()
==
3
)
&&
reduction_axes_count
==
1
)
{
std
::
function
<
decltype
(
runtime
::
cpu
::
kernel
::
dot_3d_3d_1rd
<
float
>
)
>
kernel
;
SELECT_KERNEL
(
kernel
,
out
[
0
].
get_element_type
(),
runtime
::
cpu
::
kernel
::
dot_3d_3d_1rd
);
auto
functor
=
[
&
,
kernel
,
arg0_shape
,
arg1_shape
,
result_shape
](
CPURuntimeContext
*
ctx
)
{
kernel
(
arg0_tensor
,
arg1_tensor
,
out_tensor
,
arg0_shape
,
arg1_shape
,
result_shape
);
};
functors
.
emplace_back
(
functor
);
return
;
}
if
((
arg0_shape
.
size
()
==
3
)
&&
(
arg1_shape
.
size
()
==
2
)
&&
reduction_axes_count
==
1
)
{
std
::
function
<
decltype
(
runtime
::
cpu
::
kernel
::
dot_3d_2d_1rd
<
float
>
)
>
kernel
;
SELECT_KERNEL
(
kernel
,
out
[
0
].
get_element_type
(),
runtime
::
cpu
::
kernel
::
dot_3d_2d_1rd
);
auto
functor
=
[
&
,
kernel
,
arg0_shape
,
arg1_shape
,
result_shape
](
CPURuntimeContext
*
ctx
)
{
kernel
(
arg0_tensor
,
arg1_tensor
,
out_tensor
,
arg0_shape
,
arg1_shape
,
result_shape
);
};
functors
.
emplace_back
(
functor
);
return
;
}
std
::
function
<
decltype
(
runtime
::
cpu
::
kernel
::
dot
<
float
>
)
>
kernel
;
SELECT_KERNEL
(
kernel
,
out
[
0
].
get_element_type
(),
runtime
::
cpu
::
kernel
::
dot
);
auto
functor
=
[
&
,
kernel
,
arg0_shape
,
arg1_shape
,
result_shape
,
reduction_axes_count
](
CPURuntimeContext
*
ctx
)
{
kernel
(
arg0_tensor
,
arg1_tensor
,
out_tensor
,
arg0_shape
,
arg1_shape
,
result_shape
,
reduction_axes_count
);
};
functors
.
emplace_back
(
functor
);
}
REGISTER_OP_BUILDER
(
Dot
);
}
}
}
src/ngraph/runtime/cpu/kernel/dot.hpp
0 → 100644
View file @
f60dd831
/*******************************************************************************
* Copyright 2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#pragma once
#define EIGEN_USE_THREADS
#include <unsupported/Eigen/CXX11/Tensor>
#include "ngraph/runtime/cpu/kernel/eigen_thread_pool.hpp"
#include "ngraph/runtime/reference/dot.hpp"
#include "ngraph/shape.hpp"
namespace
ngraph
{
namespace
runtime
{
namespace
cpu
{
namespace
kernel
{
template
<
typename
ElementType
,
unsigned
int
Input0Rank
,
unsigned
int
Input1Rank
,
unsigned
int
DotDims
>
void
dot
(
void
*
input0
,
void
*
input1
,
void
*
output
,
const
Shape
&
input0_shape
,
const
Shape
&
input1_shape
,
const
Shape
&
output_shape
)
{
constexpr
unsigned
int
OutRank
=
Input0Rank
+
Input1Rank
-
2
*
DotDims
;
Eigen
::
array
<
Eigen
::
Index
,
OutRank
>
out_dims
;
Eigen
::
array
<
Eigen
::
Index
,
Input0Rank
>
in0_dims
;
Eigen
::
array
<
Eigen
::
Index
,
Input1Rank
>
in1_dims
;
Eigen
::
array
<
Eigen
::
IndexPair
<
Eigen
::
Index
>
,
DotDims
>
dot_dims
;
for
(
int
i
=
0
;
i
<
OutRank
;
i
++
)
{
out_dims
[
i
]
=
output_shape
[
i
];
}
for
(
int
i
=
0
;
i
<
Input0Rank
;
i
++
)
{
in0_dims
[
i
]
=
input0_shape
[
i
];
}
for
(
int
i
=
0
;
i
<
Input1Rank
;
i
++
)
{
in1_dims
[
i
]
=
input1_shape
[
i
];
}
for
(
int
i
=
0
;
i
<
DotDims
;
i
++
)
{
dot_dims
[
i
].
first
=
Input0Rank
-
DotDims
+
i
;
dot_dims
[
i
].
second
=
i
;
}
Eigen
::
TensorMap
<
Eigen
::
Tensor
<
ElementType
,
OutRank
,
Eigen
::
RowMajor
>>
out
(
static_cast
<
ElementType
*>
(
output
),
out_dims
);
Eigen
::
TensorMap
<
Eigen
::
Tensor
<
ElementType
,
Input0Rank
,
Eigen
::
RowMajor
>>
in0
(
static_cast
<
ElementType
*>
(
input0
),
in0_dims
);
Eigen
::
TensorMap
<
Eigen
::
Tensor
<
ElementType
,
Input1Rank
,
Eigen
::
RowMajor
>>
in1
(
static_cast
<
ElementType
*>
(
input1
),
in1_dims
);
out
.
device
(
eigen
::
global_thread_pool_device
)
=
in0
.
contract
(
in1
,
dot_dims
);
}
template
<
typename
ElementType
>
void
dot_scalar
(
void
*
input0
,
void
*
input1
,
void
*
output
,
size_t
element_count
)
{
Eigen
::
array
<
Eigen
::
Index
,
1
>
out_dims
;
Eigen
::
array
<
Eigen
::
Index
,
1
>
in1_dims
;
out_dims
[
0
]
=
element_count
;
in1_dims
[
0
]
=
element_count
;
Eigen
::
TensorMap
<
Eigen
::
Tensor
<
ElementType
,
1
,
Eigen
::
RowMajor
>>
out
(
static_cast
<
ElementType
*>
(
output
),
out_dims
);
auto
in0
=
static_cast
<
ElementType
*>
(
input0
);
Eigen
::
TensorMap
<
Eigen
::
Tensor
<
ElementType
,
1
,
Eigen
::
RowMajor
>>
in1
(
static_cast
<
ElementType
*>
(
input1
),
in1_dims
);
out
.
device
(
eigen
::
global_thread_pool_device
)
=
in0
[
0
]
*
in1
;
}
template
<
typename
ElementType
>
void
dot_1d_1d_1rd
(
void
*
input0
,
void
*
input1
,
void
*
output
,
const
Shape
&
input0_shape
,
const
Shape
&
input1_shape
,
const
Shape
&
output_shape
)
{
dot
<
ElementType
,
1
,
1
,
1
>
(
input0
,
input1
,
output
,
input0_shape
,
input1_shape
,
output_shape
);
}
template
<
typename
ElementType
>
void
dot_2d_1d_1rd
(
void
*
input0
,
void
*
input1
,
void
*
output
,
const
Shape
&
input0_shape
,
const
Shape
&
input1_shape
,
const
Shape
&
output_shape
)
{
dot
<
ElementType
,
2
,
1
,
1
>
(
input0
,
input1
,
output
,
input0_shape
,
input1_shape
,
output_shape
);
}
template
<
typename
ElementType
>
void
dot_3d_3d_1rd
(
void
*
input0
,
void
*
input1
,
void
*
output
,
const
Shape
&
input0_shape
,
const
Shape
&
input1_shape
,
const
Shape
&
output_shape
)
{
dot
<
ElementType
,
3
,
3
,
1
>
(
input0
,
input1
,
output
,
input0_shape
,
input1_shape
,
output_shape
);
}
template
<
typename
ElementType
>
void
dot_3d_2d_1rd
(
void
*
input0
,
void
*
input1
,
void
*
output
,
const
Shape
&
input0_shape
,
const
Shape
&
input1_shape
,
const
Shape
&
output_shape
)
{
dot
<
ElementType
,
3
,
2
,
1
>
(
input0
,
input1
,
output
,
input0_shape
,
input1_shape
,
output_shape
);
}
template
<
typename
ElementType
>
void
dot
(
void
*
arg0
,
void
*
arg1
,
void
*
out
,
const
Shape
&
arg0_shape
,
const
Shape
&
arg1_shape
,
const
Shape
&
out_shape
,
size_t
reduction_axes_count
)
{
reference
::
dot
(
static_cast
<
const
ElementType
*>
(
arg0
),
static_cast
<
const
ElementType
*>
(
arg1
),
static_cast
<
ElementType
*>
(
out
),
arg0_shape
,
arg1_shape
,
out_shape
,
reduction_axes_count
);
}
}
}
}
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment