Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
N
ngraph
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
ngraph
Commits
ef1c5347
Commit
ef1c5347
authored
May 20, 2019
by
Adam Rogowiec
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
LSTM cell fused operator.
parent
03dba84d
Hide whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
546 additions
and
2 deletions
+546
-2
CMakeLists.txt
src/ngraph/CMakeLists.txt
+6
-0
CMakeLists.txt
src/ngraph/frontend/onnx_import/CMakeLists.txt
+0
-2
ngraph.hpp
src/ngraph/ngraph.hpp
+1
-0
lstm_cell.cpp
src/ngraph/op/fused/lstm_cell.cpp
+301
-0
lstm_cell.hpp
src/ngraph/op/fused/lstm_cell.hpp
+202
-0
fused_op_tbl.hpp
src/ngraph/op/fused_op_tbl.hpp
+1
-0
serializer.cpp
src/ngraph/serializer.cpp
+35
-0
No files found.
src/ngraph/CMakeLists.txt
View file @
ef1c5347
...
...
@@ -302,12 +302,16 @@ set (SRC
op/fused/grn.hpp
op/fused/group_conv.hpp
op/fused/group_conv.cpp
op/fused/lstm_cell.cpp
op/fused/lstm_cell.hpp
op/fused/mvn.cpp
op/fused/mvn.hpp
op/fused/normalize.cpp
op/fused/normalize.hpp
op/fused/prelu.cpp
op/fused/prelu.hpp
op/fused/rnn_cell_base.cpp
op/fused/rnn_cell_base.hpp
op/fused/scale_shift.cpp
op/fused/scale_shift.hpp
op/fused/space_to_depth.cpp
...
...
@@ -320,6 +324,8 @@ set (SRC
op/fused/squeeze.hpp
op/fused/unsqueeze.cpp
op/fused/unsqueeze.hpp
op/util/activation_functions.cpp
op/util/activation_functions.hpp
op/util/arithmetic_reduction.cpp
op/util/arithmetic_reduction.hpp
op/util/binary_elementwise_arithmetic.cpp
...
...
src/ngraph/frontend/onnx_import/CMakeLists.txt
View file @
ef1c5347
...
...
@@ -189,8 +189,6 @@ add_library(onnx_import STATIC
utils/reduction.hpp
utils/reshape.cpp
utils/reshape.hpp
utils/rnn/activation_functions.cpp
utils/rnn/activation_functions.hpp
utils/variadic.hpp
)
set
(
ONNX_IMPORT_INCLUDE_DIR
${
CMAKE_CURRENT_SOURCE_DIR
}
CACHE INTERNAL
""
)
...
...
src/ngraph/ngraph.hpp
View file @
ef1c5347
...
...
@@ -103,6 +103,7 @@
#include "ngraph/op/fused/grn.hpp"
#include "ngraph/op/fused/group_conv.hpp"
#include "ngraph/op/fused/hard_sigmoid.hpp"
#include "ngraph/op/fused/lstm_cell.hpp"
#include "ngraph/op/fused/mvn.hpp"
#include "ngraph/op/fused/normalize.hpp"
#include "ngraph/op/fused/prelu.hpp"
...
...
src/ngraph/op/fused/lstm_cell.cpp
0 → 100644
View file @
ef1c5347
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include <algorithm>
#include <cmath>
#include <functional>
#include "ngraph/builder/split.hpp"
#include "ngraph/op/add.hpp"
#include "ngraph/op/constant.hpp"
#include "ngraph/op/dot.hpp"
#include "ngraph/op/fused/lstm_cell.hpp"
#include "ngraph/op/maximum.hpp"
#include "ngraph/op/minimum.hpp"
#include "ngraph/op/multiply.hpp"
#include "ngraph/op/subtract.hpp"
#include "ngraph/op/util/broadcasting.hpp"
#include "ngraph/op/util/reshape.hpp"
#include "ngraph/shape.hpp"
#include "ngraph/type/element_type.hpp"
#include "ngraph/util.hpp"
using
namespace
std
;
using
namespace
ngraph
;
// ------------- HELPER FUNCTIONS ---------------------------------------------
static
shared_ptr
<
Node
>
add
(
const
shared_ptr
<
Node
>&
lhs
,
const
shared_ptr
<
Node
>&
rhs
)
{
auto
args
=
op
::
numpy_style_broadcast
({
lhs
,
rhs
});
return
{
make_shared
<
op
::
Add
>
(
args
.
at
(
0
),
args
.
at
(
1
))};
}
static
shared_ptr
<
Node
>
sub
(
const
shared_ptr
<
Node
>&
lhs
,
const
shared_ptr
<
Node
>&
rhs
)
{
auto
args
=
op
::
numpy_style_broadcast
({
lhs
,
rhs
});
return
{
make_shared
<
op
::
Subtract
>
(
args
.
at
(
0
),
args
.
at
(
1
))};
}
static
shared_ptr
<
Node
>
mul
(
const
shared_ptr
<
Node
>&
lhs
,
const
shared_ptr
<
Node
>&
rhs
)
{
auto
args
=
op
::
numpy_style_broadcast
({
lhs
,
rhs
});
return
{
make_shared
<
op
::
Multiply
>
(
args
.
at
(
0
),
args
.
at
(
1
))};
}
static
shared_ptr
<
Node
>
clip
(
const
shared_ptr
<
Node
>&
data
,
float
threshold
)
{
if
(
threshold
==
0.
f
)
{
return
data
;
}
float
min_val
=
-
threshold
;
float
max_val
=
threshold
;
size_t
size
=
shape_size
(
data
->
get_shape
());
const
shared_ptr
<
Node
>
min_val_node
=
op
::
Constant
::
create
(
data
->
get_element_type
(),
data
->
get_shape
(),
vector
<
float
>
(
size
,
min_val
));
const
shared_ptr
<
Node
>
max_val_node
=
op
::
Constant
::
create
(
data
->
get_element_type
(),
data
->
get_shape
(),
vector
<
float
>
(
size
,
max_val
));
return
make_shared
<
op
::
Minimum
>
(
max_val_node
,
make_shared
<
op
::
Maximum
>
(
data
,
min_val_node
));
}
// ------------- LSTM_CELL ----------------------------------------------------
op
::
LSTMCell
::
LSTMCell
(
const
shared_ptr
<
Node
>&
X
,
const
shared_ptr
<
Node
>&
W
,
const
shared_ptr
<
Node
>&
R
,
const
shared_ptr
<
Node
>&
H_t
,
const
shared_ptr
<
Node
>&
C_t
,
size_t
hidden_size
)
:
LSTMCell
(
X
,
W
,
R
,
H_t
,
C_t
,
hidden_size
,
vector
<
string
>
{
"sigmoid"
,
"tanh"
,
"tanh"
},
vector
<
float
>
{},
vector
<
float
>
{},
0.
f
,
false
)
{
}
op
::
LSTMCell
::
LSTMCell
(
const
shared_ptr
<
Node
>&
X
,
const
shared_ptr
<
Node
>&
W
,
const
shared_ptr
<
Node
>&
R
,
const
shared_ptr
<
Node
>&
H_t
,
const
shared_ptr
<
Node
>&
C_t
,
size_t
hidden_size
,
const
vector
<
string
>&
activations
,
const
vector
<
float
>&
activation_alpha
,
const
vector
<
float
>&
activation_beta
,
float
clip
,
bool
input_forget
)
:
FusedOp
(
"LSTMCell"
,
{
X
,
W
,
R
,
H_t
,
C_t
})
,
RNNCellBase
(
hidden_size
,
clip
,
activations
,
activation_alpha
,
activation_beta
)
,
m_X
{
X
}
,
m_W
{
W
}
,
m_R
{
R
}
,
m_H_t
{
H_t
}
,
m_C_t
{
C_t
}
,
m_activation_f
{
get_activation_function
(
0
)}
,
m_activation_g
{
get_activation_function
(
1
)}
,
m_activation_h
{
get_activation_function
(
2
)}
,
m_input_forget
{
input_forget
}
{
constructor_validate_and_infer_types
();
// Normally we would split B onto Wb an Rb and add them, however here they are all zeros,
// thus just initialize bias with appropriate shape and zeros.
m_bias
=
ngraph
::
op
::
Constant
::
create
(
element
::
f32
,
Shape
{
m_gates_count
*
get_hidden_size
()},
vector
<
float
>
(
m_gates_count
*
get_hidden_size
(),
0.
f
));
m_P
=
ngraph
::
op
::
Constant
::
create
(
element
::
f32
,
Shape
{
m_peepholes_count
*
get_hidden_size
()},
vector
<
float
>
(
m_peepholes_count
*
get_hidden_size
(),
0.
f
));
m_p_iof
=
builder
::
split
(
m_P
,
m_peepholes_count
);
}
op
::
LSTMCell
::
LSTMCell
(
const
shared_ptr
<
Node
>&
X
,
const
shared_ptr
<
Node
>&
W
,
const
shared_ptr
<
Node
>&
R
,
const
shared_ptr
<
Node
>&
H_t
,
const
shared_ptr
<
Node
>&
C_t
,
size_t
hidden_size
,
const
shared_ptr
<
Node
>&
B
,
const
shared_ptr
<
Node
>&
P
,
const
vector
<
string
>&
activations
,
const
vector
<
float
>&
activation_alpha
,
const
vector
<
float
>&
activation_beta
,
float
clip
,
bool
input_forget
)
:
FusedOp
(
"LSTMCell"
,
{
X
,
W
,
R
,
H_t
,
C_t
,
B
,
P
})
,
RNNCellBase
(
hidden_size
,
clip
,
activations
,
activation_alpha
,
activation_beta
)
,
m_X
{
X
}
,
m_W
{
W
}
,
m_R
{
R
}
,
m_H_t
{
H_t
}
,
m_C_t
{
C_t
}
,
m_P
{
P
}
,
m_activation_f
{
get_activation_function
(
0
)}
,
m_activation_g
{
get_activation_function
(
1
)}
,
m_activation_h
{
get_activation_function
(
2
)}
,
m_input_forget
{
input_forget
}
{
// Normally we would split B onto Wb an Rb and add them, however here they are all zeros,
// thus just initialize bias with appropriate shape and zeros.
if
(
!
B
)
{
m_bias
=
ngraph
::
op
::
Constant
::
create
(
element
::
f32
,
Shape
{
m_gates_count
*
get_hidden_size
()},
vector
<
float
>
(
m_gates_count
*
get_hidden_size
(),
0.
f
));
}
// Split B onto Wb an Rb and add them.
else
{
NodeVector
b_W_R
=
builder
::
split
(
B
,
2
);
m_bias
=
b_W_R
.
at
(
0
)
+
b_W_R
.
at
(
1
);
}
if
(
!
m_P
)
{
m_P
=
ngraph
::
op
::
Constant
::
create
(
element
::
f32
,
Shape
{
m_peepholes_count
*
get_hidden_size
()},
vector
<
float
>
(
m_peepholes_count
*
get_hidden_size
(),
0.
f
));
}
constructor_validate_and_infer_types
();
m_p_iof
=
builder
::
split
(
m_P
,
m_peepholes_count
);
}
void
op
::
LSTMCell
::
pre_validate_and_infer_types
()
{
}
NodeVector
op
::
LSTMCell
::
decompose_op
()
const
{
// ------ VARIABLE'S NAMES AND ACRONYM DEFINITIONS ------
// The names used below are analogous to the one used in ONNX documentation.
//
// ------ ACRONYMS ------
// i - input gate
// o - output gate
// f - forget gate
// c - cell gate
// t - time step (t-1 means previous time step)
// W - W parameter weight matrix for input, output, forget, and
// cell gates.
// R - R recurrence weight matrix for input, output, forget, and
// cell gates.
// Wb - W bias vectors for input, output, forget, and cell gates.
// Rb - R bias vectors for input, output, forget, and cell gates.
// ------ VARIABLE NAMES ------
// p_[iof] - P peephole weight vector for respectively: input, output,
// and forget gates.
// Xt_W - Input sequence multiplied by weights tensor at current time
// step.
// Ht_R - Hidden state multiplied by weights tensor at current time step.
// (.) - Denotes element-wise multiplication.
// * - Denotes dot product.
const
auto
&
p_i
=
m_p_iof
.
at
(
0
);
const
auto
&
p_o
=
m_p_iof
.
at
(
1
);
const
auto
&
p_f
=
m_p_iof
.
at
(
2
);
// Xt*(W^T) -- for [iofc] gates.
auto
Xt_W
=
std
::
make_shared
<
ngraph
::
op
::
Dot
>
(
m_X
,
ngraph
::
op
::
util
::
transpose
(
m_W
));
// Ht-1*(R^T) -- for [iofc] gates.
auto
Ht_R
=
std
::
make_shared
<
ngraph
::
op
::
Dot
>
(
m_H_t
,
ngraph
::
op
::
util
::
transpose
(
m_R
));
// Xt*(W^T) + Ht-1*(R^T) + Wb + Rb -- for [iofc] gates.
auto
gates
=
add
(
Xt_W
,
add
(
Ht_R
,
m_bias
));
NodeVector
split_gates
=
builder
::
split
(
gates
,
4
,
-
1
);
auto
i
=
split_gates
.
at
(
0
);
auto
o
=
split_gates
.
at
(
1
);
auto
f
=
split_gates
.
at
(
2
);
auto
c
=
split_gates
.
at
(
3
);
// f(Xt*(Wi^T) + Ht-1*(Ri^T) + Pi (.) Ct-1 + Wbi + Rbi)
i
=
m_activation_f
(
clip
(
add
(
i
,
mul
(
p_i
,
m_C_t
)),
get_clip
()));
if
(
m_input_forget
)
{
// Couple input with forget gate: 1 - i
f
=
sub
(
ngraph
::
op
::
Constant
::
create
(
i
->
get_element_type
(),
i
->
get_shape
(),
std
::
vector
<
float
>
(
shape_size
(
i
->
get_shape
()),
1.
f
)),
i
);
}
else
{
// f(Xt*(Wf^T) + Ht-1*(Rf^T) + Pf (.) Ct-1 + Wbf + Rbf)
f
=
m_activation_f
(
clip
(
add
(
f
,
mul
(
p_f
,
m_C_t
)),
get_clip
()));
}
// ft (.) Ct-1 + it (.) ct
auto
C
=
add
(
mul
(
f
,
m_C_t
),
mul
(
i
,
m_activation_g
(
clip
(
c
,
get_clip
()))));
// f(Xt*(Wo^T) + Ht-1*(Ro^T) + Po (.) Ct + Wbo + Rbo)
o
=
m_activation_f
(
clip
(
add
(
o
,
mul
(
p_o
,
C
)),
get_clip
()));
// ot (.) h(Ct)
auto
H
=
mul
(
o
,
m_activation_h
(
C
));
return
{
H
,
C
};
}
shared_ptr
<
Node
>
op
::
LSTMCell
::
copy_with_new_args
(
const
NodeVector
&
new_args
)
const
{
check_new_args_count
(
this
,
new_args
);
if
(
new_args
.
size
()
==
5
)
{
return
make_shared
<
LSTMCell
>
(
new_args
.
at
(
0
),
new_args
.
at
(
1
),
new_args
.
at
(
2
),
new_args
.
at
(
3
),
new_args
.
at
(
4
),
get_hidden_size
(),
get_activations
(),
get_activation_alpha
(),
get_activation_beta
(),
get_clip
(),
m_input_forget
);
}
else
if
(
new_args
.
size
()
==
7
)
{
return
make_shared
<
LSTMCell
>
(
new_args
.
at
(
0
),
new_args
.
at
(
1
),
new_args
.
at
(
2
),
new_args
.
at
(
3
),
new_args
.
at
(
4
),
get_hidden_size
(),
new_args
.
at
(
5
),
new_args
.
at
(
6
),
get_activations
(),
get_activation_alpha
(),
get_activation_beta
(),
get_clip
(),
m_input_forget
);
}
else
{
throw
ngraph_error
(
"Incorrect number of new arguments"
);
}
}
src/ngraph/op/fused/lstm_cell.hpp
0 → 100644
View file @
ef1c5347
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#pragma once
#include <cstddef>
#include <memory>
#include <string>
#include <vector>
#include "ngraph/autodiff/adjoints.hpp"
#include "ngraph/node.hpp"
#include "ngraph/op/fused/rnn_cell_base.hpp"
#include "ngraph/op/util/activation_functions.hpp"
#include "ngraph/op/util/fused_op.hpp"
namespace
ngraph
{
namespace
op
{
///
/// \brief Class for lstm cell node.
///
/// \note It follows notation and equations defined as in ONNX standard:
/// https://github.com/onnx/onnx/blob/master/docs/Operators.md#LSTM
///
/// Note this class represents only single *cell* and not whole LSTM *layer*.
///
class
LSTMCell
:
public
util
::
FusedOp
,
public
RNNCellBase
{
public
:
///
/// \brief Constructs LSTMCell node.
///
/// \param[in] X The input tensor with shape: [batch_size, input_size].
/// \param[in] W The weight tensor with shape: [4*hidden_size, input_size].
/// \param[in] R The recurrence weight tensor with shape:
/// [4*hidden_size, hidden_size].
/// \param[in] H_t The hidden state tensor at current time step with shape:
/// [batch_size, hidden_size].
/// \param[in] C_t The cell state tensor at current time step with shape:
/// [batch_size, hidden_size].
/// \param[in] hidden_size The number of hidden units for recurrent cell.
///
LSTMCell
(
const
std
::
shared_ptr
<
Node
>&
X
,
const
std
::
shared_ptr
<
Node
>&
W
,
const
std
::
shared_ptr
<
Node
>&
R
,
const
std
::
shared_ptr
<
Node
>&
H_t
,
const
std
::
shared_ptr
<
Node
>&
C_t
,
std
::
size_t
hidden_size
);
///
/// \brief Constructs LSTMCell node.
///
/// \param[in] X The input tensor with shape: [batch_size, input_size].
/// \param[in] W The weight tensor with shape: [4*hidden_size, input_size].
/// \param[in] R The recurrence weight tensor with shape:
/// [4*hidden_size, hidden_size].
/// \param[in] H_t The hidden state tensor at current time step with
/// shape: [batch_size, hidden_size].
/// \param[in] C_t The cell state tensor at current time step with shape:
/// [batch_size, hidden_size].
/// \param[in] hidden_size The number of hidden units for recurrent cell.
/// \param[in] activations The vector of activation functions used inside
/// recurrent cell.
/// \param[in] activation_alpha The vector of alpha parameters for activation
/// functions in order respective to activation list.
/// \param[in] activation_beta The vector of beta parameters for activation functions
/// in order respective to activation list.
/// \param[in] clip The value defining clipping range [-clip, clip] on
/// input of activation functions.
/// \param[in] input_forget Controls coupling input and forget gates.
///
LSTMCell
(
const
std
::
shared_ptr
<
Node
>&
X
,
const
std
::
shared_ptr
<
Node
>&
W
,
const
std
::
shared_ptr
<
Node
>&
R
,
const
std
::
shared_ptr
<
Node
>&
H_t
,
const
std
::
shared_ptr
<
Node
>&
C_t
,
std
::
size_t
hidden_size
,
const
std
::
vector
<
std
::
string
>&
activations
,
const
std
::
vector
<
float
>&
activation_alpha
,
const
std
::
vector
<
float
>&
activation_beta
,
float
clip
,
bool
input_forget
);
///
/// \brief Constructs LSTMCell node.
///
/// \param[in] X The input tensor with shape: [batch_size, input_size].
/// \param[in] W The weight tensor with shape: [4*hidden_size, input_size].
/// \param[in] R The recurrence weight tensor with shape:
/// [4*hidden_size, hidden_size].
/// \param[in] H_t The hidden state tensor at current time step with
/// shape: [batch_size, hidden_size].
/// \param[in] C_t The cell state tensor at current time step with
/// shape: [batch_size, hidden_size].
/// \param[in] hidden_size The number of hidden units for recurrent cell.
/// \param[in] B The bias tensor for input gate with shape: [8*hidden_size].
/// \param[in] P The weight tensor for peepholes with shape:
/// [3*hidde_size] - 3 equals to only iof gates.
/// \param[in] activations The vector of activation functions used inside
/// recurrent cell.
/// \param[in] activation_alpha The vector of alpha parameters for activation
/// functions in order respective to activation list.
/// \param[in] activation_beta The vector of beta parameters for activation functions
/// in order respective to activation list.
/// \param[in] clip The value defining clipping range [-clip, clip] on
/// input of activation functions.
/// \param[in] input_forget Controls coupling input and forget gates.
///
LSTMCell
(
const
std
::
shared_ptr
<
Node
>&
X
,
const
std
::
shared_ptr
<
Node
>&
W
,
const
std
::
shared_ptr
<
Node
>&
R
,
const
std
::
shared_ptr
<
Node
>&
H_t
,
const
std
::
shared_ptr
<
Node
>&
C_t
,
std
::
size_t
hidden_size
,
const
std
::
shared_ptr
<
Node
>&
B
=
nullptr
,
const
std
::
shared_ptr
<
Node
>&
P
=
nullptr
,
const
std
::
vector
<
std
::
string
>&
activations
=
std
::
vector
<
std
::
string
>
{
"sigmoid"
,
"tanh"
,
"tanh"
},
const
std
::
vector
<
float
>&
activation_alpha
=
{},
const
std
::
vector
<
float
>&
activation_beta
=
{},
float
clip
=
0.
f
,
bool
input_forget
=
false
);
virtual
void
pre_validate_and_infer_types
()
override
;
virtual
NodeVector
decompose_op
()
const
override
;
virtual
std
::
shared_ptr
<
Node
>
copy_with_new_args
(
const
NodeVector
&
new_args
)
const
override
;
bool
get_input_forget
()
const
{
return
m_input_forget
;
};
private
:
///
/// \brief The input data tensor. Shape: [batch_size, input_size].
///
const
std
::
shared_ptr
<
Node
>&
m_X
;
///
/// \brief The weight tensor. Shape: [4*hidden_size, input_size].
///
const
std
::
shared_ptr
<
Node
>&
m_W
;
///
/// \brief The recurrence weight tensor. Shape: [4*hidden_size, hidden_size].
///
const
std
::
shared_ptr
<
Node
>&
m_R
;
///
/// \brief The hidden state tensor at current time step. Shape: [batch_size, hidden_size].
///
const
std
::
shared_ptr
<
Node
>&
m_H_t
;
///
/// \brief The cell state tensor at current time step. Shape: [batch_size, hidden_size].
///
const
std
::
shared_ptr
<
Node
>&
m_C_t
;
///
/// \brief The weight tensor for peepholes with shape: [3*hidde_size] - 3 equals to
/// only iof gates.
///
std
::
shared_ptr
<
Node
>
m_P
;
///
/// \brief The Activation function f.
///
ActivationFunction
m_activation_f
;
///
/// \brief The Activation function g.
///
ActivationFunction
m_activation_g
;
///
/// \brief The Activation function h.
///
ActivationFunction
m_activation_h
;
///
/// \brief Controls whether to couple input and forget gates.
///
bool
m_input_forget
=
false
;
static
constexpr
std
::
size_t
m_gates_count
{
4
};
static
constexpr
std
::
size_t
m_peepholes_count
{
3
};
///
/// \brief Peephole weights vector for respectively: input, output, and forget gates.
///
NodeVector
m_p_iof
;
///
/// \brief Sum of biases (weight and recurrence) for input, output, forget, and cell gates.
///
/// Sum of `[Wb, Rb]`.
///
std
::
shared_ptr
<
Node
>
m_bias
;
};
}
}
src/ngraph/op/fused_op_tbl.hpp
View file @
ef1c5347
...
...
@@ -27,6 +27,7 @@ NGRAPH_OP(GRN, ngraph::op)
NGRAPH_OP
(
Gemm
,
ngraph
::
op
)
NGRAPH_OP
(
GroupConvolution
,
ngraph
::
op
)
NGRAPH_OP
(
HardSigmoid
,
ngraph
::
op
)
NGRAPH_OP
(
LSTMCell
,
ngraph
::
op
)
NGRAPH_OP
(
MVN
,
ngraph
::
op
)
NGRAPH_OP
(
Normalize
,
ngraph
::
op
)
NGRAPH_OP
(
PRelu
,
ngraph
::
op
)
...
...
src/ngraph/serializer.cpp
View file @
ef1c5347
...
...
@@ -74,6 +74,7 @@
#include "ngraph/op/fused/grn.hpp"
#include "ngraph/op/fused/group_conv.hpp"
#include "ngraph/op/fused/hard_sigmoid.hpp"
#include "ngraph/op/fused/lstm_cell.hpp"
#include "ngraph/op/fused/mvn.hpp"
#include "ngraph/op/fused/normalize.hpp"
#include "ngraph/op/fused/prelu.hpp"
...
...
@@ -1055,6 +1056,29 @@ static shared_ptr<ngraph::Function>
node
=
make_shared
<
op
::
LRN
>
(
args
[
0
],
alpha
,
beta
,
bias
,
nsize
);
break
;
}
case
OP_TYPEID
:
:
LSTMCell
:
{
auto
hidden_size
=
node_js
.
at
(
"hidden_size"
).
get
<
size_t
>
();
auto
clip
=
node_js
.
at
(
"clip"
).
get
<
float
>
();
auto
activations
=
node_js
.
at
(
"activations"
).
get
<
vector
<
string
>>
();
auto
activation_alpha
=
node_js
.
at
(
"activation_alpha"
).
get
<
vector
<
float
>>
();
auto
activation_beta
=
node_js
.
at
(
"activation_beta"
).
get
<
vector
<
float
>>
();
auto
input_forget
=
node_js
.
at
(
"input_forget"
).
get
<
bool
>
();
node
=
make_shared
<
op
::
LSTMCell
>
(
args
[
0
],
args
[
1
],
args
[
2
],
args
[
3
],
args
[
4
],
hidden_size
,
args
[
5
],
args
[
6
],
activations
,
activation_alpha
,
activation_beta
,
clip
,
input_forget
);
break
;
}
case
OP_TYPEID
:
:
Max
:
{
auto
reduction_axes
=
node_js
.
at
(
"reduction_axes"
).
get
<
set
<
size_t
>>
();
...
...
@@ -1979,6 +2003,17 @@ static json write(const Node& n, bool binary_constant_data)
node
[
"nsize"
]
=
tmp
->
get_nsize
();
break
;
}
case
OP_TYPEID
:
:
LSTMCell
:
{
auto
tmp
=
dynamic_cast
<
const
op
::
LSTMCell
*>
(
&
n
);
node
[
"hidden_size"
]
=
tmp
->
get_hidden_size
();
node
[
"clip"
]
=
tmp
->
get_clip
();
node
[
"activations"
]
=
tmp
->
get_activations
();
node
[
"activation_alpha"
]
=
tmp
->
get_activation_alpha
();
node
[
"activation_beta"
]
=
tmp
->
get_activation_beta
();
node
[
"input_forget"
]
=
tmp
->
get_input_forget
();
break
;
}
case
OP_TYPEID
:
:
Max
:
{
auto
tmp
=
dynamic_cast
<
const
op
::
Max
*>
(
&
n
);
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment