Commit ee96e8d1 authored by Artur Wojcik's avatar Artur Wojcik Committed by Robert Kimball

Revert "[ONNX] return single nGraph function with multiple outputs (#2017)" (#2165)

This reverts commit c5b082c6.
parent c5b082c6
...@@ -32,5 +32,7 @@ else: ...@@ -32,5 +32,7 @@ else:
flags = sys.getdlopenflags() | ctypes.RTLD_GLOBAL flags = sys.getdlopenflags() | ctypes.RTLD_GLOBAL
sys.setdlopenflags(flags) sys.setdlopenflags(flags)
from _pyngraph_onnx_import import import_onnx_model from _pyngraph_onnx_import import load_onnx_model
from _pyngraph_onnx_import import import_onnx_model_file from _pyngraph_onnx_import import load_onnx_model_file
from _pyngraph_onnx_import import import_onnx_function
from _pyngraph_onnx_import import import_onnx_function_file
...@@ -67,7 +67,6 @@ class Computation(object): ...@@ -67,7 +67,6 @@ class Computation(object):
self.runtime = runtime self.runtime = runtime
self.function = ng_function self.function = ng_function
self.parameters = ng_function.get_parameters() self.parameters = ng_function.get_parameters()
self.results = ng_function.get_results()
self.tensor_views = [] # type: List[Tensor] self.tensor_views = [] # type: List[Tensor]
for parameter in self.parameters: for parameter in self.parameters:
...@@ -75,12 +74,6 @@ class Computation(object): ...@@ -75,12 +74,6 @@ class Computation(object):
element_type = parameter.get_element_type() element_type = parameter.get_element_type()
self.tensor_views.append(runtime.backend.create_tensor(element_type, shape)) self.tensor_views.append(runtime.backend.create_tensor(element_type, shape))
self.result_views = [] # type: List[Tensor]
for result in self.results:
shape = result.get_shape()
element_type = result.get_element_type()
self.result_views.append(runtime.backend.create_tensor(element_type, shape))
def __repr__(self): # type: () -> str def __repr__(self): # type: () -> str
params_string = ', '.join([param.name for param in self.parameters]) params_string = ', '.join([param.name for param in self.parameters])
return '<Computation: {}({})>'.format(self.function.get_name(), params_string) return '<Computation: {}({})>'.format(self.function.get_name(), params_string)
...@@ -92,15 +85,18 @@ class Computation(object): ...@@ -92,15 +85,18 @@ class Computation(object):
value = np.array(value) value = np.array(value)
Computation._write_ndarray_to_tensor_view(value, tensor_view) Computation._write_ndarray_to_tensor_view(value, tensor_view)
self.runtime.backend.call(self.function, self.result_views, self.tensor_views) result_element_type = self.function.get_output_element_type(0)
result_shape = self.function.get_output_shape(0)
result_dtype = get_dtype(result_element_type)
result_view = self.runtime.backend.create_tensor(result_element_type, result_shape)
result_arr = np.empty(result_shape, dtype=result_dtype)
results = [] self.runtime.backend.call(self.function, [result_view], self.tensor_views)
for result_view in self.result_views:
result = np.ndarray(result_view.shape, dtype=get_dtype(result_view.element_type))
Computation._read_tensor_view_to_ndarray(result_view, result)
results.append(result)
return results Computation._read_tensor_view_to_ndarray(result_view, result_arr)
result_arr = result_arr.reshape(result_shape)
return result_arr
def serialize(self, indent=0): # type: (int) -> str def serialize(self, indent=0): # type: (int) -> str
"""Serialize function (compute graph) to a JSON string. """Serialize function (compute graph) to a JSON string.
......
...@@ -28,19 +28,34 @@ ...@@ -28,19 +28,34 @@
namespace py = pybind11; namespace py = pybind11;
static std::shared_ptr<ngraph::Function> import_onnx_model(const std::string& model_proto) static std::vector<std::shared_ptr<ngraph::Function>>
load_onnx_model(const std::string& model_proto)
{ {
std::istringstream iss(model_proto, std::ios_base::binary | std::ios_base::in); std::istringstream iss(model_proto, std::ios_base::binary | std::ios_base::in);
return ngraph::onnx_import::import_onnx_model(iss); return ngraph::onnx_import::load_onnx_model(iss);
} }
static std::shared_ptr<ngraph::Function> import_onnx_model_file(const std::string& filename) static std::shared_ptr<ngraph::Function> import_onnx_function(const std::string& model_proto)
{ {
return ngraph::onnx_import::import_onnx_model(filename); std::istringstream iss(model_proto, std::ios_base::binary | std::ios_base::in);
return ngraph::onnx_import::import_onnx_function(iss);
}
static std::vector<std::shared_ptr<ngraph::Function>>
load_onnx_model_file(const std::string& filename)
{
return ngraph::onnx_import::load_onnx_model(filename);
}
static std::shared_ptr<ngraph::Function> import_onnx_function_file(const std::string& filename)
{
return ngraph::onnx_import::import_onnx_function(filename);
} }
void regmodule_pyngraph_onnx_import(py::module mod) void regmodule_pyngraph_onnx_import(py::module mod)
{ {
mod.def("import_onnx_model", &import_onnx_model); mod.def("load_onnx_model", &load_onnx_model);
mod.def("import_onnx_model_file", &import_onnx_model_file); mod.def("import_onnx_function", &import_onnx_function);
mod.def("load_onnx_model_file", &load_onnx_model_file);
mod.def("import_onnx_function_file", &import_onnx_function_file);
} }
...@@ -93,5 +93,4 @@ void regmodule_pyngraph_op(py::module m_op) ...@@ -93,5 +93,4 @@ void regmodule_pyngraph_op(py::module m_op)
regclass_pyngraph_op_Tan(m_op); regclass_pyngraph_op_Tan(m_op);
regclass_pyngraph_op_Tanh(m_op); regclass_pyngraph_op_Tanh(m_op);
regclass_pyngraph_op_TopK(m_op); regclass_pyngraph_op_TopK(m_op);
regclass_pyngraph_op_Result(m_op);
} }
...@@ -68,7 +68,6 @@ ...@@ -68,7 +68,6 @@
#include "pyngraph/ops/relu.hpp" #include "pyngraph/ops/relu.hpp"
#include "pyngraph/ops/replace_slice.hpp" #include "pyngraph/ops/replace_slice.hpp"
#include "pyngraph/ops/reshape.hpp" #include "pyngraph/ops/reshape.hpp"
#include "pyngraph/ops/result.hpp"
#include "pyngraph/ops/reverse.hpp" #include "pyngraph/ops/reverse.hpp"
#include "pyngraph/ops/select.hpp" #include "pyngraph/ops/select.hpp"
#include "pyngraph/ops/sign.hpp" #include "pyngraph/ops/sign.hpp"
......
//*****************************************************************************
// Copyright 2017-2018 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <string>
#include "ngraph/node.hpp"
#include "ngraph/op/result.hpp"
#include "pyngraph/ops/result.hpp"
namespace py = pybind11;
void regclass_pyngraph_op_Result(py::module m)
{
py::class_<ngraph::op::Result, std::shared_ptr<ngraph::op::Result>, ngraph::Node> result(
m, "Result");
result.doc() = "ngraph.impl.op.Result wraps ngraph::op::Result";
}
//*****************************************************************************
// Copyright 2017-2018 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#pragma once
#include <pybind11/pybind11.h>
namespace py = pybind11;
void regclass_pyngraph_op_Result(py::module m);
...@@ -27,7 +27,6 @@ ...@@ -27,7 +27,6 @@
#include "pyngraph/ops/util/regmodule_pyngraph_op_util.hpp" #include "pyngraph/ops/util/regmodule_pyngraph_op_util.hpp"
#include "pyngraph/parameter_vector.hpp" #include "pyngraph/parameter_vector.hpp"
#include "pyngraph/passes/regmodule_pyngraph_passes.hpp" #include "pyngraph/passes/regmodule_pyngraph_passes.hpp"
#include "pyngraph/result_vector.hpp"
#include "pyngraph/runtime/regmodule_pyngraph_runtime.hpp" #include "pyngraph/runtime/regmodule_pyngraph_runtime.hpp"
#include "pyngraph/serializer.hpp" #include "pyngraph/serializer.hpp"
#include "pyngraph/shape.hpp" #include "pyngraph/shape.hpp"
...@@ -59,5 +58,4 @@ PYBIND11_MODULE(_pyngraph, m) ...@@ -59,5 +58,4 @@ PYBIND11_MODULE(_pyngraph, m)
regmodule_pyngraph_runtime(m); regmodule_pyngraph_runtime(m);
regmodule_pyngraph_passes(m); regmodule_pyngraph_passes(m);
regmodule_pyngraph_util(m); regmodule_pyngraph_util(m);
regclass_pyngraph_ResultVector(m);
} }
//*****************************************************************************
// Copyright 2017-2018 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include "ngraph/op/result.hpp" // ngraph::op::Result
#include "ngraph/result_vector.hpp"
#include "pyngraph/ops/result.hpp"
#include "pyngraph/result_vector.hpp"
namespace py = pybind11;
void regclass_pyngraph_ResultVector(py::module m)
{
py::class_<ngraph::ResultVector, std::shared_ptr<ngraph::ResultVector>> result_vector(
m, "ResultVector");
result_vector.doc() = "ngraph.impl.ResultVector wraps ngraph::ResultVector";
result_vector.def(
py::init<const std::initializer_list<std::shared_ptr<ngraph::op::Result>>&>());
result_vector.def(py::init<const std::vector<std::shared_ptr<ngraph::op::Result>>&>());
result_vector.def(py::init<const ngraph::ResultVector&>());
result_vector.def("__len__", [](const ngraph::ResultVector& v) { return v.size(); });
result_vector.def("__getitem__", [](const ngraph::ResultVector& v, int key) { return v[key]; });
result_vector.def("__iter__",
[](ngraph::ResultVector& v) { return py::make_iterator(v.begin(), v.end()); },
py::keep_alive<0, 1>()); /* Keep vector alive while iterator is used */
}
//*****************************************************************************
// Copyright 2017-2018 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#pragma once
#include <pybind11/pybind11.h>
namespace py = pybind11;
void regclass_pyngraph_ResultVector(py::module m);
...@@ -149,7 +149,6 @@ sources = [ ...@@ -149,7 +149,6 @@ sources = [
'pyngraph/parameter_vector.cpp', 'pyngraph/parameter_vector.cpp',
'pyngraph/pyngraph.cpp', 'pyngraph/pyngraph.cpp',
'pyngraph/util.cpp', 'pyngraph/util.cpp',
'pyngraph/result_vector.cpp',
'pyngraph/ops/util/arithmetic_reduction.cpp', 'pyngraph/ops/util/arithmetic_reduction.cpp',
'pyngraph/ops/util/binary_elementwise_comparison.cpp', 'pyngraph/ops/util/binary_elementwise_comparison.cpp',
'pyngraph/ops/util/op_annotations.cpp', 'pyngraph/ops/util/op_annotations.cpp',
...@@ -224,7 +223,6 @@ sources = [ ...@@ -224,7 +223,6 @@ sources = [
'pyngraph/ops/min.cpp', 'pyngraph/ops/min.cpp',
'pyngraph/ops/batch_norm.cpp', 'pyngraph/ops/batch_norm.cpp',
'pyngraph/ops/softmax.cpp', 'pyngraph/ops/softmax.cpp',
'pyngraph/ops/result.cpp',
'pyngraph/runtime/backend.cpp', 'pyngraph/runtime/backend.cpp',
'pyngraph/runtime/regmodule_pyngraph_runtime.cpp', 'pyngraph/runtime/regmodule_pyngraph_runtime.cpp',
'pyngraph/runtime/tensor.cpp', 'pyngraph/runtime/tensor.cpp',
......
...@@ -17,13 +17,13 @@ ...@@ -17,13 +17,13 @@
import os import os
import numpy as np import numpy as np
from ngraph.impl.onnx_import import import_onnx_model_file from ngraph.impl.onnx_import import load_onnx_model_file
from test.ngraph.util import get_runtime from test.ngraph.util import get_runtime
def test_import_onnx_function(): def test_import_onnx_function():
model_path = os.path.join(os.path.dirname(__file__), 'models/add_abc.onnx') model_path = os.path.join(os.path.dirname(__file__), 'models/add_abc.onnx')
ng_function = import_onnx_model_file(model_path) ng_function = load_onnx_model_file(model_path)[0]
dtype = np.float32 dtype = np.float32
value_a = np.array([1.0], dtype=dtype) value_a = np.array([1.0], dtype=dtype)
......
...@@ -48,10 +48,10 @@ def test_unary_op_array(ng_api_fn, numpy_fn, range_start, range_end): ...@@ -48,10 +48,10 @@ def test_unary_op_array(ng_api_fn, numpy_fn, range_start, range_end):
input_data = range_start + np.random.rand(2, 3, 4) * (range_end - range_start) input_data = range_start + np.random.rand(2, 3, 4) * (range_end - range_start)
expected = numpy_fn(input_data) expected = numpy_fn(input_data)
result = run_op_node([input_data], ng_api_fn)[0] result = run_op_node([input_data], ng_api_fn)
np.testing.assert_allclose(result, expected, rtol=0.001) np.testing.assert_allclose(result, expected, rtol=0.001)
result = run_op_numeric_data(input_data, ng_api_fn)[0] result = run_op_numeric_data(input_data, ng_api_fn)
np.testing.assert_allclose(result, expected, rtol=0.001) np.testing.assert_allclose(result, expected, rtol=0.001)
......
...@@ -95,16 +95,6 @@ namespace ngraph ...@@ -95,16 +95,6 @@ namespace ngraph
} }
} }
NodeVector Graph::get_ng_outputs() const
{
NodeVector results;
for (const auto& output : m_graph_proto->output())
{
results.emplace_back(get_ng_node_from_cache(output.name()));
}
return results;
}
} // namespace onnx_import } // namespace onnx_import
} // namespace ngraph } // namespace ngraph
...@@ -38,7 +38,6 @@ namespace ngraph ...@@ -38,7 +38,6 @@ namespace ngraph
const std::vector<Node>& get_nodes() const { return m_nodes; } const std::vector<Node>& get_nodes() const { return m_nodes; }
const std::vector<ValueInfo>& get_inputs() const { return m_inputs; } const std::vector<ValueInfo>& get_inputs() const { return m_inputs; }
const std::vector<ValueInfo>& get_outputs() const { return m_outputs; } const std::vector<ValueInfo>& get_outputs() const { return m_outputs; }
NodeVector get_ng_outputs() const;
const ParameterVector& get_ng_parameters() const { return m_parameters; } const ParameterVector& get_ng_parameters() const { return m_parameters; }
std::shared_ptr<ngraph::Node> get_ng_node_from_cache(const std::string& name) const std::shared_ptr<ngraph::Node> get_ng_node_from_cache(const std::string& name) const
{ {
......
...@@ -15,7 +15,6 @@ ...@@ -15,7 +15,6 @@
//***************************************************************************** //*****************************************************************************
#include <fstream> #include <fstream>
#include <memory>
#include "core/graph.hpp" #include "core/graph.hpp"
#include "core/model.hpp" #include "core/model.hpp"
...@@ -51,32 +50,45 @@ namespace ngraph ...@@ -51,32 +50,45 @@ namespace ngraph
} // namespace error } // namespace error
} // namespace detail } // namespace detail
std::shared_ptr<Function> import_onnx_model(std::istream& sin, const Weights& weights) std::vector<std::shared_ptr<Function>> load_onnx_model(std::istream& sin,
const Weights& weights)
{ {
onnx::ModelProto model_proto; onnx::ModelProto model_proto;
if (!model_proto.ParseFromIstream(&sin)) if (!model_proto.ParseFromIstream(&sin))
{ {
throw detail::error::stream_parse{sin}; throw detail::error::stream_parse{sin};
} }
std::vector<std::shared_ptr<Function>> output_functions;
Model model{model_proto}; Model model{model_proto};
Graph graph{model_proto.graph(), model, weights}; Graph graph{model_proto.graph(), model, weights};
auto function = std::make_shared<Function>( for (const auto& output : graph.get_outputs())
graph.get_ng_outputs(), graph.get_ng_parameters(), graph.get_name());
for (std::size_t i{0}; i < function->get_output_size(); ++i)
{ {
function->get_output_op(i)->set_name(graph.get_outputs().at(i).get_name()); output_functions.emplace_back(std::make_shared<Function>(
graph.get_ng_node_from_cache(output.get_name()), graph.get_ng_parameters()));
} }
return function; return output_functions;
} }
std::shared_ptr<Function> import_onnx_model(const std::string& path, const Weights& weights) std::vector<std::shared_ptr<Function>> load_onnx_model(const std::string& path,
const Weights& weights)
{ {
std::ifstream ifs{path, std::ios::in | std::ios::binary}; std::ifstream ifs{path, std::ios::in | std::ios::binary};
if (!ifs.is_open()) if (!ifs.is_open())
{ {
throw detail::error::file_open{path}; throw detail::error::file_open{path};
} }
return import_onnx_model(ifs, weights); return load_onnx_model(ifs, weights);
}
std::shared_ptr<Function> import_onnx_function(std::istream& sin, const Weights& weights)
{
return load_onnx_model(sin, weights).front();
}
std::shared_ptr<Function> import_onnx_function(const std::string& path,
const Weights& weights)
{
return load_onnx_model(path, weights).front();
} }
void register_operator(const std::string& name, void register_operator(const std::string& name,
......
...@@ -40,6 +40,31 @@ namespace ngraph ...@@ -40,6 +40,31 @@ namespace ngraph
const std::string& domain, const std::string& domain,
Operator fn); Operator fn);
/// \brief Convert an ONNX model to nGraph functions
/// The function translated serialized ONNX model to nGraph functions. The serialized
/// ONNX model is read from input stream.
/// \param sin input stream (e.g. file stream, memory stream, etc),
/// \param weights weights associated with the model. If weights are embedded into
/// the model this parameter shall be empty. Having weights in a model
/// and providing through this parameters is invalid (the weights from
/// the model will take precedence).
/// \return The function returns a vector of nGraph functions. The number of functions
/// depends on number of outputs from ONNX graph.
std::vector<std::shared_ptr<Function>> load_onnx_model(std::istream& sin,
const Weights& weights = {});
/// \brief Convert an ONNX model to nGraph functions
/// The function translated serialized ONNX model to nGraph functions. The ONNX model
/// is read from ONNX file.
/// \param filename file name (relative or absolute path name),
/// \param weights weights associated with the model. If weights are embedded into
/// the model this parameter shall be empty. Having weights in a model
/// and providing through this parameters is invalid (the weights from
/// the model will take precedence).
/// \return The function returns a vector of nGraph functions. The number of functions
/// depends on number of outputs from ONNX graph.
std::vector<std::shared_ptr<Function>> load_onnx_model(const std::string& filename,
const Weights& weights = {});
/// \brief Convert an ONNX model to nGraph function /// \brief Convert an ONNX model to nGraph function
/// The function translated serialized ONNX model to nGraph function. The serialized /// The function translated serialized ONNX model to nGraph function. The serialized
/// ONNX model is read from input stream. /// ONNX model is read from input stream.
...@@ -49,7 +74,8 @@ namespace ngraph ...@@ -49,7 +74,8 @@ namespace ngraph
/// and providing through this parameters is invalid (the weights from /// and providing through this parameters is invalid (the weights from
/// the model will take precedence). /// the model will take precedence).
/// \return The function returns a nGraph function representing single output from graph. /// \return The function returns a nGraph function representing single output from graph.
std::shared_ptr<Function> import_onnx_model(std::istream& sin, const Weights& weights = {}); std::shared_ptr<Function> import_onnx_function(std::istream& sin,
const Weights& weights = {});
/// \brief Convert an ONNX model to nGraph functions /// \brief Convert an ONNX model to nGraph functions
/// The function translated serialized ONNX model to nGraph functions. The ONNX model /// The function translated serialized ONNX model to nGraph functions. The ONNX model
...@@ -60,7 +86,7 @@ namespace ngraph ...@@ -60,7 +86,7 @@ namespace ngraph
/// and providing through this parameters is invalid (the weights from /// and providing through this parameters is invalid (the weights from
/// the model will take precedence). /// the model will take precedence).
/// \return The function returns a nGraph function representing single output from graph. /// \return The function returns a nGraph function representing single output from graph.
std::shared_ptr<Function> import_onnx_model(const std::string& filename, std::shared_ptr<Function> import_onnx_function(const std::string& filename,
const Weights& weights = {}); const Weights& weights = {});
} // namespace onnx_import } // namespace onnx_import
......
...@@ -66,7 +66,7 @@ int main(int argc, char** argv) ...@@ -66,7 +66,7 @@ int main(int argc, char** argv)
ifstream f(input); ifstream f(input);
if (f) if (f)
{ {
std::shared_ptr<ngraph::Function> function = ngraph::onnx_import::import_onnx_model(input); shared_ptr<ngraph::Function> function = ngraph::onnx_import::import_onnx_function(input);
ngraph::stopwatch timer; ngraph::stopwatch timer;
timer.start(); timer.start();
......
This diff is collapsed.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment