Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
N
ngraph
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
ngraph
Commits
e9443168
Unverified
Commit
e9443168
authored
Sep 01, 2018
by
Adam Procter
Committed by
GitHub
Sep 01, 2018
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Error messages for Convolution, BatchNorm, MaxPool (#1535)
parent
c386da90
Expand all
Show whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
70 additions
and
101 deletions
+70
-101
batch_norm.cpp
src/ngraph/op/batch_norm.cpp
+53
-87
convolution.cpp
src/ngraph/op/convolution.cpp
+0
-0
convolution.hpp
src/ngraph/op/convolution.hpp
+5
-5
max_pool.cpp
src/ngraph/op/max_pool.cpp
+0
-0
conv_bias.cpp
src/ngraph/runtime/cpu/op/conv_bias.cpp
+8
-6
conv_relu.cpp
src/ngraph/runtime/cpu/op/conv_relu.cpp
+4
-3
type_prop.cpp
test/type_prop.cpp
+0
-0
No files found.
src/ngraph/op/batch_norm.cpp
View file @
e9443168
...
...
@@ -36,77 +36,55 @@ ngraph::op::BatchNorm::BatchNorm(double eps,
void
ngraph
::
op
::
BatchNorm
::
validate_and_infer_types
()
{
m_bn_input_shape
=
get_input_shape
(
INPUT
);
if
(
m_bn_input_shape
.
size
()
<
2
)
{
throw
ngraph_error
(
"input tensor to batchnorm must have tensor of at least rank 2"
);
}
if
(
m_bn_input_shape
[
1
]
==
0
)
{
throw
ngraph_error
(
"input tensor must have at least one channel for batch normalization"
);
}
NODE_VALIDATION_ASSERT
(
this
,
m_bn_input_shape
.
size
()
>=
2
)
<<
"Input argument must have rank of at least 2 (input argument shape: "
<<
m_bn_input_shape
<<
")."
;
NODE_VALIDATION_ASSERT
(
this
,
m_bn_input_shape
[
1
]
!=
0
)
<<
"Input argument's channel dimension must have size of at least 1 (input argument shape: "
<<
m_bn_input_shape
<<
")."
;
auto
&
et
=
get_input_element_type
(
INPUT
);
auto
in_size
=
get_input_size
();
NODE_VALIDATION_ASSERT
(
this
,
in_size
==
3
||
in_size
==
5
)
<<
"Argument count must be either 3 or 5 (received argument count: "
<<
in_size
<<
")."
;
Shape
channel_shape
{
m_bn_input_shape
[
1
]};
if
(
in_size
==
3
)
{
set_output_size
(
3
);
this
->
m_bn_mean_shape
.
push_back
(
m_bn_input_shape
[
1
])
;
m_bn_mean_shape
=
channel_shape
;
set_output_type
(
1
,
et
,
m_bn_mean_shape
);
this
->
m_bn_variance_shape
.
push_back
(
m_bn_input_shape
[
1
])
;
m_bn_variance_shape
=
channel_shape
;
set_output_type
(
2
,
et
,
m_bn_variance_shape
);
}
else
if
(
in_size
==
5
)
{
set_output_size
(
1
);
}
else
{
throw
ngraph_error
(
"Invalid BatchNorm args"
);
set_output_size
(
1
);
}
set_output_type
(
0
,
et
,
m_bn_input_shape
);
Shape
channel_shape
{
m_bn_input_shape
[
1
]};
const
char
*
input_names
[]{
"gamma"
,
"beta"
,
"input"
,
"mean"
,
"variance"
};
for
(
size_t
i
=
0
;
i
<
get_input_size
();
i
++
)
{
if
(
i
==
2
)
if
(
i
==
INPUT
)
{
continue
;
}
if
(
get_input_element_type
(
i
)
!=
et
)
{
std
::
stringstream
err_msg
;
err_msg
<<
"The element type "
<<
get_input_element_type
(
i
)
<<
" of input "
<<
input_names
[
i
]
<<
" isn't equal to the input data's type "
<<
et
;
throw
ngraph_error
(
err_msg
.
str
());
}
if
(
get_input_shape
(
i
)
!=
channel_shape
)
{
std
::
stringstream
err_msg
;
err_msg
<<
"The shape "
<<
get_input_shape
(
i
)
<<
" of "
<<
input_names
[
i
]
<<
" isn't equal to input channel's shape "
<<
channel_shape
;
throw
ngraph_error
(
err_msg
.
str
());
}
}
for
(
size_t
index
=
0
;
index
<
get_input_size
();
index
++
)
{
if
(
index
!=
INPUT
&&
get_input_shape
(
index
).
size
()
!=
1
)
{
auto
err_msg
=
std
::
string
(
input_names
[
index
])
+
" should have rank of 1"
;
throw
ngraph_error
(
err_msg
.
c_str
());
}
NODE_VALIDATION_ASSERT
(
this
,
get_input_element_type
(
i
)
==
et
)
<<
"Element type of "
<<
input_names
[
i
]
<<
" ("
<<
get_input_element_type
(
i
)
<<
") is not equal to the element type of input ("
<<
et
<<
")."
;
if
(
index
!=
INPUT
&&
get_input_shape
(
index
)[
0
]
!=
m_bn_input_shape
[
1
])
{
auto
err_msg
=
std
::
string
(
input_names
[
index
])
+
" shape should match the input channel size ("
+
std
::
to_string
(
m_bn_input_shape
[
1
])
+
",)"
;
throw
ngraph_error
(
err_msg
.
c_str
());
}
NODE_VALIDATION_ASSERT
(
this
,
get_input_shape
(
i
)
==
channel_shape
)
<<
"Shape of "
<<
input_names
[
i
]
<<
" must match the channel dimension of the "
<<
"input data (expected shape: "
<<
channel_shape
<<
", actual shape of "
<<
input_names
[
i
]
<<
": "
<<
get_input_shape
(
i
)
<<
", shape of input: "
<<
m_bn_input_shape
<<
")."
;
}
}
...
...
@@ -127,14 +105,19 @@ ngraph::op::BatchNorm::BatchNorm(double eps,
std
::
shared_ptr
<
ngraph
::
Node
>
ngraph
::
op
::
BatchNorm
::
copy_with_new_args
(
const
NodeVector
&
new_args
)
const
{
if
(
this
->
m_training
)
check_new_args_count
(
this
,
new_args
);
if
(
m_training
)
{
// FIXME(amprocte): is this redundant?
NODE_VALIDATION_ASSERT
(
this
,
new_args
.
size
()
==
3
||
new_args
.
size
()
==
5
);
if
(
new_args
.
size
()
==
3
)
{
return
std
::
make_shared
<
BatchNorm
>
(
m_epsilon
,
new_args
.
at
(
0
),
new_args
.
at
(
1
),
new_args
.
at
(
2
));
}
else
if
(
new_args
.
size
()
==
5
)
else
{
return
std
::
make_shared
<
BatchNorm
>
(
m_epsilon
,
new_args
.
at
(
0
),
...
...
@@ -144,17 +127,11 @@ std::shared_ptr<ngraph::Node>
new_args
.
at
(
4
),
true
);
}
else
{
throw
ngraph_error
(
"Incorrect number of new arguments"
);
}
}
else
{
if
(
new_args
.
size
()
!=
5
)
{
throw
ngraph_error
(
"Incorrect number of new arguments"
);
}
NODE_VALIDATION_ASSERT
(
this
,
new_args
.
size
()
==
5
);
return
std
::
make_shared
<
BatchNorm
>
(
m_epsilon
,
new_args
.
at
(
0
),
new_args
.
at
(
1
),
...
...
@@ -183,45 +160,37 @@ void ngraph::op::BatchNormBackprop::validate_and_infer_types()
{
set_output_size
(
3
);
if
(
get_input_shape
(
INPUT
).
size
()
!=
4
)
{
throw
ngraph_error
(
"Input expected to be a 4D tensor"
);
}
NODE_VALIDATION_ASSERT
(
this
,
get_input_shape
(
INPUT
).
size
()
==
4
)
<<
"Input data shape is not a 4D tensor (input data shape: "
<<
get_input_shape
(
INPUT
)
<<
")."
;
auto
et
=
get_input_element_type
(
INPUT
);
const
char
*
input_names
[]
=
{
"gamma"
,
"beta"
,
"input"
,
"mean"
,
"variance"
,
"delta"
};
for
(
size_t
i
=
0
;
i
<
get_input_size
();
i
++
)
{
if
(
get_input_element_type
(
i
)
!=
et
)
{
auto
err_msg
=
std
::
string
(
"The element type of "
)
+
input_names
[
i
]
+
" isn't equal to input data's type"
;
throw
ngraph_error
(
err_msg
.
c_str
());
}
}
Shape
channel_shape
{
get_input_shape
(
INPUT
).
at
(
1
)};
Shape
channel_shape
{
get_input_shape
(
INPUT
)[
1
]};
for
(
size_t
i
=
0
;
i
<
get_input_size
();
i
++
)
{
if
(
i
==
2
||
i
==
5
)
// don't check input and delta
NODE_VALIDATION_ASSERT
(
this
,
get_input_element_type
(
i
)
==
et
)
<<
"Element type of "
<<
input_names
[
i
]
<<
" ("
<<
get_input_element_type
(
i
)
<<
") is not equal to the element type of input ("
<<
et
<<
")."
;
// Note that the shape of delta, a special case, will be checked after the loop.
if
(
i
==
DELTA
||
i
==
INPUT
)
{
continue
;
}
if
(
get_argument
(
i
)
->
get_shape
()
!=
channel_shape
)
{
auto
err_msg
=
std
::
string
(
"The shape of "
)
+
input_names
[
i
]
+
" isn't equal to input channel's shape"
;
throw
ngraph_error
(
err_msg
.
c_str
());
}
NODE_VALIDATION_ASSERT
(
this
,
get_input_shape
(
i
)
==
channel_shape
)
<<
"Shape of "
<<
input_names
[
i
]
<<
" must match the channel dimension of the "
<<
"input data (expected shape: "
<<
channel_shape
<<
", actual shape of "
<<
input_names
[
i
]
<<
": "
<<
get_input_shape
(
i
)
<<
", shape of input: "
<<
get_input_shape
(
INPUT
)
<<
")."
;
}
if
(
get_input_shape
(
DELTA
)
!=
get_input_shape
(
INPUT
))
{
throw
ngraph_error
(
"delta shape is expected to be equal to input shape"
);
}
NODE_VALIDATION_ASSERT
(
this
,
get_input_shape
(
DELTA
)
==
get_input_shape
(
INPUT
))
<<
"Shape of delta must match the shape of the input data (expected shape: "
<<
get_input_shape
(
INPUT
)
<<
", actual shape of delta: "
<<
get_input_shape
(
DELTA
)
<<
")."
;
set_output_type
(
0
,
get_input_element_type
(
INPUT
),
get_input_shape
(
INPUT
));
set_output_type
(
1
,
get_input_element_type
(
GAMMA
),
get_input_shape
(
GAMMA
));
...
...
@@ -231,10 +200,7 @@ void ngraph::op::BatchNormBackprop::validate_and_infer_types()
std
::
shared_ptr
<
ngraph
::
Node
>
ngraph
::
op
::
BatchNormBackprop
::
copy_with_new_args
(
const
NodeVector
&
new_args
)
const
{
if
(
new_args
.
size
()
!=
6
)
{
throw
ngraph_error
(
"Incorrect number of new arguments"
);
}
check_new_args_count
(
this
,
new_args
);
return
std
::
make_shared
<
op
::
BatchNormBackprop
>
(
epsilon
,
new_args
.
at
(
0
),
new_args
.
at
(
1
),
...
...
src/ngraph/op/convolution.cpp
View file @
e9443168
This diff is collapsed.
Click to expand it.
src/ngraph/op/convolution.hpp
View file @
e9443168
...
...
@@ -155,8 +155,8 @@ namespace ngraph
Strides
m_data_dilation_strides
;
private
:
static
Strides
default_strides
(
const
Shape
&
data_batch_shape
);
static
CoordinateDiff
default_padding
(
const
Shape
&
data_batch_shape
);
static
Strides
default_strides
(
const
Node
*
node
,
const
Shape
&
data_batch_shape
);
static
CoordinateDiff
default_padding
(
const
Node
*
node
,
const
Shape
&
data_batch_shape
);
};
/// \brief Data batch backprop for batched convolution operation.
...
...
@@ -356,7 +356,8 @@ namespace ngraph
namespace
util
{
Shape
infer_convolution_output_shape
(
const
Shape
&
data_batch_shape
,
Shape
infer_convolution_output_shape
(
const
Node
*
node
,
const
Shape
&
data_batch_shape
,
const
Shape
&
filters_shape
,
const
Strides
&
window_movement_strides
,
const
Strides
&
window_dilation_strides
,
...
...
@@ -368,8 +369,7 @@ namespace ngraph
size_t
input_channel_axis_filters
,
size_t
output_channel_axis_filters
,
size_t
batch_axis_result
,
size_t
output_channel_axis_result
,
const
std
::
string
&
error_prefix
);
size_t
output_channel_axis_result
);
}
}
}
src/ngraph/op/max_pool.cpp
View file @
e9443168
This diff is collapsed.
Click to expand it.
src/ngraph/runtime/cpu/op/conv_bias.cpp
View file @
e9443168
...
...
@@ -109,7 +109,8 @@ op::ConvolutionBias::ConvolutionBias(const shared_ptr<Node>& data_batch,
set_output_type
(
0
,
data_batch_et
,
util
::
infer_convolution_output_shape
(
data_batch_shape
,
util
::
infer_convolution_output_shape
(
this
,
data_batch_shape
,
filters_shape
,
window_movement_strides
,
window_dilation_strides
,
...
...
@@ -121,8 +122,8 @@ op::ConvolutionBias::ConvolutionBias(const shared_ptr<Node>& data_batch,
1
,
/* input_channel_axis_filters, */
0
,
/* output_channel_axis_filters, */
0
,
/* batch_axis_result, */
1
,
/* output_channel_axis_result, */
""
));
1
/* output_channel_axis_result, */
));
}
shared_ptr
<
Node
>
op
::
ConvolutionBias
::
copy_with_new_args
(
const
NodeVector
&
new_args
)
const
...
...
@@ -322,7 +323,8 @@ op::ConvolutionBiasAdd::ConvolutionBiasAdd(const std::shared_ptr<Node>& data_bat
util
::
validate_convbias_shapes
(
data_batch_shape
,
filters_shape
,
bias
->
get_shape
());
set_output_type
(
0
,
data_batch_et
,
util
::
infer_convolution_output_shape
(
data_batch_shape
,
util
::
infer_convolution_output_shape
(
this
,
data_batch_shape
,
filters_shape
,
window_movement_strides
,
window_dilation_strides
,
...
...
@@ -334,8 +336,8 @@ op::ConvolutionBiasAdd::ConvolutionBiasAdd(const std::shared_ptr<Node>& data_bat
1
,
/* input_channel_axis_filters, */
0
,
/* output_channel_axis_filters, */
0
,
/* batch_axis_result, */
1
,
/* output_channel_axis_result, */
""
));
1
/* output_channel_axis_result, */
));
}
std
::
shared_ptr
<
Node
>
op
::
ConvolutionBiasAdd
::
copy_with_new_args
(
const
NodeVector
&
new_args
)
const
...
...
src/ngraph/runtime/cpu/op/conv_relu.cpp
View file @
e9443168
...
...
@@ -68,7 +68,8 @@ op::ConvolutionRelu::ConvolutionRelu(const std::shared_ptr<Node>& data_batch,
set_output_type
(
0
,
data_batch_et
,
util
::
infer_convolution_output_shape
(
data_batch_shape
,
util
::
infer_convolution_output_shape
(
this
,
data_batch_shape
,
filters_shape
,
window_movement_strides
,
window_dilation_strides
,
...
...
@@ -80,8 +81,8 @@ op::ConvolutionRelu::ConvolutionRelu(const std::shared_ptr<Node>& data_batch,
1
,
/* input_channel_axis_filters, */
0
,
/* output_channel_axis_filters, */
0
,
/* batch_axis_result, */
1
,
/* output_channel_axis_result, */
""
));
1
/* output_channel_axis_result, */
));
}
std
::
shared_ptr
<
Node
>
op
::
ConvolutionRelu
::
copy_with_new_args
(
const
NodeVector
&
new_args
)
const
...
...
test/type_prop.cpp
View file @
e9443168
This diff is collapsed.
Click to expand it.
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment