Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
N
ngraph
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
ngraph
Commits
e92e5e5b
Commit
e92e5e5b
authored
Sep 08, 2017
by
Adam Procter
Committed by
GitHub
Sep 08, 2017
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #97 from NervanaSystems/aprocter/dot-handle-0d
Add support for 0D tensors to dot, clean up comments
parents
4528f86d
ab4b984e
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
78 additions
and
8 deletions
+78
-8
dot.hpp
src/ngraph/ops/dot.hpp
+19
-1
dot.cpp
src/ops/dot.cpp
+15
-7
type_prop.cpp
test/type_prop.cpp
+44
-0
No files found.
src/ngraph/ops/dot.hpp
View file @
e92e5e5b
...
...
@@ -21,7 +21,25 @@ namespace ngraph
class
Dot
:
public
Builtin
{
public
:
/// TODO: Semantics of arg0 and arg1 axes wrt reduction.
/// Computes the dot product of two tensors.
///
/// There are three possible cases:
/// (1) arg0 or arg1 is 0-dimensional. Then, we treat the 0-dimensional
/// argument(s) as scalars and compute a scalar-tensor or
/// scalar-scalar product.
/// (Example: arg0 has shape {1,2,3} and arg1 has shape {}; then
/// the result will have shape {1,2,3}.)
///
/// (2) arg1 is 1-dimensional. Then, we compute a dot product reducing
/// on the innermost (rightmost) dimensions of arg0 and arg1.
/// (Example: arg0 has shape {1,2,3} and arg1 has shape {3}; then
/// the result will have shape {1,2}.)
///
/// (3) arg1 is more than 1-dimensional. Then, we compute a dot product
/// reducing on the innermost (rightmost) dimension of arg0, and the
/// next-to-innermost dimension of arg1.
/// (Example: arg0 has shape {3,4} and arg1 has shape {4,3}; then
/// the result will have shape {3,3}.)
Dot
(
const
std
::
shared_ptr
<
Node
>&
arg0
,
const
std
::
shared_ptr
<
Node
>&
arg1
)
:
Builtin
({
arg0
,
arg1
})
{
...
...
src/ops/dot.cpp
View file @
e92e5e5b
...
...
@@ -34,12 +34,12 @@ void Dot::propagate_types()
throw
ngraph_error
(
"Arguments to dot must have the same element type"
);
}
// Use NumPy semantics for now
// Last axis of first arg reduces against second to last of second arg if more than one axis, else the only axis.
vector
<
size_t
>
arg0_shape
=
arg0_tensor_type
->
get_shape
();
vector
<
size_t
>
arg1_shape
=
arg1_tensor_type
->
get_shape
();
size_t
arg0_reduction
=
arg0_shape
.
size
()
-
1
;
size_t
arg1_reduction
;
const
bool
is_scalar_mult
=
arg0_shape
.
size
()
==
0
||
arg1_shape
.
size
()
==
0
;
if
(
arg1_shape
.
size
()
>
1
)
{
arg1_reduction
=
arg1_shape
.
size
()
-
2
;
...
...
@@ -48,21 +48,29 @@ void Dot::propagate_types()
{
arg1_reduction
=
arg1_shape
.
size
()
-
1
;
}
if
(
arg0_shape
.
at
(
arg0_reduction
)
!=
arg1_shape
.
at
(
arg1_reduction
))
if
(
!
is_scalar_mult
&&
(
arg0_shape
.
at
(
arg0_reduction
)
!=
arg1_shape
.
at
(
arg1_reduction
)
))
{
throw
ngraph_error
(
"Dot reduction axes not compatible"
);
}
vector
<
size_t
>
result_shape
;
result_shape
.
reserve
(
arg0_shape
.
size
()
+
arg1_shape
.
size
()
-
2
);
result_shape
.
reserve
(
arg0_shape
.
size
()
+
arg1_shape
.
size
()
-
(
is_scalar_mult
?
0
:
2
)
);
for
(
auto
i
=
0
;
i
<
arg0_shape
.
size
();
i
++
)
if
(
i
!=
arg0_reduction
)
{
if
(
is_scalar_mult
||
i
!=
arg0_reduction
)
{
result_shape
.
push_back
(
arg0_shape
[
i
]);
}
}
for
(
auto
i
=
0
;
i
<
arg1_shape
.
size
();
i
++
)
if
(
i
!=
arg1_reduction
)
{
if
(
is_scalar_mult
||
i
!=
arg1_reduction
)
{
result_shape
.
push_back
(
arg1_shape
[
i
]);
}
}
auto
result_type
=
make_shared
<
TensorViewType
>
(
arg0_tensor_type
->
get_element_type
(),
result_shape
);
set_value_type_checked
(
result_type
);
...
...
test/type_prop.cpp
View file @
e92e5e5b
...
...
@@ -97,6 +97,50 @@ TEST(type_prop, broadcast_bad_arguments)
//
// Tests for dot product.
//
TEST
(
type_prop
,
dot_deduce_scalar_2d
)
{
// Deduce type for 1D arguments
auto
param1
=
make_shared
<
op
::
Parameter
>
(
element
::
Float32
::
element_type
(),
Shape
{});
auto
param2
=
make_shared
<
op
::
Parameter
>
(
element
::
Float32
::
element_type
(),
Shape
{
4
,
5
});
auto
bc
=
make_shared
<
op
::
Dot
>
(
param1
,
param2
);
bc
->
propagate_types
();
auto
bc_vt
=
bc
->
get_value_type
();
ASSERT_EQ
(
*
bc_vt
,
TensorViewType
(
element
::
Float32
::
element_type
(),
Shape
{
4
,
5
}));
}
TEST
(
type_prop
,
dot_deduce_2d_scalar
)
{
// Deduce type for 1D arguments
auto
param1
=
make_shared
<
op
::
Parameter
>
(
element
::
Float32
::
element_type
(),
Shape
{
4
,
5
});
auto
param2
=
make_shared
<
op
::
Parameter
>
(
element
::
Float32
::
element_type
(),
Shape
{});
auto
bc
=
make_shared
<
op
::
Dot
>
(
param1
,
param2
);
bc
->
propagate_types
();
auto
bc_vt
=
bc
->
get_value_type
();
ASSERT_EQ
(
*
bc_vt
,
TensorViewType
(
element
::
Float32
::
element_type
(),
Shape
{
4
,
5
}));
}
TEST
(
type_prop
,
dot_deduce_scalar_scalar
)
{
// Deduce type for 1D arguments
auto
param1
=
make_shared
<
op
::
Parameter
>
(
element
::
Float32
::
element_type
(),
Shape
{});
auto
param2
=
make_shared
<
op
::
Parameter
>
(
element
::
Float32
::
element_type
(),
Shape
{});
auto
bc
=
make_shared
<
op
::
Dot
>
(
param1
,
param2
);
bc
->
propagate_types
();
auto
bc_vt
=
bc
->
get_value_type
();
ASSERT_EQ
(
*
bc_vt
,
TensorViewType
(
element
::
Float32
::
element_type
(),
Shape
{}));
}
TEST
(
type_prop
,
dot_deduce_scalar_1d
)
{
// Deduce type for 1D arguments
auto
param1
=
make_shared
<
op
::
Parameter
>
(
element
::
Float32
::
element_type
(),
Shape
{});
auto
param2
=
make_shared
<
op
::
Parameter
>
(
element
::
Float32
::
element_type
(),
Shape
{
6
});
auto
bc
=
make_shared
<
op
::
Dot
>
(
param1
,
param2
);
bc
->
propagate_types
();
auto
bc_vt
=
bc
->
get_value_type
();
ASSERT_EQ
(
*
bc_vt
,
TensorViewType
(
element
::
Float32
::
element_type
(),
Shape
{
6
}));
}
TEST
(
type_prop
,
dot_deduce_1d
)
{
// Deduce type for 1D arguments
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment