Commit e7799ae2 authored by Adam Procter's avatar Adam Procter Committed by GitHub

Implement reduce operator through VM (#181)

parent aa3d8338
// ----------------------------------------------------------------------------
// Copyright 2017 Nervana Systems Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// ----------------------------------------------------------------------------
#pragma once
#include "ngraph/runtime/external_function.hpp"
#include "ngraph/runtime/ngvm/call_frame.hpp"
#include "ngraph/runtime/ngvm/eigen/utils.hpp"
#include "ngraph/runtime/ngvm/instruction.hpp"
#include "ngraph/runtime/tensor_view.hpp"
namespace ngraph
{
namespace runtime
{
namespace ngvm
{
namespace eigen
{
template <typename ET>
class ReduceMatrixColumnsInstruction : public Instruction
{
public:
ReduceMatrixColumnsInstruction(std::shared_ptr<ExternalFunction> ef,
const TensorViewInfo& arg0,
const TensorViewInfo& arg1,
const TensorViewInfo& out)
: m_external_function(ef)
, m_arg0(arg0)
, m_arg1(arg1)
, m_out(out)
{
}
virtual void execute(CallFrame& call_frame) const override
{
auto ef = m_external_function;
auto f = [ef](typename ET::type x, typename ET::type y) -> typename ET::type
{
std::shared_ptr<CallFrame> cf =
std::dynamic_pointer_cast<CallFrame>(ef->make_call_frame());
auto tx = ngraph::runtime::make_tensor<ET>(Shape{});
*tx = std::vector<typename ET::type>({x});
auto ty = ngraph::runtime::make_tensor<ET>(Shape{});
*ty = std::vector<typename ET::type>({y});
auto tr = ngraph::runtime::make_tensor<ET>(Shape{});
(*cf)({tx, ty}, {tr});
return tr->get_vector()[0];
};
EigenVector<ET>(call_frame, m_out) =
EigenMatrix<ET>(call_frame, m_arg0).colwise().redux(f);
}
protected:
std::shared_ptr<ExternalFunction> m_external_function;
TensorViewInfo m_arg0;
TensorViewInfo m_arg1;
TensorViewInfo m_out;
};
}
}
}
}
// ----------------------------------------------------------------------------
// Copyright 2017 Nervana Systems Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// ----------------------------------------------------------------------------
#pragma once
#include "ngraph/runtime/external_function.hpp"
#include "ngraph/runtime/ngvm/call_frame.hpp"
#include "ngraph/runtime/ngvm/eigen/utils.hpp"
#include "ngraph/runtime/ngvm/instruction.hpp"
#include "ngraph/runtime/tensor_view.hpp"
namespace ngraph
{
namespace runtime
{
namespace ngvm
{
namespace eigen
{
template <typename ET>
class ReduceMatrixRowsInstruction : public Instruction
{
public:
ReduceMatrixRowsInstruction(std::shared_ptr<ExternalFunction> ef,
const TensorViewInfo& arg0,
const TensorViewInfo& arg1,
const TensorViewInfo& out)
: m_external_function(ef)
, m_arg0(arg0)
, m_arg1(arg1)
, m_out(out)
{
}
virtual void execute(CallFrame& call_frame) const override
{
auto ef = m_external_function;
auto f = [ef](typename ET::type x, typename ET::type y) -> typename ET::type
{
std::shared_ptr<CallFrame> cf =
std::dynamic_pointer_cast<CallFrame>(ef->make_call_frame());
auto tx = ngraph::runtime::make_tensor<ET>(Shape{});
*tx = std::vector<typename ET::type>({x});
auto ty = ngraph::runtime::make_tensor<ET>(Shape{});
*ty = std::vector<typename ET::type>({y});
auto tr = ngraph::runtime::make_tensor<ET>(Shape{});
(*cf)({tx, ty}, {tr});
return tr->get_vector()[0];
};
EigenVector<ET>(call_frame, m_out) =
EigenMatrix<ET>(call_frame, m_arg0).rowwise().redux(f);
}
protected:
std::shared_ptr<ExternalFunction> m_external_function;
TensorViewInfo m_arg0;
TensorViewInfo m_arg1;
TensorViewInfo m_out;
};
}
}
}
}
// ----------------------------------------------------------------------------
// Copyright 2017 Nervana Systems Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// ----------------------------------------------------------------------------
#pragma once
#include "ngraph/runtime/external_function.hpp"
#include "ngraph/runtime/ngvm/call_frame.hpp"
#include "ngraph/runtime/ngvm/eigen/utils.hpp"
#include "ngraph/runtime/ngvm/instruction.hpp"
#include "ngraph/runtime/tensor_view.hpp"
namespace ngraph
{
namespace runtime
{
namespace ngvm
{
namespace eigen
{
template <typename ET>
class ReduceToScalarInstruction : public Instruction
{
public:
ReduceToScalarInstruction(std::shared_ptr<ExternalFunction> ef,
const TensorViewInfo& arg0,
const TensorViewInfo& arg1,
const TensorViewInfo& out)
: m_external_function(ef)
, m_arg0(arg0)
, m_arg1(arg1)
, m_out(out)
{
}
virtual void execute(CallFrame& call_frame) const override
{
auto ef = m_external_function;
auto f = [ef](typename ET::type x, typename ET::type y) -> typename ET::type
{
std::shared_ptr<CallFrame> cf =
std::dynamic_pointer_cast<CallFrame>(ef->make_call_frame());
auto tx = ngraph::runtime::make_tensor<ET>(Shape{});
*tx = std::vector<typename ET::type>({x});
auto ty = ngraph::runtime::make_tensor<ET>(Shape{});
*ty = std::vector<typename ET::type>({y});
auto tr = ngraph::runtime::make_tensor<ET>(Shape{});
(*cf)({tx, ty}, {tr});
return tr->get_vector()[0];
};
EigenArray1d<ET>(call_frame, m_out) =
EigenArray1d<ET>(call_frame, m_arg0).redux(f);
}
protected:
std::shared_ptr<ExternalFunction> m_external_function;
TensorViewInfo m_arg0;
TensorViewInfo m_arg1;
TensorViewInfo m_out;
};
}
}
}
}
...@@ -76,6 +76,9 @@ ...@@ -76,6 +76,9 @@
#include "ngraph/runtime/ngvm/eigen/multiply.hpp" #include "ngraph/runtime/ngvm/eigen/multiply.hpp"
#include "ngraph/runtime/ngvm/eigen/negate.hpp" #include "ngraph/runtime/ngvm/eigen/negate.hpp"
#include "ngraph/runtime/ngvm/eigen/not_equal.hpp" #include "ngraph/runtime/ngvm/eigen/not_equal.hpp"
#include "ngraph/runtime/ngvm/eigen/reduce_matrix_columns.hpp"
#include "ngraph/runtime/ngvm/eigen/reduce_matrix_rows.hpp"
#include "ngraph/runtime/ngvm/eigen/reduce_to_scalar.hpp"
#include "ngraph/runtime/ngvm/eigen/return.hpp" #include "ngraph/runtime/ngvm/eigen/return.hpp"
#include "ngraph/runtime/ngvm/eigen/scalar_tensor_product.hpp" #include "ngraph/runtime/ngvm/eigen/scalar_tensor_product.hpp"
#include "ngraph/runtime/ngvm/eigen/select.hpp" #include "ngraph/runtime/ngvm/eigen/select.hpp"
...@@ -624,7 +627,7 @@ ExternalFunction::OpMap& ExternalFunction::get_op_map() ...@@ -624,7 +627,7 @@ ExternalFunction::OpMap& ExternalFunction::get_op_map()
} }
catch (const std::out_of_range) catch (const std::out_of_range)
{ {
external = make_shared<ExternalFunction>(function_call->get_function()); external = make_shared<ExternalFunction>(function);
function_map.insert({function, external}); function_map.insert({function, external});
} }
...@@ -632,7 +635,148 @@ ExternalFunction::OpMap& ExternalFunction::get_op_map() ...@@ -632,7 +635,148 @@ ExternalFunction::OpMap& ExternalFunction::get_op_map()
make_shared<eigen::CallInstruction>(external, in, out)); make_shared<eigen::CallInstruction>(external, in, out));
}; };
REGISTER_TO_OP_MAP(op::Reduce) { throw ngraph_error("op::Reduce not implemented yet"); }; REGISTER_TO_OP_MAP(op::Reduce)
{
auto reduce = static_cast<const op::Reduce*>(n);
auto reduction_function = reduce->get_reduction_function();
std::shared_ptr<ExternalFunction> external;
try
{
external = function_map.at(reduction_function);
}
catch (const std::out_of_range)
{
external = make_shared<ExternalFunction>(reduction_function);
function_map.insert({reduction_function, external});
}
auto reductee_type = reduce->get_arguments().at(0)->get_value_type();
auto reductee_tensor_view_type =
dynamic_pointer_cast<const TensorViewType>(reductee_type);
assert(nullptr != reductee_tensor_view_type);
auto reductee_shape = reductee_tensor_view_type->get_shape();
auto f_result_type = reduction_function->get_result_type();
auto f_result_tensor_view_type =
dynamic_pointer_cast<const TensorViewType>(f_result_type);
assert(nullptr != f_result_tensor_view_type);
auto& f_result_element_type = f_result_tensor_view_type->get_element_type();
auto result_type = reduce->get_value_type();
auto result_tensor_view_type = dynamic_pointer_cast<const TensorViewType>(result_type);
assert(nullptr != result_tensor_view_type);
auto result_shape = result_tensor_view_type->get_shape();
auto& reduction_axes = reduce->get_reduction_axes();
// Trivial case: no reduction axes (this includes the scalar-reductee case).
if (reduction_axes.empty())
{
PUSH_POLYMORPHIC_INSTRUCTION(f_result_element_type,
"Reduce has unhandled element type",
runtime::ngvm::eigen::CopyInstruction,
in.at(0).get_index(),
out.at(0).get_index());
}
// Behavior for zero-size axes bears some explanation here. XLA's reduce
// operator provides an "base" element (usually, but not necessarily,
// an identity element) that it apparently *may* choose to insert anywhere
// in the reduction any number of times. For example, given:
//
// reduce{{1,2,3},b,+)
//
// any of the following are valid reductions (I think!):
//
// b+(b+1+2)+3
// b+(1+(2+3))
// (1+2)+3 (I think!)
//
// etc. Here we will choose never to instantiate the base element, which
// works well with Eigen's default behavior for non-zero-length axes. The
// exceptional case is when we reduce on a zero-length axis. In this case,
// Eigen's default behavior is to put a zero in the output, which is not
// what we want, so we detect that case here and override with a copy
// instruction (for reduce-to-scalar) or a broadcast (for reduce-to-vector)
// from the base element.
//
// What I'm actually not sure about is whether the identity element is
// required to appear at least once. If so, this will need to be reworked,
// assuming we actually want to mimic XLA's semantics that closely, which
// we may not.
else if ((reductee_shape.size() == 1 && reduction_axes == AxisSet{0}) ||
(reductee_shape.size() == 2 && reduction_axes == AxisSet{0, 1}))
{
if (reductee_shape.at(0) == 0 ||
(reductee_shape.size() == 2 && reductee_shape.at(1) == 0))
{
PUSH_POLYMORPHIC_INSTRUCTION(f_result_element_type,
"Reduce has unhandled element type",
runtime::ngvm::eigen::CopyInstruction,
in.at(1).get_index(),
out.at(0).get_index());
}
else
{
PUSH_POLYMORPHIC_INSTRUCTION(f_result_element_type,
"Reduce has unhandled element type",
runtime::ngvm::eigen::ReduceToScalarInstruction,
external,
in[0],
in[1],
out[0]);
}
}
else if (reductee_shape.size() == 2 && reduction_axes == AxisSet{1})
{
if (reductee_shape.at(1) == 0)
{
PUSH_POLYMORPHIC_INSTRUCTION(f_result_element_type,
"Reduce has unhandled element type",
runtime::ngvm::eigen::BroadcastScalarInstruction,
in[1],
out[0]);
}
else
{
PUSH_POLYMORPHIC_INSTRUCTION(f_result_element_type,
"Reduce has unhandled element type",
runtime::ngvm::eigen::ReduceMatrixRowsInstruction,
external,
in[0],
in[1],
out[0]);
}
}
else if (reductee_shape.size() == 2 && reduction_axes == AxisSet{0})
{
if (reductee_shape.at(0) == 0)
{
PUSH_POLYMORPHIC_INSTRUCTION(f_result_element_type,
"Reduce has unhandled element type",
runtime::ngvm::eigen::BroadcastScalarInstruction,
in[1],
out[0]);
}
else
{
PUSH_POLYMORPHIC_INSTRUCTION(
f_result_element_type,
"Reduce has unhandled element type",
runtime::ngvm::eigen::ReduceMatrixColumnsInstruction,
external,
in[0],
in[1],
out[0]);
}
}
else
{
throw ngraph_error("Reduce: only vectors and matrices are currently supported");
}
};
initialized = true; initialized = true;
} }
return op_map; return op_map;
......
This diff is collapsed.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment