Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
N
ngraph
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
ngraph
Commits
e7799ae2
Commit
e7799ae2
authored
Oct 06, 2017
by
Adam Procter
Committed by
GitHub
Oct 06, 2017
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Implement reduce operator through VM (#181)
parent
aa3d8338
Show whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
672 additions
and
2 deletions
+672
-2
reduce_matrix_columns.hpp
src/ngraph/runtime/ngvm/eigen/reduce_matrix_columns.hpp
+76
-0
reduce_matrix_rows.hpp
src/ngraph/runtime/ngvm/eigen/reduce_matrix_rows.hpp
+76
-0
reduce_to_scalar.hpp
src/ngraph/runtime/ngvm/eigen/reduce_to_scalar.hpp
+76
-0
external_function.cpp
src/ngraph/runtime/ngvm/external_function.cpp
+146
-2
execute.cpp
test/execute.cpp
+298
-0
No files found.
src/ngraph/runtime/ngvm/eigen/reduce_matrix_columns.hpp
0 → 100644
View file @
e7799ae2
// ----------------------------------------------------------------------------
// Copyright 2017 Nervana Systems Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// ----------------------------------------------------------------------------
#pragma once
#include "ngraph/runtime/external_function.hpp"
#include "ngraph/runtime/ngvm/call_frame.hpp"
#include "ngraph/runtime/ngvm/eigen/utils.hpp"
#include "ngraph/runtime/ngvm/instruction.hpp"
#include "ngraph/runtime/tensor_view.hpp"
namespace
ngraph
{
namespace
runtime
{
namespace
ngvm
{
namespace
eigen
{
template
<
typename
ET
>
class
ReduceMatrixColumnsInstruction
:
public
Instruction
{
public
:
ReduceMatrixColumnsInstruction
(
std
::
shared_ptr
<
ExternalFunction
>
ef
,
const
TensorViewInfo
&
arg0
,
const
TensorViewInfo
&
arg1
,
const
TensorViewInfo
&
out
)
:
m_external_function
(
ef
)
,
m_arg0
(
arg0
)
,
m_arg1
(
arg1
)
,
m_out
(
out
)
{
}
virtual
void
execute
(
CallFrame
&
call_frame
)
const
override
{
auto
ef
=
m_external_function
;
auto
f
=
[
ef
](
typename
ET
::
type
x
,
typename
ET
::
type
y
)
->
typename
ET
::
type
{
std
::
shared_ptr
<
CallFrame
>
cf
=
std
::
dynamic_pointer_cast
<
CallFrame
>
(
ef
->
make_call_frame
());
auto
tx
=
ngraph
::
runtime
::
make_tensor
<
ET
>
(
Shape
{});
*
tx
=
std
::
vector
<
typename
ET
::
type
>
({
x
});
auto
ty
=
ngraph
::
runtime
::
make_tensor
<
ET
>
(
Shape
{});
*
ty
=
std
::
vector
<
typename
ET
::
type
>
({
y
});
auto
tr
=
ngraph
::
runtime
::
make_tensor
<
ET
>
(
Shape
{});
(
*
cf
)({
tx
,
ty
},
{
tr
});
return
tr
->
get_vector
()[
0
];
};
EigenVector
<
ET
>
(
call_frame
,
m_out
)
=
EigenMatrix
<
ET
>
(
call_frame
,
m_arg0
).
colwise
().
redux
(
f
);
}
protected
:
std
::
shared_ptr
<
ExternalFunction
>
m_external_function
;
TensorViewInfo
m_arg0
;
TensorViewInfo
m_arg1
;
TensorViewInfo
m_out
;
};
}
}
}
}
src/ngraph/runtime/ngvm/eigen/reduce_matrix_rows.hpp
0 → 100644
View file @
e7799ae2
// ----------------------------------------------------------------------------
// Copyright 2017 Nervana Systems Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// ----------------------------------------------------------------------------
#pragma once
#include "ngraph/runtime/external_function.hpp"
#include "ngraph/runtime/ngvm/call_frame.hpp"
#include "ngraph/runtime/ngvm/eigen/utils.hpp"
#include "ngraph/runtime/ngvm/instruction.hpp"
#include "ngraph/runtime/tensor_view.hpp"
namespace
ngraph
{
namespace
runtime
{
namespace
ngvm
{
namespace
eigen
{
template
<
typename
ET
>
class
ReduceMatrixRowsInstruction
:
public
Instruction
{
public
:
ReduceMatrixRowsInstruction
(
std
::
shared_ptr
<
ExternalFunction
>
ef
,
const
TensorViewInfo
&
arg0
,
const
TensorViewInfo
&
arg1
,
const
TensorViewInfo
&
out
)
:
m_external_function
(
ef
)
,
m_arg0
(
arg0
)
,
m_arg1
(
arg1
)
,
m_out
(
out
)
{
}
virtual
void
execute
(
CallFrame
&
call_frame
)
const
override
{
auto
ef
=
m_external_function
;
auto
f
=
[
ef
](
typename
ET
::
type
x
,
typename
ET
::
type
y
)
->
typename
ET
::
type
{
std
::
shared_ptr
<
CallFrame
>
cf
=
std
::
dynamic_pointer_cast
<
CallFrame
>
(
ef
->
make_call_frame
());
auto
tx
=
ngraph
::
runtime
::
make_tensor
<
ET
>
(
Shape
{});
*
tx
=
std
::
vector
<
typename
ET
::
type
>
({
x
});
auto
ty
=
ngraph
::
runtime
::
make_tensor
<
ET
>
(
Shape
{});
*
ty
=
std
::
vector
<
typename
ET
::
type
>
({
y
});
auto
tr
=
ngraph
::
runtime
::
make_tensor
<
ET
>
(
Shape
{});
(
*
cf
)({
tx
,
ty
},
{
tr
});
return
tr
->
get_vector
()[
0
];
};
EigenVector
<
ET
>
(
call_frame
,
m_out
)
=
EigenMatrix
<
ET
>
(
call_frame
,
m_arg0
).
rowwise
().
redux
(
f
);
}
protected
:
std
::
shared_ptr
<
ExternalFunction
>
m_external_function
;
TensorViewInfo
m_arg0
;
TensorViewInfo
m_arg1
;
TensorViewInfo
m_out
;
};
}
}
}
}
src/ngraph/runtime/ngvm/eigen/reduce_to_scalar.hpp
0 → 100644
View file @
e7799ae2
// ----------------------------------------------------------------------------
// Copyright 2017 Nervana Systems Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// ----------------------------------------------------------------------------
#pragma once
#include "ngraph/runtime/external_function.hpp"
#include "ngraph/runtime/ngvm/call_frame.hpp"
#include "ngraph/runtime/ngvm/eigen/utils.hpp"
#include "ngraph/runtime/ngvm/instruction.hpp"
#include "ngraph/runtime/tensor_view.hpp"
namespace
ngraph
{
namespace
runtime
{
namespace
ngvm
{
namespace
eigen
{
template
<
typename
ET
>
class
ReduceToScalarInstruction
:
public
Instruction
{
public
:
ReduceToScalarInstruction
(
std
::
shared_ptr
<
ExternalFunction
>
ef
,
const
TensorViewInfo
&
arg0
,
const
TensorViewInfo
&
arg1
,
const
TensorViewInfo
&
out
)
:
m_external_function
(
ef
)
,
m_arg0
(
arg0
)
,
m_arg1
(
arg1
)
,
m_out
(
out
)
{
}
virtual
void
execute
(
CallFrame
&
call_frame
)
const
override
{
auto
ef
=
m_external_function
;
auto
f
=
[
ef
](
typename
ET
::
type
x
,
typename
ET
::
type
y
)
->
typename
ET
::
type
{
std
::
shared_ptr
<
CallFrame
>
cf
=
std
::
dynamic_pointer_cast
<
CallFrame
>
(
ef
->
make_call_frame
());
auto
tx
=
ngraph
::
runtime
::
make_tensor
<
ET
>
(
Shape
{});
*
tx
=
std
::
vector
<
typename
ET
::
type
>
({
x
});
auto
ty
=
ngraph
::
runtime
::
make_tensor
<
ET
>
(
Shape
{});
*
ty
=
std
::
vector
<
typename
ET
::
type
>
({
y
});
auto
tr
=
ngraph
::
runtime
::
make_tensor
<
ET
>
(
Shape
{});
(
*
cf
)({
tx
,
ty
},
{
tr
});
return
tr
->
get_vector
()[
0
];
};
EigenArray1d
<
ET
>
(
call_frame
,
m_out
)
=
EigenArray1d
<
ET
>
(
call_frame
,
m_arg0
).
redux
(
f
);
}
protected
:
std
::
shared_ptr
<
ExternalFunction
>
m_external_function
;
TensorViewInfo
m_arg0
;
TensorViewInfo
m_arg1
;
TensorViewInfo
m_out
;
};
}
}
}
}
src/ngraph/runtime/ngvm/external_function.cpp
View file @
e7799ae2
...
...
@@ -76,6 +76,9 @@
#include "ngraph/runtime/ngvm/eigen/multiply.hpp"
#include "ngraph/runtime/ngvm/eigen/negate.hpp"
#include "ngraph/runtime/ngvm/eigen/not_equal.hpp"
#include "ngraph/runtime/ngvm/eigen/reduce_matrix_columns.hpp"
#include "ngraph/runtime/ngvm/eigen/reduce_matrix_rows.hpp"
#include "ngraph/runtime/ngvm/eigen/reduce_to_scalar.hpp"
#include "ngraph/runtime/ngvm/eigen/return.hpp"
#include "ngraph/runtime/ngvm/eigen/scalar_tensor_product.hpp"
#include "ngraph/runtime/ngvm/eigen/select.hpp"
...
...
@@ -624,7 +627,7 @@ ExternalFunction::OpMap& ExternalFunction::get_op_map()
}
catch
(
const
std
::
out_of_range
)
{
external
=
make_shared
<
ExternalFunction
>
(
function
_call
->
get_function
()
);
external
=
make_shared
<
ExternalFunction
>
(
function
);
function_map
.
insert
({
function
,
external
});
}
...
...
@@ -632,7 +635,148 @@ ExternalFunction::OpMap& ExternalFunction::get_op_map()
make_shared
<
eigen
::
CallInstruction
>
(
external
,
in
,
out
));
};
REGISTER_TO_OP_MAP
(
op
::
Reduce
)
{
throw
ngraph_error
(
"op::Reduce not implemented yet"
);
};
REGISTER_TO_OP_MAP
(
op
::
Reduce
)
{
auto
reduce
=
static_cast
<
const
op
::
Reduce
*>
(
n
);
auto
reduction_function
=
reduce
->
get_reduction_function
();
std
::
shared_ptr
<
ExternalFunction
>
external
;
try
{
external
=
function_map
.
at
(
reduction_function
);
}
catch
(
const
std
::
out_of_range
)
{
external
=
make_shared
<
ExternalFunction
>
(
reduction_function
);
function_map
.
insert
({
reduction_function
,
external
});
}
auto
reductee_type
=
reduce
->
get_arguments
().
at
(
0
)
->
get_value_type
();
auto
reductee_tensor_view_type
=
dynamic_pointer_cast
<
const
TensorViewType
>
(
reductee_type
);
assert
(
nullptr
!=
reductee_tensor_view_type
);
auto
reductee_shape
=
reductee_tensor_view_type
->
get_shape
();
auto
f_result_type
=
reduction_function
->
get_result_type
();
auto
f_result_tensor_view_type
=
dynamic_pointer_cast
<
const
TensorViewType
>
(
f_result_type
);
assert
(
nullptr
!=
f_result_tensor_view_type
);
auto
&
f_result_element_type
=
f_result_tensor_view_type
->
get_element_type
();
auto
result_type
=
reduce
->
get_value_type
();
auto
result_tensor_view_type
=
dynamic_pointer_cast
<
const
TensorViewType
>
(
result_type
);
assert
(
nullptr
!=
result_tensor_view_type
);
auto
result_shape
=
result_tensor_view_type
->
get_shape
();
auto
&
reduction_axes
=
reduce
->
get_reduction_axes
();
// Trivial case: no reduction axes (this includes the scalar-reductee case).
if
(
reduction_axes
.
empty
())
{
PUSH_POLYMORPHIC_INSTRUCTION
(
f_result_element_type
,
"Reduce has unhandled element type"
,
runtime
::
ngvm
::
eigen
::
CopyInstruction
,
in
.
at
(
0
).
get_index
(),
out
.
at
(
0
).
get_index
());
}
// Behavior for zero-size axes bears some explanation here. XLA's reduce
// operator provides an "base" element (usually, but not necessarily,
// an identity element) that it apparently *may* choose to insert anywhere
// in the reduction any number of times. For example, given:
//
// reduce{{1,2,3},b,+)
//
// any of the following are valid reductions (I think!):
//
// b+(b+1+2)+3
// b+(1+(2+3))
// (1+2)+3 (I think!)
//
// etc. Here we will choose never to instantiate the base element, which
// works well with Eigen's default behavior for non-zero-length axes. The
// exceptional case is when we reduce on a zero-length axis. In this case,
// Eigen's default behavior is to put a zero in the output, which is not
// what we want, so we detect that case here and override with a copy
// instruction (for reduce-to-scalar) or a broadcast (for reduce-to-vector)
// from the base element.
//
// What I'm actually not sure about is whether the identity element is
// required to appear at least once. If so, this will need to be reworked,
// assuming we actually want to mimic XLA's semantics that closely, which
// we may not.
else
if
((
reductee_shape
.
size
()
==
1
&&
reduction_axes
==
AxisSet
{
0
})
||
(
reductee_shape
.
size
()
==
2
&&
reduction_axes
==
AxisSet
{
0
,
1
}))
{
if
(
reductee_shape
.
at
(
0
)
==
0
||
(
reductee_shape
.
size
()
==
2
&&
reductee_shape
.
at
(
1
)
==
0
))
{
PUSH_POLYMORPHIC_INSTRUCTION
(
f_result_element_type
,
"Reduce has unhandled element type"
,
runtime
::
ngvm
::
eigen
::
CopyInstruction
,
in
.
at
(
1
).
get_index
(),
out
.
at
(
0
).
get_index
());
}
else
{
PUSH_POLYMORPHIC_INSTRUCTION
(
f_result_element_type
,
"Reduce has unhandled element type"
,
runtime
::
ngvm
::
eigen
::
ReduceToScalarInstruction
,
external
,
in
[
0
],
in
[
1
],
out
[
0
]);
}
}
else
if
(
reductee_shape
.
size
()
==
2
&&
reduction_axes
==
AxisSet
{
1
})
{
if
(
reductee_shape
.
at
(
1
)
==
0
)
{
PUSH_POLYMORPHIC_INSTRUCTION
(
f_result_element_type
,
"Reduce has unhandled element type"
,
runtime
::
ngvm
::
eigen
::
BroadcastScalarInstruction
,
in
[
1
],
out
[
0
]);
}
else
{
PUSH_POLYMORPHIC_INSTRUCTION
(
f_result_element_type
,
"Reduce has unhandled element type"
,
runtime
::
ngvm
::
eigen
::
ReduceMatrixRowsInstruction
,
external
,
in
[
0
],
in
[
1
],
out
[
0
]);
}
}
else
if
(
reductee_shape
.
size
()
==
2
&&
reduction_axes
==
AxisSet
{
0
})
{
if
(
reductee_shape
.
at
(
0
)
==
0
)
{
PUSH_POLYMORPHIC_INSTRUCTION
(
f_result_element_type
,
"Reduce has unhandled element type"
,
runtime
::
ngvm
::
eigen
::
BroadcastScalarInstruction
,
in
[
1
],
out
[
0
]);
}
else
{
PUSH_POLYMORPHIC_INSTRUCTION
(
f_result_element_type
,
"Reduce has unhandled element type"
,
runtime
::
ngvm
::
eigen
::
ReduceMatrixColumnsInstruction
,
external
,
in
[
0
],
in
[
1
],
out
[
0
]);
}
}
else
{
throw
ngraph_error
(
"Reduce: only vectors and matrices are currently supported"
);
}
};
initialized
=
true
;
}
return
op_map
;
...
...
test/execute.cpp
View file @
e7799ae2
...
...
@@ -1322,3 +1322,301 @@ TEST(execute, convert_float32_bool)
(
*
cf
)({
a
},
{
result
});
ASSERT_EQ
((
vector
<
element
::
Bool
::
type
>
{
1
,
2
,
3
,
4
}),
result
->
get_vector
());
}
// Trivial case with no reduction axes.
TEST
(
execute
,
reduce_trivial
)
{
// First, the reduction function (f(x:float32[],y:float32[]) = x+y).
auto
f_A
=
make_shared
<
op
::
Parameter
>
(
element
::
Float32
::
element_type
(),
Shape
{});
auto
f_B
=
make_shared
<
op
::
Parameter
>
(
element
::
Float32
::
element_type
(),
Shape
{});
auto
f_rt
=
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
Shape
{});
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
Add
>
(
f_A
,
f_B
),
f_rt
,
op
::
Parameters
{
f_A
,
f_B
});
// Now the reduction (g(x:float32[2,2],y:float32[]) = reduce(x,y,f,axes={})).
auto
shape
=
Shape
{
2
,
2
};
auto
g_A
=
make_shared
<
op
::
Parameter
>
(
element
::
Float32
::
element_type
(),
shape
);
auto
g_B
=
make_shared
<
op
::
Parameter
>
(
element
::
Float32
::
element_type
(),
Shape
{});
auto
g_rt
=
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
shape
);
auto
g
=
make_shared
<
Function
>
(
make_shared
<
op
::
Reduce
>
(
g_A
,
g_B
,
f
,
AxisSet
{}),
g_rt
,
op
::
Parameters
{
g_A
,
g_B
});
auto
manager
=
runtime
::
Manager
::
get
(
"NGVM"
);
auto
external
=
manager
->
compile
(
g
);
auto
backend
=
manager
->
allocate_backend
();
auto
cf
=
backend
->
make_call_frame
(
external
);
// Create some tensors for input/output
auto
a
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
shape
);
*
a
=
vector
<
float
>
{
1
,
2
,
3
,
4
};
auto
b
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
shape
);
*
b
=
vector
<
float
>
{
0
};
auto
result
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
shape
);
(
*
cf
)({
a
,
b
},
{
result
});
ASSERT_EQ
((
vector
<
float
>
{
1
,
2
,
3
,
4
}),
result
->
get_vector
());
}
TEST
(
execute
,
reduce_to_scalar
)
{
// First, the reduction function (f(x:float32[],y:float32[]) = x+y).
auto
f_A
=
make_shared
<
op
::
Parameter
>
(
element
::
Float32
::
element_type
(),
Shape
{});
auto
f_B
=
make_shared
<
op
::
Parameter
>
(
element
::
Float32
::
element_type
(),
Shape
{});
auto
f_rt
=
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
Shape
{});
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
Add
>
(
f_A
,
f_B
),
f_rt
,
op
::
Parameters
{
f_A
,
f_B
});
// Now the reduction (g(x:float32[2,2],y:float32[]) = reduce(x,y,f,axes={})).
auto
shape
=
Shape
{
2
,
2
};
auto
g_A
=
make_shared
<
op
::
Parameter
>
(
element
::
Float32
::
element_type
(),
shape
);
auto
g_B
=
make_shared
<
op
::
Parameter
>
(
element
::
Float32
::
element_type
(),
Shape
{});
auto
g_rt
=
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
Shape
{});
auto
g
=
make_shared
<
Function
>
(
make_shared
<
op
::
Reduce
>
(
g_A
,
g_B
,
f
,
AxisSet
{
0
,
1
}),
g_rt
,
op
::
Parameters
{
g_A
,
g_B
});
auto
manager
=
runtime
::
Manager
::
get
(
"NGVM"
);
auto
external
=
manager
->
compile
(
g
);
auto
backend
=
manager
->
allocate_backend
();
auto
cf
=
backend
->
make_call_frame
(
external
);
// Create some tensors for input/output
auto
a
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
shape
);
*
a
=
vector
<
float
>
{
1
,
2
,
3
,
4
};
auto
b
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
Shape
{});
*
b
=
vector
<
float
>
{
0
};
auto
result
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
Shape
{});
(
*
cf
)({
a
,
b
},
{
result
});
ASSERT_EQ
((
vector
<
float
>
{
10
}),
result
->
get_vector
());
// For some reason I'm feeling extra paranoid about making sure reduction doesn't clobber the
// input tensors, so let's do this too.
ASSERT_EQ
((
vector
<
float
>
{
1
,
2
,
3
,
4
}),
a
->
get_vector
());
ASSERT_EQ
((
vector
<
float
>
{
0
}),
b
->
get_vector
());
}
TEST
(
execute
,
reduce_matrix_columns
)
{
// First, the reduction function (f(x:float32[],y:float32[]) = x+y).
auto
f_A
=
make_shared
<
op
::
Parameter
>
(
element
::
Float32
::
element_type
(),
Shape
{});
auto
f_B
=
make_shared
<
op
::
Parameter
>
(
element
::
Float32
::
element_type
(),
Shape
{});
auto
f_rt
=
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
Shape
{});
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
Add
>
(
f_A
,
f_B
),
f_rt
,
op
::
Parameters
{
f_A
,
f_B
});
// Now the reduction (g(x:float32[2,2],y:float32[]) = reduce(x,y,f,axes={})).
auto
shape_a
=
Shape
{
3
,
2
};
auto
g_A
=
make_shared
<
op
::
Parameter
>
(
element
::
Float32
::
element_type
(),
shape_a
);
auto
g_B
=
make_shared
<
op
::
Parameter
>
(
element
::
Float32
::
element_type
(),
Shape
{});
auto
shape_rt
=
Shape
{
2
};
auto
g_rt
=
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
shape_rt
);
auto
g
=
make_shared
<
Function
>
(
make_shared
<
op
::
Reduce
>
(
g_A
,
g_B
,
f
,
AxisSet
{
0
}),
g_rt
,
op
::
Parameters
{
g_A
,
g_B
});
auto
manager
=
runtime
::
Manager
::
get
(
"NGVM"
);
auto
external
=
manager
->
compile
(
g
);
auto
backend
=
manager
->
allocate_backend
();
auto
cf
=
backend
->
make_call_frame
(
external
);
// Create some tensors for input/output
auto
a
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
shape_a
);
*
a
=
vector
<
float
>
{
1
,
2
,
3
,
4
,
5
,
6
};
auto
b
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
Shape
{});
*
b
=
vector
<
float
>
{
0
};
auto
result
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
shape_rt
);
(
*
cf
)({
a
,
b
},
{
result
});
ASSERT_EQ
((
vector
<
float
>
{
9
,
12
}),
result
->
get_vector
());
// For some reason I'm feeling extra paranoid about making sure reduction doesn't clobber the
// input tensors, so let's do this too.
ASSERT_EQ
((
vector
<
float
>
{
1
,
2
,
3
,
4
,
5
,
6
}),
a
->
get_vector
());
ASSERT_EQ
((
vector
<
float
>
{
0
}),
b
->
get_vector
());
}
TEST
(
execute
,
reduce_matrix_rows
)
{
// First, the reduction function (f(x:float32[],y:float32[]) = x+y).
auto
f_A
=
make_shared
<
op
::
Parameter
>
(
element
::
Float32
::
element_type
(),
Shape
{});
auto
f_B
=
make_shared
<
op
::
Parameter
>
(
element
::
Float32
::
element_type
(),
Shape
{});
auto
f_rt
=
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
Shape
{});
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
Add
>
(
f_A
,
f_B
),
f_rt
,
op
::
Parameters
{
f_A
,
f_B
});
// Now the reduction (g(x:float32[2,2],y:float32[]) = reduce(x,y,f,axes={})).
auto
shape_a
=
Shape
{
3
,
2
};
auto
g_A
=
make_shared
<
op
::
Parameter
>
(
element
::
Float32
::
element_type
(),
shape_a
);
auto
g_B
=
make_shared
<
op
::
Parameter
>
(
element
::
Float32
::
element_type
(),
Shape
{});
auto
shape_rt
=
Shape
{
3
};
auto
g_rt
=
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
shape_rt
);
auto
g
=
make_shared
<
Function
>
(
make_shared
<
op
::
Reduce
>
(
g_A
,
g_B
,
f
,
AxisSet
{
1
}),
g_rt
,
op
::
Parameters
{
g_A
,
g_B
});
auto
manager
=
runtime
::
Manager
::
get
(
"NGVM"
);
auto
external
=
manager
->
compile
(
g
);
auto
backend
=
manager
->
allocate_backend
();
auto
cf
=
backend
->
make_call_frame
(
external
);
// Create some tensors for input/output
auto
a
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
shape_a
);
*
a
=
vector
<
float
>
{
1
,
2
,
3
,
4
,
5
,
6
};
auto
b
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
Shape
{});
*
b
=
vector
<
float
>
{
0
};
auto
result
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
shape_rt
);
(
*
cf
)({
a
,
b
},
{
result
});
ASSERT_EQ
((
vector
<
float
>
{
3
,
7
,
11
}),
result
->
get_vector
());
// For some reason I'm feeling extra paranoid about making sure reduction doesn't clobber the
// input tensors, so let's do this too.
ASSERT_EQ
((
vector
<
float
>
{
1
,
2
,
3
,
4
,
5
,
6
}),
a
->
get_vector
());
ASSERT_EQ
((
vector
<
float
>
{
0
}),
b
->
get_vector
());
}
TEST
(
execute
,
reduce_matrix_rows_zero
)
{
// First, the reduction function (f(x:float32[],y:float32[]) = x+y).
auto
f_A
=
make_shared
<
op
::
Parameter
>
(
element
::
Float32
::
element_type
(),
Shape
{});
auto
f_B
=
make_shared
<
op
::
Parameter
>
(
element
::
Float32
::
element_type
(),
Shape
{});
auto
f_rt
=
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
Shape
{});
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
Add
>
(
f_A
,
f_B
),
f_rt
,
op
::
Parameters
{
f_A
,
f_B
});
// Now the reduction (g(x:float32[2,2],y:float32[]) = reduce(x,y,f,axes={})).
auto
shape_a
=
Shape
{
3
,
0
};
auto
g_A
=
make_shared
<
op
::
Parameter
>
(
element
::
Float32
::
element_type
(),
shape_a
);
auto
g_B
=
make_shared
<
op
::
Parameter
>
(
element
::
Float32
::
element_type
(),
Shape
{});
auto
shape_rt
=
Shape
{
3
};
auto
g_rt
=
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
shape_rt
);
auto
g
=
make_shared
<
Function
>
(
make_shared
<
op
::
Reduce
>
(
g_A
,
g_B
,
f
,
AxisSet
{
1
}),
g_rt
,
op
::
Parameters
{
g_A
,
g_B
});
auto
manager
=
runtime
::
Manager
::
get
(
"NGVM"
);
auto
external
=
manager
->
compile
(
g
);
auto
backend
=
manager
->
allocate_backend
();
auto
cf
=
backend
->
make_call_frame
(
external
);
// Create some tensors for input/output
auto
a
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
shape_a
);
*
a
=
vector
<
float
>
{};
auto
b
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
Shape
{});
*
b
=
vector
<
float
>
{
66
};
auto
result
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
shape_rt
);
(
*
cf
)({
a
,
b
},
{
result
});
ASSERT_EQ
((
vector
<
float
>
{
66
,
66
,
66
}),
result
->
get_vector
());
// For some reason I'm feeling extra paranoid about making sure reduction doesn't clobber the
// input tensors, so let's do this too.
ASSERT_EQ
((
vector
<
float
>
{}),
a
->
get_vector
());
ASSERT_EQ
((
vector
<
float
>
{
66
}),
b
->
get_vector
());
}
TEST
(
execute
,
reduce_matrix_cols_zero
)
{
// First, the reduction function (f(x:float32[],y:float32[]) = x+y).
auto
f_A
=
make_shared
<
op
::
Parameter
>
(
element
::
Float32
::
element_type
(),
Shape
{});
auto
f_B
=
make_shared
<
op
::
Parameter
>
(
element
::
Float32
::
element_type
(),
Shape
{});
auto
f_rt
=
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
Shape
{});
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
Add
>
(
f_A
,
f_B
),
f_rt
,
op
::
Parameters
{
f_A
,
f_B
});
// Now the reduction (g(x:float32[2,2],y:float32[]) = reduce(x,y,f,axes={})).
auto
shape_a
=
Shape
{
0
,
2
};
auto
g_A
=
make_shared
<
op
::
Parameter
>
(
element
::
Float32
::
element_type
(),
shape_a
);
auto
g_B
=
make_shared
<
op
::
Parameter
>
(
element
::
Float32
::
element_type
(),
Shape
{});
auto
shape_rt
=
Shape
{
2
};
auto
g_rt
=
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
shape_rt
);
auto
g
=
make_shared
<
Function
>
(
make_shared
<
op
::
Reduce
>
(
g_A
,
g_B
,
f
,
AxisSet
{
0
}),
g_rt
,
op
::
Parameters
{
g_A
,
g_B
});
auto
manager
=
runtime
::
Manager
::
get
(
"NGVM"
);
auto
external
=
manager
->
compile
(
g
);
auto
backend
=
manager
->
allocate_backend
();
auto
cf
=
backend
->
make_call_frame
(
external
);
// Create some tensors for input/output
auto
a
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
shape_a
);
*
a
=
vector
<
float
>
{};
auto
b
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
Shape
{});
*
b
=
vector
<
float
>
{
77
};
auto
result
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
shape_rt
);
(
*
cf
)({
a
,
b
},
{
result
});
ASSERT_EQ
((
vector
<
float
>
{
77
,
77
}),
result
->
get_vector
());
// For some reason I'm feeling extra paranoid about making sure reduction doesn't clobber the
// input tensors, so let's do this too.
ASSERT_EQ
((
vector
<
float
>
{}),
a
->
get_vector
());
ASSERT_EQ
((
vector
<
float
>
{
77
}),
b
->
get_vector
());
}
TEST
(
execute
,
reduce_vector_zero
)
{
// First, the reduction function (f(x:float32[],y:float32[]) = x+y).
auto
f_A
=
make_shared
<
op
::
Parameter
>
(
element
::
Float32
::
element_type
(),
Shape
{});
auto
f_B
=
make_shared
<
op
::
Parameter
>
(
element
::
Float32
::
element_type
(),
Shape
{});
auto
f_rt
=
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
Shape
{});
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
Add
>
(
f_A
,
f_B
),
f_rt
,
op
::
Parameters
{
f_A
,
f_B
});
// Now the reduction (g(x:float32[2,2],y:float32[]) = reduce(x,y,f,axes={})).
auto
shape_a
=
Shape
{
0
};
auto
g_A
=
make_shared
<
op
::
Parameter
>
(
element
::
Float32
::
element_type
(),
shape_a
);
auto
g_B
=
make_shared
<
op
::
Parameter
>
(
element
::
Float32
::
element_type
(),
Shape
{});
auto
shape_rt
=
Shape
{};
auto
g_rt
=
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
shape_rt
);
auto
g
=
make_shared
<
Function
>
(
make_shared
<
op
::
Reduce
>
(
g_A
,
g_B
,
f
,
AxisSet
{
0
}),
g_rt
,
op
::
Parameters
{
g_A
,
g_B
});
auto
manager
=
runtime
::
Manager
::
get
(
"NGVM"
);
auto
external
=
manager
->
compile
(
g
);
auto
backend
=
manager
->
allocate_backend
();
auto
cf
=
backend
->
make_call_frame
(
external
);
// Create some tensors for input/output
auto
a
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
shape_a
);
*
a
=
vector
<
float
>
{};
auto
b
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
Shape
{});
*
b
=
vector
<
float
>
{
88
};
auto
result
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
shape_rt
);
(
*
cf
)({
a
,
b
},
{
result
});
ASSERT_EQ
((
vector
<
float
>
{
88
}),
result
->
get_vector
());
// For some reason I'm feeling extra paranoid about making sure reduction doesn't clobber the
// input tensors, so let's do this too.
ASSERT_EQ
((
vector
<
float
>
{}),
a
->
get_vector
());
ASSERT_EQ
((
vector
<
float
>
{
88
}),
b
->
get_vector
());
}
TEST
(
execute
,
reduce_matrix_to_scalar_zero_by_zero
)
{
// First, the reduction function (f(x:float32[],y:float32[]) = x+y).
auto
f_A
=
make_shared
<
op
::
Parameter
>
(
element
::
Float32
::
element_type
(),
Shape
{});
auto
f_B
=
make_shared
<
op
::
Parameter
>
(
element
::
Float32
::
element_type
(),
Shape
{});
auto
f_rt
=
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
Shape
{});
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
Add
>
(
f_A
,
f_B
),
f_rt
,
op
::
Parameters
{
f_A
,
f_B
});
// Now the reduction (g(x:float32[2,2],y:float32[]) = reduce(x,y,f,axes={})).
auto
shape_a
=
Shape
{
0
,
0
};
auto
g_A
=
make_shared
<
op
::
Parameter
>
(
element
::
Float32
::
element_type
(),
shape_a
);
auto
g_B
=
make_shared
<
op
::
Parameter
>
(
element
::
Float32
::
element_type
(),
Shape
{});
auto
shape_rt
=
Shape
{};
auto
g_rt
=
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
shape_rt
);
auto
g
=
make_shared
<
Function
>
(
make_shared
<
op
::
Reduce
>
(
g_A
,
g_B
,
f
,
AxisSet
{
0
,
1
}),
g_rt
,
op
::
Parameters
{
g_A
,
g_B
});
auto
manager
=
runtime
::
Manager
::
get
(
"NGVM"
);
auto
external
=
manager
->
compile
(
g
);
auto
backend
=
manager
->
allocate_backend
();
auto
cf
=
backend
->
make_call_frame
(
external
);
// Create some tensors for input/output
auto
a
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
shape_a
);
*
a
=
vector
<
float
>
{};
auto
b
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
Shape
{});
*
b
=
vector
<
float
>
{
99
};
auto
result
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
shape_rt
);
(
*
cf
)({
a
,
b
},
{
result
});
ASSERT_EQ
((
vector
<
float
>
{
99
}),
result
->
get_vector
());
// For some reason I'm feeling extra paranoid about making sure reduction doesn't clobber the
// input tensors, so let's do this too.
ASSERT_EQ
((
vector
<
float
>
{}),
a
->
get_vector
());
ASSERT_EQ
((
vector
<
float
>
{
99
}),
b
->
get_vector
());
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment