Commit e6276804 authored by Jayaram Bobba's avatar Jayaram Bobba Committed by Scott Cyphers

Adding DetectionOutput and Interpolate layers (#2849)

* - Adding DetectionOutput and Interpolate layers

* Adding Unit tests

* Name fix
parent e238d5f9
...@@ -162,6 +162,10 @@ set (SRC ...@@ -162,6 +162,10 @@ set (SRC
op/experimental/quantized_dot_bias.hpp op/experimental/quantized_dot_bias.hpp
op/experimental/transpose.cpp op/experimental/transpose.cpp
op/experimental/transpose.hpp op/experimental/transpose.hpp
op/experimental/layers/detection_output.cpp
op/experimental/layers/detection_output.hpp
op/experimental/layers/interpolate.cpp
op/experimental/layers/interpolate.hpp
op/experimental/layers/prior_box.cpp op/experimental/layers/prior_box.cpp
op/experimental/layers/prior_box.hpp op/experimental/layers/prior_box.hpp
op/experimental/layers/prior_box_clustered.cpp op/experimental/layers/prior_box_clustered.cpp
......
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include "detection_output.hpp"
#include "ngraph/op/constant.hpp"
using namespace std;
using namespace ngraph;
op::DetectionOutput::DetectionOutput(const std::shared_ptr<Node>& box_logits,
const std::shared_ptr<Node>& class_preds,
const std::shared_ptr<Node>& proposals,
const std::shared_ptr<Node>& aux_class_preds,
const std::shared_ptr<Node>& aux_box_preds,
const DetectionOutputAttrs& attrs)
: Op("DetectionOutput",
check_single_output_args(
{box_logits, class_preds, proposals, aux_class_preds, aux_box_preds}))
, m_attrs(attrs)
{
constructor_validate_and_infer_types();
}
void op::DetectionOutput::validate_and_infer_types()
{
if (get_input_partial_shape(0).is_static())
{
auto box_logits_shape = get_input_partial_shape(0).to_shape();
set_output_type(
0, element::f32, Shape{1, 1, m_attrs.boxes_top_k[0] * box_logits_shape[0], 7});
}
else
{
set_output_type(0, element::f32, PartialShape::dynamic());
}
}
shared_ptr<Node> op::DetectionOutput::copy_with_new_args(const NodeVector& new_args) const
{
check_new_args_count(this, new_args);
return make_shared<DetectionOutput>(
new_args.at(0), new_args.at(1), new_args.at(2), new_args.at(3), new_args.at(4), m_attrs);
}
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#pragma once
#include "ngraph/op/op.hpp"
namespace ngraph
{
namespace op
{
typedef struct
{
int num_classes;
int background_label_id = 0;
int results_top_k = -1;
bool add_variance = false;
std::vector<int> boxes_top_k = {1};
std::string code_type = std::string{"caffe.PriorBoxParameter.CORNER"};
bool share_location = true;
float nms_threshold;
float confidence_threshold = std::numeric_limits<float>::min();
bool clip_after_nms = false;
bool clip_before_nms = false;
bool decrease_label_id = false;
bool normalized = false;
size_t input_height = 1;
size_t input_width = 1;
float objectness_score_threshold = 0;
} DetectionOutputAttrs;
/// \brief Layer which performs non-max suppression to
/// generate detection output using location and confidence predictions
class DetectionOutput : public Op
{
public:
/// \brief Constructs a DetectionOutput operation
///
/// \param box_logits Box logits
/// \param class_preds Class predictions
/// \param proposals Proposals
/// \param aux_class_preds Auxilary class predictions
/// \param aux_box_preds Auxilary box predictions
/// \param attrs Detection Output attributes
DetectionOutput(const std::shared_ptr<Node>& box_logits,
const std::shared_ptr<Node>& class_preds,
const std::shared_ptr<Node>& proposals,
const std::shared_ptr<Node>& aux_class_preds,
const std::shared_ptr<Node>& aux_box_preds,
const DetectionOutputAttrs& attrs);
void validate_and_infer_types() override;
virtual std::shared_ptr<Node>
copy_with_new_args(const NodeVector& new_args) const override;
private:
DetectionOutputAttrs m_attrs;
};
}
}
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include "interpolate.hpp"
#include "ngraph/op/constant.hpp"
using namespace std;
using namespace ngraph;
op::Interpolate::Interpolate(const std::shared_ptr<Node>& image, const InterpolateAttrs& attrs)
: Op("Interpolate", check_single_output_args({image}))
, m_attrs(attrs)
{
constructor_validate_and_infer_types();
}
void op::Interpolate::validate_and_infer_types()
{
if (get_input_partial_shape(0).is_static())
{
Shape input_shape = get_input_partial_shape(0).to_shape();
Shape output_shape(4);
// Assumes {N, C, H, W}
output_shape[0] = input_shape[0];
output_shape[1] = input_shape[1];
auto is_zero = [](float value) {
return std::fabs(value) < std::numeric_limits<float>::epsilon();
};
bool should_scale = !(is_zero(m_attrs.zoom_factor) && is_zero(m_attrs.shrink_factor) &&
is_zero(m_attrs.scale_factor));
if (should_scale)
{
float scale = m_attrs.scale_factor;
if (!is_zero(m_attrs.shrink_factor) || !is_zero(m_attrs.zoom_factor))
{
if (!is_zero(m_attrs.zoom_factor))
{
scale = m_attrs.zoom_factor;
}
if (!is_zero(m_attrs.shrink_factor))
{
scale /= m_attrs.shrink_factor;
}
}
output_shape[2] = input_shape[2] * scale;
output_shape[3] = input_shape[3] * scale;
}
// Override
if (m_attrs.height > 0)
{
output_shape[2] = m_attrs.height;
}
if (m_attrs.width > 0)
{
output_shape[3] = m_attrs.width;
}
set_output_type(0, get_input_element_type(0), output_shape);
}
else
{
set_output_type(0, get_input_element_type(0), PartialShape::dynamic());
}
}
shared_ptr<Node> op::Interpolate::copy_with_new_args(const NodeVector& new_args) const
{
check_new_args_count(this, new_args);
return make_shared<Interpolate>(new_args.at(0), m_attrs);
}
op::DynInterpolate::DynInterpolate(const std::shared_ptr<Node>& image,
const std::shared_ptr<Node>& output_shape,
const InterpolateAttrs& attrs)
: Op("DynInterpolate", check_single_output_args({image, output_shape}))
, m_attrs(attrs)
{
constructor_validate_and_infer_types();
}
void op::DynInterpolate::validate_and_infer_types()
{
set_input_is_relevant_to_shape(1);
if (auto const_shape = dynamic_pointer_cast<op::Constant>(get_argument(1)))
{
NODE_VALIDATION_CHECK(this,
shape_size(const_shape->get_shape()) == 4,
"Layer shape must have rank 4",
const_shape->get_shape());
auto out_shape = static_cast<const int64_t*>(const_shape->get_data_ptr());
Shape output_shape;
for (size_t i = 0; i < 4; i++)
{
output_shape.push_back((out_shape[i] > 0) ? out_shape[i] : 0);
}
set_output_type(0, get_input_element_type(0), output_shape);
}
else
{
set_output_type(0, get_input_element_type(0), PartialShape::dynamic());
}
}
shared_ptr<Node> op::DynInterpolate::copy_with_new_args(const NodeVector& new_args) const
{
check_new_args_count(this, new_args);
return make_shared<DynInterpolate>(new_args.at(0), new_args.at(1), m_attrs);
}
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#pragma once
#include "ngraph/op/op.hpp"
namespace ngraph
{
namespace op
{
typedef struct
{
int height = -1;
int width = -1;
float zoom_factor = 0;
float shrink_factor = 0;
float scale_factor = 1.0;
bool align_coreners = true;
int pad_beg = 0;
int pad_end = 0;
} InterpolateAttrs;
/// \brief Layer which performs bilinear interpolation
class Interpolate : public Op
{
public:
/// \brief Constructs a Interpolate operation
///
/// \param image Input image
/// \param attrs Interpolation attributes
Interpolate(const std::shared_ptr<Node>& image, const InterpolateAttrs& attrs);
void validate_and_infer_types() override;
virtual std::shared_ptr<Node>
copy_with_new_args(const NodeVector& new_args) const override;
private:
InterpolateAttrs m_attrs;
};
/// \brief Layer which performs bilinear interpolation
class DynInterpolate : public Op
{
public:
/// \brief Constructs a DynInterpolate operation
///
/// \param image Input image
/// \param output_shape Output shape
/// \param attrs Interpolation attributes
DynInterpolate(const std::shared_ptr<Node>& image,
const std::shared_ptr<Node>& output_shape,
const InterpolateAttrs& attrs);
void validate_and_infer_types() override;
virtual std::shared_ptr<Node>
copy_with_new_args(const NodeVector& new_args) const override;
private:
InterpolateAttrs m_attrs;
};
}
}
...@@ -17,6 +17,8 @@ ...@@ -17,6 +17,8 @@
#include "gtest/gtest.h" #include "gtest/gtest.h"
#include "ngraph/ngraph.hpp" #include "ngraph/ngraph.hpp"
#include "ngraph/op/experimental/layers/detection_output.hpp"
#include "ngraph/op/experimental/layers/interpolate.hpp"
#include "ngraph/op/experimental/layers/prior_box.hpp" #include "ngraph/op/experimental/layers/prior_box.hpp"
#include "ngraph/op/experimental/layers/prior_box_clustered.hpp" #include "ngraph/op/experimental/layers/prior_box_clustered.hpp"
#include "ngraph/op/experimental/layers/proposal.hpp" #include "ngraph/op/experimental/layers/proposal.hpp"
...@@ -27,6 +29,55 @@ ...@@ -27,6 +29,55 @@
using namespace std; using namespace std;
using namespace ngraph; using namespace ngraph;
TEST(type_prop_layers, detection_output)
{
auto box_logits = make_shared<op::Parameter>(element::f32, Shape{4, 1, 5, 5});
auto class_preds = make_shared<op::Parameter>(element::f32, Shape{2, 1, 4, 5});
auto proposals = make_shared<op::Parameter>(element::f32, Shape{2, 1, 4, 5});
auto aux_class_preds = make_shared<op::Parameter>(element::f32, Shape{2, 1, 4, 5});
auto aux_box_preds = make_shared<op::Parameter>(element::f32, Shape{2, 1, 4, 5});
op::DetectionOutputAttrs attrs;
attrs.boxes_top_k = {200};
auto op = make_shared<op::DetectionOutput>(
box_logits, class_preds, proposals, aux_class_preds, aux_box_preds, attrs);
ASSERT_EQ(op->get_shape(), (Shape{1, 1, 800, 7}));
}
TEST(type_prop_layers, interpolate)
{
auto image = make_shared<op::Parameter>(element::f32, Shape{2, 2, 33, 65});
op::InterpolateAttrs attrs1;
attrs1.height = 257;
attrs1.width = 513;
auto op1 = make_shared<op::Interpolate>(image, attrs1);
ASSERT_EQ(op1->get_shape(), (Shape{2, 2, 257, 513}));
op::InterpolateAttrs attrs2;
attrs2.scale_factor = 2;
attrs2.width = 513;
auto op2 = make_shared<op::Interpolate>(image, attrs2);
ASSERT_EQ(op2->get_shape(), (Shape{2, 2, 66, 513}));
op::InterpolateAttrs attrs3;
attrs3.scale_factor = 2;
attrs3.height = 257;
auto op3 = make_shared<op::Interpolate>(image, attrs3);
ASSERT_EQ(op3->get_shape(), (Shape{2, 2, 257, 130}));
}
TEST(type_prop_layers, dyn_interpolate)
{
auto image = make_shared<op::Parameter>(element::f32, Shape{2, 2, 33, 65});
auto output_shape = op::Constant::create<int64_t>(element::i64, Shape{4}, {4, 2, 15, 30});
op::InterpolateAttrs attrs;
attrs.height = 257;
attrs.width = 513;
auto op = make_shared<op::DynInterpolate>(image, output_shape, attrs);
ASSERT_EQ(op->get_shape(), (Shape{4, 2, 15, 30}));
}
TEST(type_prop_layers, prior_box1) TEST(type_prop_layers, prior_box1)
{ {
auto layer_shape = op::Constant::create<int64_t>(element::i64, Shape{2}, {32, 32}); auto layer_shape = op::Constant::create<int64_t>(element::i64, Shape{2}, {32, 32});
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment