Commit e568de2e authored by nishant.b.patel's avatar nishant.b.patel

Change the API to take input_axes. filter_axes & output_axes

parent c75f7db3
......@@ -36,52 +36,6 @@ namespace ngraph
{
namespace quantization
{
// TODO: this codes is falling back to fp32 convolution
// need to make this the primary builder which means
// 1) add support for zero point in QuantizeConvolution op API
// 2) add QuantizedConvolution reference kernel, including zero point
shared_ptr<Node> QuantizedLinearConvolution(const shared_ptr<Node>& input,
const shared_ptr<Node>& filter,
const Strides& window_movement_strides,
const Strides& window_dilation_strides,
const CoordinateDiff& padding_below,
const CoordinateDiff& padding_above,
const Strides& data_dilation_strides,
const shared_ptr<Node>& input_scale,
const shared_ptr<Node>& input_zero_point,
const shared_ptr<Node>& filter_scale,
const shared_ptr<Node>& filter_zero_point,
const shared_ptr<Node>& output_scale,
const shared_ptr<Node>& output_zero_point)
{
AxisSet axes;
auto dq_input = make_shared<op::Dequantize>(
input, input_scale, input_zero_point, input_scale->get_element_type(), axes);
auto dq_filter = make_shared<op::Dequantize>(filter,
filter_scale,
filter_zero_point,
filter_scale->get_element_type(),
axes);
auto convolution = make_shared<op::Convolution>(dq_input,
dq_filter,
window_movement_strides,
window_dilation_strides,
padding_below,
padding_above,
data_dilation_strides);
auto q_convolution =
make_shared<op::Quantize>(convolution,
output_scale,
output_zero_point,
output_zero_point->get_element_type(),
axes,
op::Quantize::RoundMode::ROUND_NEAREST_TOWARD_EVEN);
return move(q_convolution);
}
shared_ptr<Node> QuantizedLinearConvolutionBias(const shared_ptr<Node>& input,
const shared_ptr<Node>& filter,
const shared_ptr<Node>& bias,
......
......@@ -25,21 +25,6 @@ namespace ngraph
{
namespace quantization
{
std::shared_ptr<Node>
QuantizedLinearConvolution(const std::shared_ptr<Node>& input,
const std::shared_ptr<Node>& filter,
const Strides& window_movement_strides,
const Strides& window_dilation_strides,
const CoordinateDiff& padding_below,
const CoordinateDiff& padding_above,
const Strides& data_dilation_strides,
const std::shared_ptr<Node>& input_scale,
const std::shared_ptr<Node>& input_zero_point,
const std::shared_ptr<Node>& filter_scale,
const std::shared_ptr<Node>& filter_zero_point,
const std::shared_ptr<Node>& output_scale,
const std::shared_ptr<Node>& output_zero_point);
std::shared_ptr<Node>
QuantizedLinearConvolutionBias(const std::shared_ptr<Node>& input,
const std::shared_ptr<Node>& filter,
......
......@@ -40,7 +40,9 @@ namespace ngraph
const shared_ptr<Node>& min_output,
const shared_ptr<Node>& max_output,
const ngraph::element::Type& output_type,
const ngraph::AxisSet& axes)
const ngraph::AxisSet& input_axes,
const ngraph::AxisSet& filter_axes,
const ngraph::AxisSet& output_axes)
{
auto input_scale =
quantization_scale::get_scale(min_input, max_input, input->get_element_type());
......@@ -69,7 +71,9 @@ namespace ngraph
output_scale,
filter_zero_point, // output type will be same as filter
output_type,
axes);
input_axes,
filter_axes,
output_axes);
}
}
}
......@@ -39,6 +39,8 @@ namespace ngraph
const std::shared_ptr<Node>& min_output,
const std::shared_ptr<Node>& max_output,
const ngraph::element::Type& output_type,
const ngraph::AxisSet& axes);
const ngraph::AxisSet& input_axes,
const ngraph::AxisSet& filter_axes,
const ngraph::AxisSet& output_axes);
}
}
......@@ -38,7 +38,9 @@ op::QuantizedConvolution::QuantizedConvolution(const shared_ptr<Node>& input,
const std::shared_ptr<Node>& output_scale,
const std::shared_ptr<Node>& output_zero_point,
const ngraph::element::Type& output_type,
const ngraph::AxisSet& axes)
const ngraph::AxisSet& input_axes,
const ngraph::AxisSet& filter_axes,
const ngraph::AxisSet& output_axes)
: Op("QuantizedConvolution",
check_single_output_args({input,
filters,
......@@ -54,7 +56,9 @@ op::QuantizedConvolution::QuantizedConvolution(const shared_ptr<Node>& input,
, m_padding_above(padding_above)
, m_data_dilation_strides(data_dilation_strides)
, m_output_type(output_type)
, m_axes(axes)
, m_input_axes(input_axes)
, m_filter_axes(filter_axes)
, m_output_axes(output_axes)
{
constructor_validate_and_infer_types();
}
......@@ -165,5 +169,7 @@ shared_ptr<Node> op::QuantizedConvolution::copy_with_new_args(const NodeVector&
new_args.at(6),
new_args.at(7),
m_output_type,
m_axes));
m_input_axes,
m_filter_axes,
m_output_axes));
}
......@@ -57,7 +57,9 @@ namespace ngraph
const std::shared_ptr<Node>& output_scale,
const std::shared_ptr<Node>& output_zero_point,
const ngraph::element::Type& output_type,
const ngraph::AxisSet& axes);
const ngraph::AxisSet& input_axes,
const ngraph::AxisSet& filter_axes,
const ngraph::AxisSet& output_axes);
const Strides& get_window_movement_strides() const { return m_window_movement_strides; }
const Strides& get_window_dilation_strides() const { return m_window_dilation_strides; }
const CoordinateDiff& get_padding_below() const { return m_padding_below; }
......@@ -66,7 +68,9 @@ namespace ngraph
std::shared_ptr<Node> get_filters() { return get_argument(1); }
std::shared_ptr<Node> get_data_batch() { return get_argument(0); }
const ngraph::element::Type& get_output_type() const { return m_output_type; }
const ngraph::AxisSet& get_axes() const { return m_axes; }
const ngraph::AxisSet& get_input_axes() const { return m_input_axes; }
const ngraph::AxisSet& get_filter_axes() const { return m_filter_axes; }
const ngraph::AxisSet& get_output_axes() const { return m_output_axes; }
void validate_and_infer_types() override;
virtual std::shared_ptr<Node>
copy_with_new_args(const NodeVector& new_args) const override;
......@@ -78,7 +82,9 @@ namespace ngraph
CoordinateDiff m_padding_above;
Strides m_data_dilation_strides;
ngraph::element::Type m_output_type;
ngraph::AxisSet m_axes;
ngraph::AxisSet m_input_axes;
ngraph::AxisSet m_filter_axes;
ngraph::AxisSet m_output_axes;
};
}
}
......@@ -1823,6 +1823,8 @@ void ngraph::runtime::cpu::pass::CPUQuantFusion::construct_qconv_relu(bool with_
output_scale,
int8_zero,
element::i8,
AxisSet{},
AxisSet{},
AxisSet{});
}
auto dq =
......
......@@ -1350,7 +1350,9 @@ static shared_ptr<ngraph::Function>
auto padding_above = node_js.at("padding_above").get<vector<std::ptrdiff_t>>();
auto data_dilation_strides = node_js["data_dilation_strides"];
auto output_type = read_element_type(node_js.at("output_type"));
auto axes = node_js.at("axes").get<set<size_t>>();
auto input_axes = node_js.at("input_axes").get<set<size_t>>();
auto filter_axes = node_js.at("filter_axes").get<set<size_t>>();
auto output_axes = node_js.at("output_axes").get<set<size_t>>();
node = make_shared<op::QuantizedConvolution>(
args[0],
args[1],
......@@ -1366,7 +1368,9 @@ static shared_ptr<ngraph::Function>
args[6],
args[7],
output_type,
axes);
input_axes,
filter_axes,
output_axes);
break;
}
case OP_TYPEID::QuantizedDotBias: { break;
......@@ -2298,7 +2302,9 @@ static json write(const Node& n, bool binary_constant_data)
node["padding_above"] = tmp->get_padding_above();
node["data_dilation_strides"] = tmp->get_data_dilation_strides();
node["output_type"] = write_element_type(tmp->get_element_type());
node["axes"] = tmp->get_axes();
node["input_axes"] = tmp->get_input_axes();
node["filter_axes"] = tmp->get_filter_axes();
node["output_axes"] = tmp->get_output_axes();
break;
}
case OP_TYPEID::QuantizedDotBias: { break;
......
......@@ -7520,6 +7520,8 @@ NGRAPH_TEST(${BACKEND_NAME}, quantized_convolution)
G,
H,
element::i8,
AxisSet{},
AxisSet{},
AxisSet{});
auto f = make_shared<Function>(NodeVector{CV}, ParameterVector{A, B, C, D, E, F, G, H});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
......@@ -7653,6 +7655,8 @@ NGRAPH_TEST(${BACKEND_NAME}, quantized_conv_non_zero_zero_point)
result_scale,
result_zero_point,
element::u8,
AxisSet{},
AxisSet{},
AxisSet{});
auto f = make_shared<Function>(NodeVector{CV}, ParameterVector{A, B});
// Create some tensors for input/output
......
......@@ -1294,61 +1294,6 @@ TEST(builder, dynamic_scaled_QD_with_bias)
read_vector<uint8_t>(f_requantize_relu_r));
}
TEST(builder, scaled_QC_u8u8)
{
Shape shape_a{1, 1, 3, 4}; // input shape
Shape shape_b{1, 1, 3, 3}; // filter shape
Shape shape_r{1, 1, 3, 4}; // output shape
vector<uint8_t> a_data = {1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4}; //{-1, -2, 3, 2, 4, 1, 0, 1, 0};
vector<uint8_t> b_data = {1, 2, 3, 4, 5, 0, 0, 1, 2}; //{0, -1, 0, -2, -3, 5, 0, 2, 1};
auto A = make_shared<op::Parameter>(element::u8, shape_a);
auto B = make_shared<op::Parameter>(element::u8, shape_b);
auto input_scale = op::Constant::create(element::f32, Shape{}, {2});
auto filter_scale = op::Constant::create(element::f32, Shape{}, {2});
auto output_scale = op::Constant::create(element::f32, Shape{}, {2});
auto u8_zero = op::Constant::create(element::u8, Shape{}, {0});
auto CV = make_shared<ngraph::op::QuantizedConvolution>(A,
B,
Strides{1, 1}, // move_strides
Strides{1, 1}, // filter_dilation
CoordinateDiff{1, 1}, // below_pads
CoordinateDiff{1, 1}, // above_pads
Strides{1, 1}, // data_dilation
input_scale,
u8_zero,
filter_scale,
u8_zero,
output_scale,
u8_zero,
element::u8,
AxisSet{});
auto f = make_shared<Function>(NodeVector{CV}, ParameterVector{A, B});
constant_fold(f);
auto backend = runtime::Backend::create("CPU");
// Create some tensors for input/output
auto a = backend->create_tensor(element::u8, shape_a);
copy_data(a, a_data);
auto b = backend->create_tensor(element::u8, shape_b);
copy_data(b, b_data);
auto result = backend->create_tensor(element::u8, shape_r);
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a, b});
EXPECT_EQ((vector<uint8_t>{22 * 2,
34 * 2,
30 * 2,
32 * 2,
38 * 2,
72 * 2,
90 * 2,
43 * 2,
33 * 2,
52 * 2,
43 * 2,
39 * 2} /*{1, 28, -3, 16, -7, -14, 3, -7, -3}*/),
read_vector<uint8_t>(result));
}
TEST(builder, scaled_QDot_u8u8)
{
Shape shape_a{1, 2}; // input shape
......@@ -1386,129 +1331,3 @@ TEST(builder, scaled_QDot_u8u8)
handle->call_with_validate({result}, {a, b});
EXPECT_EQ((vector<uint8_t>{3, 13, 23}), read_vector<uint8_t>(result));
}
TEST(builder, scaled_QC_non_zero_zero_point)
{
Shape shape_a{1, 1, 7, 7}; // input shape
Shape shape_b{1, 1, 1, 1}; // filter shape
Shape shape_r{1, 1, 7, 7};
vector<float> X = {0.45246148109436035f, 0.15498268604278564f, 0.11199361085891724f,
-0.39421093463897705f, 0.2626858949661255f, 0.13414543867111206f,
-0.27184486389160156f, -0.43028733134269714f, -0.26825493574142456f,
0.3893144130706787f, -0.13631996512413025f, -0.009590476751327515f,
-0.48771554231643677f, -0.25256502628326416f, -0.2812897562980652f,
0.4043201804161072f, 0.07795023918151855f, 0.326981782913208f,
0.13114392757415771f, -0.4416425824165344f, 0.12446999549865723f,
0.36739975214004517f, 0.1698915958404541f, 0.2008744478225708f,
0.23339951038360596f, 0.38613730669021606f, 0.11117297410964966f,
0.3877097964286804f, 0.20812749862670898f, -0.34297940135002136f,
-0.029246658086776733f, -0.20483523607254028f, -0.19244328141212463f,
-0.11104947328567505f, -0.32830488681793213f, -0.01800677180290222f,
0.3618946671485901f, -0.40949052572250366f, -0.18248388171195984f,
-0.3349453806877136f, -0.34091079235076904f, 0.006497859954833984f,
0.4537564516067505f, 0.08006560802459717f, -0.14788749814033508f,
0.034442365169525146f, -0.33322954177856445f, 0.06049239635467529f,
0.42619407176971436f};
vector<float> W = {-0.4406261742115021f};
vector<float> expected_vals = {
-0.19936637580394745f, -0.06828942894935608f, -0.04934731498360634f,
0.17369966208934784f, -0.11574628204107285f, -0.05910799279808998f,
0.1197819635272026f, 0.18959586322307587f, 0.1182001456618309f,
-0.17154212296009064f, 0.06006614491343498f, 0.0042258151806890965f,
0.21490024030208588f, 0.11128675937652588f, 0.12394362688064575f,
-0.17815405130386353f, -0.034346915781497955f, -0.14407673478126526f,
-0.05778544768691063f, 0.19459928572177887f, -0.05484473705291748f,
-0.16188594698905945f, -0.07485868036746979f, -0.08851054310798645f,
-0.10284193605184555f, -0.17014220356941223f, -0.04898572340607643f,
-0.17083507776260376f, -0.09170642495155334f, 0.1511256992816925f,
0.012886842712759972f, 0.09025576710700989f, 0.08479554951190948f,
0.0489313043653965f, 0.14465972781181335f, 0.007934254594147205f,
-0.15946026146411896f, 0.1804322451353073f, 0.08040717244148254f,
0.1475857049226761f, 0.15021422505378723f, -0.0028631272725760937f,
-0.19993697106838226f, -0.03527900204062462f, 0.06516310572624207f,
-0.015176207758486271f, 0.14682966470718384f, -0.02665453404188156f,
-0.18779225647449493f};
auto lhs = make_shared<op::Parameter>(element::f32, shape_a);
auto rhs = make_shared<op::Parameter>(element::f32, shape_b);
auto result = make_shared<op::Parameter>(element::f32, shape_r);
AxisSet quantization_axes;
op::Quantize::RoundMode round_mode = op::Quantize::RoundMode::ROUND_NEAREST_TOWARD_EVEN;
auto lhs_scale = op::Constant::create(element::f32, Shape{}, {0.00369205});
auto lhs_zero_point = op::Constant::create(element::u8, Shape{}, {132});
auto rhs_scale = op::Constant::create(element::f32, Shape{}, {0.00172795});
auto rhs_zero_point = op::Constant::create(element::u8, Shape{}, {255});
auto result_scale = op::Constant::create(element::f32, Shape{}, {0.00162681});
auto result_zero_point = op::Constant::create(element::u8, Shape{}, {123});
auto quantize_lhs = make_shared<op::Quantize>(
lhs, lhs_scale, lhs_zero_point, element::u8, quantization_axes, round_mode);
auto quantize_rhs = make_shared<op::Quantize>(
rhs, rhs_scale, rhs_zero_point, element::u8, quantization_axes, round_mode);
auto quantize_result = make_shared<op::Quantize>(
result, result_scale, result_zero_point, element::u8, quantization_axes, round_mode);
auto lhs_f = make_shared<Function>(quantize_lhs, ParameterVector{lhs});
auto rhs_f = make_shared<Function>(quantize_rhs, ParameterVector{rhs});
auto result_f = make_shared<Function>(quantize_result, ParameterVector{result});
auto backend = runtime::Backend::create("CPU");
auto lhs_data = backend->create_tensor(element::f32, shape_a);
auto rhs_data = backend->create_tensor(element::f32, shape_b);
auto result_data = backend->create_tensor(element::f32, shape_r);
auto lhs_output = backend->create_tensor(element::u8, shape_a);
auto rhs_output = backend->create_tensor(element::u8, shape_b);
auto result_output = backend->create_tensor(element::u8, shape_r);
copy_data(lhs_data, X);
copy_data(rhs_data, W);
copy_data(result_data, expected_vals);
auto lhs_handle = backend->compile(lhs_f);
auto rhs_handle = backend->compile(rhs_f);
auto result_handle = backend->compile(result_f);
lhs_handle->call_with_validate({lhs_output}, {lhs_data});
rhs_handle->call_with_validate({rhs_output}, {rhs_data});
result_handle->call_with_validate({result_output}, {result_data});
auto A = make_shared<op::Parameter>(element::u8, shape_a);
auto B = make_shared<op::Parameter>(element::u8, shape_b);
auto CV = make_shared<ngraph::op::QuantizedConvolution>(A,
B,
Strides{1, 1}, // move_strides
Strides{1, 1}, // filter_dilation
CoordinateDiff{0, 0}, // below_pads
CoordinateDiff{0, 0}, // above_pads
Strides{1, 1}, // data_dilation
lhs_scale,
lhs_zero_point,
rhs_scale,
rhs_zero_point,
result_scale,
result_zero_point,
element::u8,
AxisSet{});
auto f = make_shared<Function>(NodeVector{CV}, ParameterVector{A, B});
constant_fold(f);
// Create some tensors for input/output
auto a = backend->create_tensor(element::u8, shape_a);
copy_data(a, read_vector<uint8_t>(lhs_output));
auto b = backend->create_tensor(element::u8, shape_b);
copy_data(b, read_vector<uint8_t>(rhs_output));
auto final_result = backend->create_tensor(element::u8, shape_r);
auto handle = backend->compile(f);
handle->call_with_validate({final_result}, {a, b});
for (int i = 0; i < 49; ++i)
{
EXPECT_EQ((read_vector<uint8_t>(result_output))[i], (read_vector<uint8_t>(final_result))[i])
<< "Vectors x and y differ at index " << i;
}
}
......@@ -3183,6 +3183,8 @@ TEST(cpu_quant_fusion, qconv_relu)
output_scale,
int8_zero,
element::i8,
AxisSet{},
AxisSet{},
AxisSet{});
auto dq = std::make_shared<op::Dequantize>(
conv, output_scale, int8_zero, element::f32, AxisSet{});
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment