Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
N
ngraph
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
ngraph
Commits
e07147f8
Unverified
Commit
e07147f8
authored
Oct 22, 2018
by
Robert Kimball
Committed by
GitHub
Oct 22, 2018
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
move unit tests out of backend_test.in.cpp (#1880)
parent
8ea33de1
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
1253 additions
and
1216 deletions
+1253
-1216
CMakeLists.txt
test/CMakeLists.txt
+1
-0
backend_pool.in.cpp
test/backend_pool.in.cpp
+1252
-0
backend_test.in.cpp
test/backend_test.in.cpp
+0
-1216
No files found.
test/CMakeLists.txt
View file @
e07147f8
...
...
@@ -100,6 +100,7 @@ set(MULTI_TEST_SRC
backend_comparison.in.cpp
backend_dot.in.cpp
backend_one_hot.in.cpp
backend_pool.in.cpp
backend_reduce.in.cpp
backend_reshape.in.cpp
backend_sum.in.cpp
...
...
test/backend_pool.in.cpp
0 → 100644
View file @
e07147f8
//*****************************************************************************
// Copyright 2017-2018 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include <algorithm>
#include <cinttypes>
#include <cmath>
#include <cstdlib>
#include <random>
#include <string>
#include "gtest/gtest.h"
#include "ngraph/ngraph.hpp"
#include "util/all_close.hpp"
#include "util/all_close_f.hpp"
#include "util/ndarray.hpp"
#include "util/random.hpp"
#include "util/test_control.hpp"
#include "util/test_tools.hpp"
using
namespace
std
;
using
namespace
ngraph
;
static
string
s_manifest
=
"${MANIFEST}"
;
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
max_pool_1d_1channel_1image
)
{
Shape
shape_a
{
1
,
1
,
14
};
Shape
window_shape
{
3
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
Shape
shape_r
{
1
,
1
,
12
};
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
MaxPool
>
(
A
,
window_shape
),
op
::
ParameterVector
{
A
});
auto
backend
=
runtime
::
Backend
::
create
(
"${BACKEND_NAME}"
);
// Create some tensors for input/output
auto
a
=
backend
->
create_tensor
(
element
::
f32
,
shape_a
);
copy_data
(
a
,
test
::
NDArray
<
float
,
3
>
{{{
0
,
1
,
0
,
2
,
1
,
0
,
3
,
2
,
0
,
0
,
2
,
0
,
0
,
0
}}}.
get_vector
());
auto
result
=
backend
->
create_tensor
(
element
::
f32
,
shape_r
);
backend
->
call_with_validate
(
f
,
{
result
},
{
a
});
EXPECT_EQ
((
test
::
NDArray
<
float
,
3
>
({{{
1
,
2
,
2
,
2
,
3
,
3
,
3
,
2
,
2
,
2
,
2
,
0
}}}).
get_vector
()),
read_vector
<
float
>
(
result
));
}
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
max_pool_1d_1channel_2image
)
{
Shape
shape_a
{
2
,
1
,
14
};
Shape
window_shape
{
3
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
Shape
shape_r
{
2
,
1
,
12
};
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
MaxPool
>
(
A
,
window_shape
),
op
::
ParameterVector
{
A
});
auto
backend
=
runtime
::
Backend
::
create
(
"${BACKEND_NAME}"
);
// Create some tensors for input/output
auto
a
=
backend
->
create_tensor
(
element
::
f32
,
shape_a
);
copy_data
(
a
,
test
::
NDArray
<
float
,
3
>
({{{
0
,
1
,
0
,
2
,
1
,
0
,
3
,
2
,
0
,
0
,
2
,
0
,
0
,
0
}},
{{
0
,
2
,
1
,
1
,
0
,
0
,
0
,
2
,
0
,
1
,
0
,
0
,
1
,
2
}}})
.
get_vector
());
auto
result
=
backend
->
create_tensor
(
element
::
f32
,
shape_r
);
backend
->
call_with_validate
(
f
,
{
result
},
{
a
});
EXPECT_EQ
((
test
::
NDArray
<
float
,
3
>
(
{{{
1
,
2
,
2
,
2
,
3
,
3
,
3
,
2
,
2
,
2
,
2
,
0
}},
{{
2
,
2
,
1
,
1
,
0
,
2
,
2
,
2
,
1
,
1
,
1
,
2
}}})
.
get_vector
()),
read_vector
<
float
>
(
result
));
}
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
max_pool_1d_2channel_2image
)
{
Shape
shape_a
{
2
,
2
,
14
};
Shape
window_shape
{
3
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
Shape
shape_r
{
2
,
2
,
12
};
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
MaxPool
>
(
A
,
window_shape
),
op
::
ParameterVector
{
A
});
auto
backend
=
runtime
::
Backend
::
create
(
"${BACKEND_NAME}"
);
// Create some tensors for input/output
auto
a
=
backend
->
create_tensor
(
element
::
f32
,
shape_a
);
copy_data
(
a
,
test
::
NDArray
<
float
,
3
>
({{{
0
,
1
,
0
,
2
,
1
,
0
,
3
,
2
,
0
,
0
,
2
,
0
,
0
,
0
},
{
0
,
0
,
0
,
2
,
0
,
0
,
2
,
3
,
0
,
1
,
2
,
0
,
1
,
0
}},
{{
0
,
2
,
1
,
1
,
0
,
0
,
0
,
2
,
0
,
1
,
0
,
0
,
1
,
2
},
{
2
,
1
,
0
,
0
,
1
,
0
,
2
,
0
,
0
,
0
,
1
,
1
,
2
,
0
}}})
.
get_vector
());
auto
result
=
backend
->
create_tensor
(
element
::
f32
,
shape_r
);
backend
->
call_with_validate
(
f
,
{
result
},
{
a
});
EXPECT_EQ
((
test
::
NDArray
<
float
,
3
>
(
{{{
1
,
2
,
2
,
2
,
3
,
3
,
3
,
2
,
2
,
2
,
2
,
0
},
{
0
,
2
,
2
,
2
,
2
,
3
,
3
,
3
,
2
,
2
,
2
,
1
}},
{{
2
,
2
,
1
,
1
,
0
,
2
,
2
,
2
,
1
,
1
,
1
,
2
},
{
2
,
1
,
1
,
1
,
2
,
2
,
2
,
0
,
1
,
1
,
2
,
2
}}})
.
get_vector
()),
read_vector
<
float
>
(
result
));
}
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
max_pool_2d_2channel_2image
)
{
Shape
shape_a
{
2
,
2
,
5
,
5
};
Shape
window_shape
{
2
,
3
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
Shape
shape_r
{
2
,
2
,
4
,
3
};
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
MaxPool
>
(
A
,
window_shape
),
op
::
ParameterVector
{
A
});
auto
backend
=
runtime
::
Backend
::
create
(
"${BACKEND_NAME}"
);
// Create some tensors for input/output
auto
a
=
backend
->
create_tensor
(
element
::
f32
,
shape_a
);
copy_data
(
a
,
test
::
NDArray
<
float
,
4
>
({{{{
0
,
1
,
0
,
2
,
1
},
// img 0 chan 0
{
0
,
3
,
2
,
0
,
0
},
{
2
,
0
,
0
,
0
,
1
},
{
2
,
0
,
1
,
1
,
2
},
{
0
,
2
,
1
,
0
,
0
}},
{{
0
,
0
,
0
,
2
,
0
},
// img 0 chan 1
{
0
,
2
,
3
,
0
,
1
},
{
2
,
0
,
1
,
0
,
2
},
{
3
,
1
,
0
,
0
,
0
},
{
2
,
0
,
0
,
0
,
0
}}},
{{{
0
,
2
,
1
,
1
,
0
},
// img 1 chan 0
{
0
,
0
,
2
,
0
,
1
},
{
0
,
0
,
1
,
2
,
3
},
{
2
,
0
,
0
,
3
,
0
},
{
0
,
0
,
0
,
0
,
0
}},
{{
2
,
1
,
0
,
0
,
1
},
// img 1 chan 1
{
0
,
2
,
0
,
0
,
0
},
{
1
,
1
,
2
,
0
,
2
},
{
1
,
1
,
1
,
0
,
1
},
{
1
,
0
,
0
,
0
,
2
}}}})
.
get_vector
());
auto
result
=
backend
->
create_tensor
(
element
::
f32
,
shape_r
);
backend
->
call_with_validate
(
f
,
{
result
},
{
a
});
EXPECT_EQ
((
test
::
NDArray
<
float
,
4
>
({{{{
3
,
3
,
2
},
// img 0 chan 0
{
3
,
3
,
2
},
{
2
,
1
,
2
},
{
2
,
2
,
2
}},
{{
3
,
3
,
3
},
// img 0 chan 1
{
3
,
3
,
3
},
{
3
,
1
,
2
},
{
3
,
1
,
0
}}},
{{{
2
,
2
,
2
},
// img 1 chan 0
{
2
,
2
,
3
},
{
2
,
3
,
3
},
{
2
,
3
,
3
}},
{{
2
,
2
,
1
},
// img 1 chan 1
{
2
,
2
,
2
},
{
2
,
2
,
2
},
{
1
,
1
,
2
}}}})
.
get_vector
()),
read_vector
<
float
>
(
result
));
}
//this test cover the case with multiple image and with asymetric pad
//one bug been found on GPU side is covered by this test
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
max_pool_2d_2channel_2image_asym_pad
)
{
Shape
shape_a
{
2
,
2
,
4
,
4
};
Shape
window_shape
{
3
,
3
};
auto
window_movement_strides
=
Strides
{
2
,
2
};
Shape
padding_below
{
0
,
0
};
Shape
padding_above
{
1
,
1
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
Shape
shape_r
{
2
,
2
,
2
,
2
};
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
MaxPool
>
(
A
,
window_shape
,
window_movement_strides
,
padding_below
,
padding_above
),
op
::
ParameterVector
{
A
});
auto
backend
=
runtime
::
Backend
::
create
(
"${BACKEND_NAME}"
);
// Create some tensors for input/output
auto
a
=
backend
->
create_tensor
(
element
::
f32
,
shape_a
);
copy_data
(
a
,
test
::
NDArray
<
float
,
4
>
({{{{
0
,
1
,
0
,
2
},
// img 0 chan 0
{
0
,
3
,
2
,
0
},
{
2
,
0
,
0
,
0
},
{
0
,
2
,
1
,
0
}},
{{
0
,
0
,
0
,
2
},
// img 0 chan 1
{
0
,
2
,
3
,
0
},
{
2
,
0
,
1
,
0
},
{
2
,
0
,
0
,
0
}}},
{{{
0
,
2
,
1
,
1
},
// img 1 chan 0
{
0
,
0
,
2
,
0
},
{
0
,
0
,
1
,
2
},
{
0
,
0
,
0
,
0
}},
{{
2
,
1
,
0
,
0
},
// img 1 chan 1
{
0
,
2
,
0
,
0
},
{
1
,
1
,
2
,
0
},
{
1
,
0
,
0
,
0
}}}})
.
get_vector
());
auto
result
=
backend
->
create_tensor
(
element
::
f32
,
shape_r
);
backend
->
call_with_validate
(
f
,
{
result
},
{
a
});
EXPECT_EQ
((
test
::
NDArray
<
float
,
4
>
({{{{
3
,
2
},
// img 0 chan 0
{
2
,
1
}},
{{
3
,
3
},
// img 0 chan 1
{
2
,
1
}}},
{{{
2
,
2
},
// img 1 chan 0
{
1
,
2
}},
{{
2
,
2
},
// img 1 chan 1
{
2
,
2
}}}})
.
get_vector
()),
read_vector
<
float
>
(
result
));
}
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
max_pool_2d_1channel_1image_overpadded
)
{
Shape
shape_a
{
1
,
1
,
5
,
5
};
Shape
window_shape
{
2
,
3
};
auto
window_movement_strides
=
Strides
{
1
,
1
};
Shape
padding_below
{
2
,
0
};
Shape
padding_above
{
1
,
2
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
Shape
shape_r
{
1
,
1
,
7
,
5
};
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
MaxPool
>
(
A
,
window_shape
,
window_movement_strides
,
padding_below
,
padding_above
),
op
::
ParameterVector
{
A
});
auto
backend
=
runtime
::
Backend
::
create
(
"${BACKEND_NAME}"
);
// Create some tensors for input/output
auto
a
=
backend
->
create_tensor
(
element
::
f32
,
shape_a
);
copy_data
(
a
,
test
::
NDArray
<
float
,
4
>
({{{{
0
,
1
,
0
,
2
,
1
},
{
0
,
3
,
2
,
0
,
0
},
{
2
,
0
,
0
,
0
,
1
},
{
2
,
0
,
1
,
1
,
2
},
{
0
,
2
,
1
,
0
,
0
}}}})
.
get_vector
());
auto
result
=
backend
->
create_tensor
(
element
::
f32
,
shape_r
);
backend
->
call_with_validate
(
f
,
{
result
},
{
a
});
auto
min
=
std
::
numeric_limits
<
float
>::
lowest
();
EXPECT_TRUE
(
test
::
all_close
(
test
::
NDArray
<
float
,
4
>
({{{{
min
,
min
,
min
,
min
,
min
},
{
1
,
2
,
2
,
2
,
1
},
{
3
,
3
,
2
,
2
,
1
},
{
3
,
3
,
2
,
1
,
1
},
{
2
,
1
,
2
,
2
,
2
},
{
2
,
2
,
2
,
2
,
2
},
{
2
,
2
,
1
,
0
,
0
}}}})
.
get_vector
(),
read_vector
<
float
>
(
result
)));
}
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
max_pool_2d_1channel_1image_padded
)
{
Shape
shape_a
{
1
,
1
,
5
,
5
};
Shape
window_shape
{
2
,
3
};
auto
window_movement_strides
=
Strides
{
1
,
1
};
Shape
padding_below
{
1
,
0
};
Shape
padding_above
{
1
,
2
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
Shape
shape_r
{
1
,
1
,
6
,
5
};
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
MaxPool
>
(
A
,
window_shape
,
window_movement_strides
,
padding_below
,
padding_above
),
op
::
ParameterVector
{
A
});
auto
backend
=
runtime
::
Backend
::
create
(
"${BACKEND_NAME}"
);
// Create some tensors for input/output
auto
a
=
backend
->
create_tensor
(
element
::
f32
,
shape_a
);
copy_data
(
a
,
test
::
NDArray
<
float
,
4
>
({{{{
0
,
1
,
0
,
2
,
1
},
{
0
,
3
,
2
,
0
,
0
},
{
2
,
0
,
0
,
0
,
1
},
{
2
,
0
,
1
,
1
,
2
},
{
0
,
2
,
1
,
0
,
0
}}}})
.
get_vector
());
auto
result
=
backend
->
create_tensor
(
element
::
f32
,
shape_r
);
backend
->
call_with_validate
(
f
,
{
result
},
{
a
});
EXPECT_EQ
((
test
::
NDArray
<
float
,
4
>
({{{{
1
,
2
,
2
,
2
,
1
},
{
3
,
3
,
2
,
2
,
1
},
{
3
,
3
,
2
,
1
,
1
},
{
2
,
1
,
2
,
2
,
2
},
{
2
,
2
,
2
,
2
,
2
},
{
2
,
2
,
1
,
0
,
0
}}}})
.
get_vector
()),
read_vector
<
float
>
(
result
));
}
// Test to make sure that negative elements and padding are handled properly. Added this because
// mkldnn calls its padding "zero padding" but apparently that is not technically true (negative
// values still "win" versus out-of-bounds values), which is good.
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
max_pool_2d_1channel_1image_padded_negative_values
)
{
auto
shape_a
=
Shape
{
1
,
1
,
1
,
14
};
// 1 image, 1 channel, 1 row, 14 columns (if it's 1D we don't get mkldnn as of this writing)
Shape
window_shape
{
1
,
3
};
auto
window_movement_strides
=
Strides
{
1
,
1
};
Shape
padding_below
{
0
,
1
};
Shape
padding_above
{
0
,
2
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
Shape
shape_r
{
1
,
1
,
1
,
15
};
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
MaxPool
>
(
A
,
window_shape
,
window_movement_strides
,
padding_below
,
padding_above
),
op
::
ParameterVector
{
A
});
auto
backend
=
runtime
::
Backend
::
create
(
"${BACKEND_NAME}"
);
// Create some tensors for input/output
auto
a
=
backend
->
create_tensor
(
element
::
f32
,
shape_a
);
copy_data
(
a
,
test
::
NDArray
<
float
,
4
>
{{{{
-
1
,
-
2
,
-
3
,
-
3
,
-
2
,
-
1
,
-
3
,
-
2
,
-
2
,
-
2
,
-
2
,
-
3
,
-
4
,
-
5
}}}}
.
get_vector
());
auto
result
=
backend
->
create_tensor
(
element
::
f32
,
shape_r
);
backend
->
call_with_validate
(
f
,
{
result
},
{
a
});
EXPECT_EQ
(
(
test
::
NDArray
<
float
,
4
>
({{{{
-
1
,
-
1
,
-
2
,
-
2
,
-
1
,
-
1
,
-
1
,
-
2
,
-
2
,
-
2
,
-
2
,
-
2
,
-
3
,
-
4
,
-
5
}}}})
.
get_vector
()),
read_vector
<
float
>
(
result
));
}
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
max_pool_2d_1channel_1image_strided
)
{
Shape
shape_a
{
1
,
1
,
8
,
8
};
Shape
window_shape
{
2
,
3
};
auto
window_movement_strides
=
Strides
{
3
,
2
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
Shape
shape_r
{
1
,
1
,
3
,
3
};
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
MaxPool
>
(
A
,
window_shape
,
window_movement_strides
),
op
::
ParameterVector
{
A
});
auto
backend
=
runtime
::
Backend
::
create
(
"${BACKEND_NAME}"
);
// Create some tensors for input/output
auto
a
=
backend
->
create_tensor
(
element
::
f32
,
shape_a
);
copy_data
(
a
,
test
::
NDArray
<
float
,
4
>
({{{{
0
,
1
,
0
,
2
,
1
,
2
,
0
,
0
},
{
0
,
3
,
2
,
0
,
0
,
0
,
1
,
0
},
{
2
,
0
,
0
,
0
,
1
,
0
,
0
,
0
},
{
2
,
0
,
1
,
1
,
2
,
2
,
3
,
0
},
{
0
,
2
,
1
,
0
,
0
,
0
,
1
,
0
},
{
2
,
0
,
3
,
1
,
0
,
0
,
0
,
0
},
{
1
,
2
,
0
,
0
,
0
,
1
,
2
,
0
},
{
1
,
0
,
2
,
0
,
0
,
0
,
1
,
0
}}}})
.
get_vector
());
auto
result
=
backend
->
create_tensor
(
element
::
f32
,
shape_r
);
backend
->
call_with_validate
(
f
,
{
result
},
{
a
});
EXPECT_EQ
((
test
::
NDArray
<
float
,
4
>
({{{{
3
,
2
,
2
},
{
2
,
2
,
3
},
{
2
,
2
,
2
}}}}).
get_vector
()),
read_vector
<
float
>
(
result
));
}
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
max_pool_3d
)
{
Shape
shape_a
{
64
,
3
,
7
,
8
,
10
};
Shape
window_shape
{
2
,
3
,
2
};
auto
move_strides
=
Strides
{
2
,
3
,
4
};
Shape
padding_below
{
5
,
6
,
4
};
Shape
padding_above
{
6
,
4
,
5
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
auto
B
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
auto
cpu_f
=
make_shared
<
Function
>
(
make_shared
<
op
::
MaxPool
>
(
A
,
window_shape
,
move_strides
,
padding_below
,
padding_above
),
op
::
ParameterVector
{
A
});
auto
int_f
=
make_shared
<
Function
>
(
make_shared
<
op
::
MaxPool
>
(
B
,
window_shape
,
move_strides
,
padding_below
,
padding_above
),
op
::
ParameterVector
{
B
});
test
::
Uniform
<
float
>
rng
(
0.0
f
,
1.0
f
);
vector
<
vector
<
float
>>
args
;
for
(
shared_ptr
<
op
::
Parameter
>
param
:
int_f
->
get_parameters
())
{
vector
<
float
>
tensor_val
(
shape_size
(
param
->
get_shape
()));
rng
.
initialize
(
tensor_val
);
args
.
push_back
(
tensor_val
);
}
auto
int_results
=
execute
(
int_f
,
args
,
"INTERPRETER"
);
auto
cpu_results
=
execute
(
cpu_f
,
args
,
"${BACKEND_NAME}"
);
for
(
size_t
i
=
0
;
i
<
cpu_results
.
size
();
i
++
)
{
EXPECT_TRUE
(
test
::
all_close
(
cpu_results
.
at
(
i
),
int_results
.
at
(
i
),
1.0e-4
f
,
1.0e-4
f
));
}
}
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
avg_pool_1d_1channel_1image
)
{
Shape
shape_a
{
1
,
1
,
14
};
Shape
window_shape
{
3
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
Shape
shape_r
{
1
,
1
,
12
};
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
AvgPool
>
(
A
,
window_shape
),
op
::
ParameterVector
{
A
});
auto
backend
=
runtime
::
Backend
::
create
(
"${BACKEND_NAME}"
);
// Create some tensors for input/output
auto
a
=
backend
->
create_tensor
(
element
::
f32
,
shape_a
);
copy_data
(
a
,
test
::
NDArray
<
float
,
3
>
{{{
0
,
1
,
0
,
2
,
1
,
0
,
3
,
2
,
0
,
0
,
2
,
0
,
0
,
0
}}}.
get_vector
());
auto
result
=
backend
->
create_tensor
(
element
::
f32
,
shape_r
);
float
denom
=
3.0
;
backend
->
call_with_validate
(
f
,
{
result
},
{
a
});
EXPECT_TRUE
(
test
::
all_close_f
(
test
::
NDArray
<
float
,
3
>
({{{
1
/
denom
,
3
/
denom
,
3
/
denom
,
3
/
denom
,
4
/
denom
,
5
/
denom
,
5
/
denom
,
2
/
denom
,
2
/
denom
,
2
/
denom
,
2
/
denom
,
0
/
denom
}}})
.
get_vector
(),
read_vector
<
float
>
(
result
)));
}
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
avg_pool_1d_1channel_2image
)
{
Shape
shape_a
{
2
,
1
,
14
};
Shape
window_shape
{
3
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
Shape
shape_r
{
2
,
1
,
12
};
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
AvgPool
>
(
A
,
window_shape
),
op
::
ParameterVector
{
A
});
auto
backend
=
runtime
::
Backend
::
create
(
"${BACKEND_NAME}"
);
// Create some tensors for input/output
auto
a
=
backend
->
create_tensor
(
element
::
f32
,
shape_a
);
copy_data
(
a
,
test
::
NDArray
<
float
,
3
>
({{{
0
,
1
,
0
,
2
,
1
,
0
,
3
,
2
,
0
,
0
,
2
,
0
,
0
,
0
}},
{{
0
,
2
,
1
,
1
,
0
,
0
,
0
,
2
,
0
,
1
,
0
,
0
,
1
,
2
}}})
.
get_vector
());
auto
result
=
backend
->
create_tensor
(
element
::
f32
,
shape_r
);
float
denom
=
3.0
;
backend
->
call_with_validate
(
f
,
{
result
},
{
a
});
EXPECT_TRUE
(
test
::
all_close_f
(
test
::
NDArray
<
float
,
3
>
({{{
1
/
denom
,
3
/
denom
,
3
/
denom
,
3
/
denom
,
4
/
denom
,
5
/
denom
,
5
/
denom
,
2
/
denom
,
2
/
denom
,
2
/
denom
,
2
/
denom
,
0
/
denom
}},
{{
3
/
denom
,
4
/
denom
,
2
/
denom
,
1
/
denom
,
0
/
denom
,
2
/
denom
,
2
/
denom
,
3
/
denom
,
1
/
denom
,
1
/
denom
,
1
/
denom
,
3
/
denom
}}})
.
get_vector
(),
read_vector
<
float
>
(
result
)));
}
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
avg_pool_1d_2channel_2image
)
{
Shape
shape_a
{
2
,
2
,
14
};
Shape
window_shape
{
3
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
Shape
shape_r
{
2
,
2
,
12
};
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
AvgPool
>
(
A
,
window_shape
),
op
::
ParameterVector
{
A
});
auto
backend
=
runtime
::
Backend
::
create
(
"${BACKEND_NAME}"
);
// Create some tensors for input/output
auto
a
=
backend
->
create_tensor
(
element
::
f32
,
shape_a
);
copy_data
(
a
,
test
::
NDArray
<
float
,
3
>
({{{
0
,
1
,
0
,
2
,
1
,
0
,
3
,
2
,
0
,
0
,
2
,
0
,
0
,
0
},
{
0
,
0
,
0
,
2
,
0
,
0
,
2
,
3
,
0
,
1
,
2
,
0
,
1
,
0
}},
{{
0
,
2
,
1
,
1
,
0
,
0
,
0
,
2
,
0
,
1
,
0
,
0
,
1
,
2
},
{
2
,
1
,
0
,
0
,
1
,
0
,
2
,
0
,
0
,
0
,
1
,
1
,
2
,
0
}}})
.
get_vector
());
auto
result
=
backend
->
create_tensor
(
element
::
f32
,
shape_r
);
float
denom
=
3.0
;
backend
->
call_with_validate
(
f
,
{
result
},
{
a
});
EXPECT_TRUE
(
test
::
all_close_f
(
test
::
NDArray
<
float
,
3
>
({{{
1
/
denom
,
3
/
denom
,
3
/
denom
,
3
/
denom
,
4
/
denom
,
5
/
denom
,
5
/
denom
,
2
/
denom
,
2
/
denom
,
2
/
denom
,
2
/
denom
,
0
/
denom
},
{
0
/
denom
,
2
/
denom
,
2
/
denom
,
2
/
denom
,
2
/
denom
,
5
/
denom
,
5
/
denom
,
4
/
denom
,
3
/
denom
,
3
/
denom
,
3
/
denom
,
1
/
denom
}},
{{
3
/
denom
,
4
/
denom
,
2
/
denom
,
1
/
denom
,
0
/
denom
,
2
/
denom
,
2
/
denom
,
3
/
denom
,
1
/
denom
,
1
/
denom
,
1
/
denom
,
3
/
denom
},
{
3
/
denom
,
1
/
denom
,
1
/
denom
,
1
/
denom
,
3
/
denom
,
2
/
denom
,
2
/
denom
,
0
/
denom
,
1
/
denom
,
2
/
denom
,
4
/
denom
,
3
/
denom
}}})
.
get_vector
(),
read_vector
<
float
>
(
result
)));
}
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
avg_pool_2d_2channel_2image
)
{
Shape
shape_a
{
2
,
2
,
5
,
5
};
Shape
window_shape
{
2
,
3
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
Shape
shape_r
{
2
,
2
,
4
,
3
};
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
AvgPool
>
(
A
,
window_shape
),
op
::
ParameterVector
{
A
});
auto
backend
=
runtime
::
Backend
::
create
(
"${BACKEND_NAME}"
);
// Create some tensors for input/output
auto
a
=
backend
->
create_tensor
(
element
::
f32
,
shape_a
);
copy_data
(
a
,
test
::
NDArray
<
float
,
4
>
({{{{
0
,
1
,
0
,
2
,
1
},
// img 0 chan 0
{
0
,
3
,
2
,
0
,
0
},
{
2
,
0
,
0
,
0
,
1
},
{
2
,
0
,
1
,
1
,
2
},
{
0
,
2
,
1
,
0
,
0
}},
{{
0
,
0
,
0
,
2
,
0
},
// img 0 chan 1
{
0
,
2
,
3
,
0
,
1
},
{
2
,
0
,
1
,
0
,
2
},
{
3
,
1
,
0
,
0
,
0
},
{
2
,
0
,
0
,
0
,
0
}}},
{{{
0
,
2
,
1
,
1
,
0
},
// img 1 chan 0
{
0
,
0
,
2
,
0
,
1
},
{
0
,
0
,
1
,
2
,
3
},
{
2
,
0
,
0
,
3
,
0
},
{
0
,
0
,
0
,
0
,
0
}},
{{
2
,
1
,
0
,
0
,
1
},
// img 1 chan 1
{
0
,
2
,
0
,
0
,
0
},
{
1
,
1
,
2
,
0
,
2
},
{
1
,
1
,
1
,
0
,
1
},
{
1
,
0
,
0
,
0
,
2
}}}})
.
get_vector
());
auto
result
=
backend
->
create_tensor
(
element
::
f32
,
shape_r
);
float
denom
=
2
*
3
;
backend
->
call_with_validate
(
f
,
{
result
},
{
a
});
EXPECT_TRUE
(
test
::
all_close_f
(
test
::
NDArray
<
float
,
4
>
({{{{
6
/
denom
,
8
/
denom
,
5
/
denom
},
// img 0 chan 0
{
7
/
denom
,
5
/
denom
,
3
/
denom
},
{
5
/
denom
,
2
/
denom
,
5
/
denom
},
{
6
/
denom
,
5
/
denom
,
5
/
denom
}},
{{
5
/
denom
,
7
/
denom
,
6
/
denom
},
// img 0 chan 1
{
8
/
denom
,
6
/
denom
,
7
/
denom
},
{
7
/
denom
,
2
/
denom
,
3
/
denom
},
{
6
/
denom
,
1
/
denom
,
0
/
denom
}}},
{{{
5
/
denom
,
6
/
denom
,
5
/
denom
},
// img 1 chan 0
{
3
/
denom
,
5
/
denom
,
9
/
denom
},
{
3
/
denom
,
6
/
denom
,
9
/
denom
},
{
2
/
denom
,
3
/
denom
,
3
/
denom
}},
{{
5
/
denom
,
3
/
denom
,
1
/
denom
},
// img 1 chan 1
{
6
/
denom
,
5
/
denom
,
4
/
denom
},
{
7
/
denom
,
5
/
denom
,
6
/
denom
},
{
4
/
denom
,
2
/
denom
,
4
/
denom
}}}})
.
get_vector
(),
read_vector
<
float
>
(
result
)));
}
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
avg_pool_2d_1channel_1image_strided
)
{
Shape
shape_a
{
1
,
1
,
8
,
8
};
Shape
window_shape
{
2
,
3
};
auto
window_movement_strides
=
Strides
{
3
,
2
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
Shape
shape_r
{
1
,
1
,
3
,
3
};
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
AvgPool
>
(
A
,
window_shape
,
window_movement_strides
),
op
::
ParameterVector
{
A
});
auto
backend
=
runtime
::
Backend
::
create
(
"${BACKEND_NAME}"
);
// Create some tensors for input/output
auto
a
=
backend
->
create_tensor
(
element
::
f32
,
shape_a
);
copy_data
(
a
,
test
::
NDArray
<
float
,
4
>
({{{{
0
,
1
,
0
,
2
,
1
,
2
,
0
,
0
},
{
0
,
3
,
2
,
0
,
0
,
0
,
1
,
0
},
{
2
,
0
,
0
,
0
,
1
,
0
,
0
,
0
},
{
2
,
0
,
1
,
1
,
2
,
2
,
3
,
0
},
{
0
,
2
,
1
,
0
,
0
,
0
,
1
,
0
},
{
2
,
0
,
3
,
1
,
0
,
0
,
0
,
0
},
{
1
,
2
,
0
,
0
,
0
,
1
,
2
,
0
},
{
1
,
0
,
2
,
0
,
0
,
0
,
1
,
0
}}}})
.
get_vector
());
auto
result
=
backend
->
create_tensor
(
element
::
f32
,
shape_r
);
float
denom
=
2
*
3
;
backend
->
call_with_validate
(
f
,
{
result
},
{
a
});
EXPECT_TRUE
(
test
::
all_close_f
(
test
::
NDArray
<
float
,
4
>
({{{{
6
/
denom
,
5
/
denom
,
4
/
denom
},
{
6
/
denom
,
5
/
denom
,
8
/
denom
},
{
6
/
denom
,
2
/
denom
,
4
/
denom
}}}})
.
get_vector
(),
read_vector
<
float
>
(
result
)));
}
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
avg_pool_2d_1channel_1image_padded_do_not_include_in_computation
)
{
Shape
shape_a
{
1
,
1
,
3
,
3
};
Shape
window_shape
{
2
,
2
};
auto
window_movement_strides
=
Strides
{
1
,
1
};
Shape
padding_below
{
1
,
1
};
Shape
padding_above
{
1
,
1
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
Shape
shape_r
{
1
,
1
,
4
,
4
};
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
AvgPool
>
(
A
,
window_shape
,
window_movement_strides
,
padding_below
,
padding_above
,
false
),
op
::
ParameterVector
{
A
});
auto
backend
=
runtime
::
Backend
::
create
(
"${BACKEND_NAME}"
);
// Create some tensors for input/output
auto
a
=
backend
->
create_tensor
(
element
::
f32
,
shape_a
);
copy_data
(
a
,
test
::
NDArray
<
float
,
4
>
({{{{
0
,
1
,
0
},
{
0
,
3
,
2
},
{
2
,
0
,
0
}}}}).
get_vector
());
auto
result
=
backend
->
create_tensor
(
element
::
f32
,
shape_r
);
backend
->
call_with_validate
(
f
,
{
result
},
{
a
});
EXPECT_TRUE
(
test
::
all_close
(
test
::
NDArray
<
float
,
4
>
({{{{
0.0
f
/
1
,
1.0
f
/
2
,
1.0
f
/
2
,
0.0
f
/
1
},
{
0.0
f
/
2
,
4.0
f
/
4
,
6.0
f
/
4
,
2.0
f
/
2
},
{
2.0
f
/
2
,
5.0
f
/
4
,
5.0
f
/
4
,
2.0
f
/
2
},
{
2.0
f
/
1
,
2.0
f
/
2
,
0.0
f
/
2
,
0.0
f
/
1
}}}})
.
get_vector
(),
read_vector
<
float
>
(
result
)));
}
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
avg_pool_2d_1channel_1image_padded_include_in_computation
)
{
Shape
shape_a
{
1
,
1
,
3
,
3
};
Shape
window_shape
{
2
,
2
};
auto
window_movement_strides
=
Strides
{
1
,
1
};
Shape
padding_below
{
1
,
1
};
Shape
padding_above
{
1
,
1
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
Shape
shape_r
{
1
,
1
,
4
,
4
};
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
AvgPool
>
(
A
,
window_shape
,
window_movement_strides
,
padding_below
,
padding_above
,
true
),
op
::
ParameterVector
{
A
});
auto
backend
=
runtime
::
Backend
::
create
(
"${BACKEND_NAME}"
);
// Create some tensors for input/output
auto
a
=
backend
->
create_tensor
(
element
::
f32
,
shape_a
);
copy_data
(
a
,
test
::
NDArray
<
float
,
4
>
({{{{
0
,
1
,
0
},
{
0
,
3
,
2
},
{
2
,
0
,
0
}}}}).
get_vector
());
auto
result
=
backend
->
create_tensor
(
element
::
f32
,
shape_r
);
backend
->
call_with_validate
(
f
,
{
result
},
{
a
});
EXPECT_TRUE
(
test
::
all_close
(
test
::
NDArray
<
float
,
4
>
({{{{
0.0
f
/
4
,
1.0
f
/
4
,
1.0
f
/
4
,
0.0
f
/
4
},
{
0.0
f
/
4
,
4.0
f
/
4
,
6.0
f
/
4
,
2.0
f
/
4
},
{
2.0
f
/
4
,
5.0
f
/
4
,
5.0
f
/
4
,
2.0
f
/
4
},
{
2.0
f
/
4
,
2.0
f
/
4
,
0.0
f
/
4
,
0.0
f
/
4
}}}})
.
get_vector
(),
read_vector
<
float
>
(
result
)));
}
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
avg_pool_2d_2channel_2image_padded_do_not_include_in_computation
)
{
Shape
shape_a
{
2
,
1
,
3
,
3
};
Shape
window_shape
{
2
,
2
};
auto
window_movement_strides
=
Strides
{
1
,
1
};
Shape
padding_below
{
1
,
1
};
Shape
padding_above
{
1
,
1
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
Shape
shape_r
{
2
,
1
,
4
,
4
};
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
AvgPool
>
(
A
,
window_shape
,
window_movement_strides
,
padding_below
,
padding_above
,
false
),
op
::
ParameterVector
{
A
});
auto
backend
=
runtime
::
Backend
::
create
(
"${BACKEND_NAME}"
);
// Create some tensors for input/output
auto
a
=
backend
->
create_tensor
(
element
::
f32
,
shape_a
);
copy_data
(
a
,
test
::
NDArray
<
float
,
4
>
(
{{{{
0
,
1
,
0
},
{
0
,
3
,
2
},
{
2
,
0
,
0
}},
{{
3
,
5
,
2
},
{
2
,
0
,
9
},
{
3
,
6
,
5
}}}})
.
get_vector
());
auto
result
=
backend
->
create_tensor
(
element
::
f32
,
shape_r
);
backend
->
call_with_validate
(
f
,
{
result
},
{
a
});
EXPECT_TRUE
(
test
::
all_close
(
test
::
NDArray
<
float
,
4
>
({{{{
0.0
f
/
1
,
1.0
f
/
2
,
1.0
f
/
2
,
0.0
f
/
1
},
{
0.0
f
/
2
,
4.0
f
/
4
,
6.0
f
/
4
,
2.0
f
/
2
},
{
2.0
f
/
2
,
5.0
f
/
4
,
5.0
f
/
4
,
2.0
f
/
2
},
{
2.0
f
/
1
,
2.0
f
/
2
,
0.0
f
/
2
,
0.0
f
/
1
}},
{{
3.0
f
/
1
,
8.0
f
/
2
,
7.0
f
/
2
,
2.0
f
/
1
},
{
5.0
f
/
2
,
10.0
f
/
4
,
16.0
f
/
4
,
11.0
f
/
2
},
{
5.0
f
/
2
,
11.0
f
/
4
,
20.0
f
/
4
,
14.0
f
/
2
},
{
3.0
f
/
1
,
9.0
f
/
2
,
11.0
f
/
2
,
5.0
f
/
1
}}}})
.
get_vector
(),
read_vector
<
float
>
(
result
)));
}
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
avg_pool_2d_2channel_2image_padded_include_in_computation
)
{
Shape
shape_a
{
2
,
1
,
3
,
3
};
Shape
window_shape
{
2
,
2
};
auto
window_movement_strides
=
Strides
{
1
,
1
};
Shape
padding_below
{
1
,
1
};
Shape
padding_above
{
1
,
1
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
Shape
shape_r
{
2
,
1
,
4
,
4
};
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
AvgPool
>
(
A
,
window_shape
,
window_movement_strides
,
padding_below
,
padding_above
,
true
),
op
::
ParameterVector
{
A
});
auto
backend
=
runtime
::
Backend
::
create
(
"${BACKEND_NAME}"
);
// Create some tensors for input/output
auto
a
=
backend
->
create_tensor
(
element
::
f32
,
shape_a
);
copy_data
(
a
,
test
::
NDArray
<
float
,
4
>
(
{{{{
0
,
1
,
0
},
{
0
,
3
,
2
},
{
2
,
0
,
0
}},
{{
3
,
5
,
2
},
{
2
,
0
,
9
},
{
3
,
6
,
5
}}}})
.
get_vector
());
auto
result
=
backend
->
create_tensor
(
element
::
f32
,
shape_r
);
backend
->
call_with_validate
(
f
,
{
result
},
{
a
});
EXPECT_TRUE
(
test
::
all_close
(
test
::
NDArray
<
float
,
4
>
({{{{
0.0
f
/
4
,
1.0
f
/
4
,
1.0
f
/
4
,
0.0
f
/
4
},
{
0.0
f
/
4
,
4.0
f
/
4
,
6.0
f
/
4
,
2.0
f
/
4
},
{
2.0
f
/
4
,
5.0
f
/
4
,
5.0
f
/
4
,
2.0
f
/
4
},
{
2.0
f
/
4
,
2.0
f
/
4
,
0.0
f
/
4
,
0.0
f
/
4
}},
{{
3.0
f
/
4
,
8.0
f
/
4
,
7.0
f
/
4
,
2.0
f
/
4
},
{
5.0
f
/
4
,
10.0
f
/
4
,
16.0
f
/
4
,
11.0
f
/
4
},
{
5.0
f
/
4
,
11.0
f
/
4
,
20.0
f
/
4
,
14.0
f
/
4
},
{
3.0
f
/
4
,
9.0
f
/
4
,
11.0
f
/
4
,
5.0
f
/
4
}}}})
.
get_vector
(),
read_vector
<
float
>
(
result
)));
}
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
avg_pool_2d_2channel_2image_padded_only_below_do_not_include_in_computation
)
{
Shape
shape_a
{
2
,
1
,
3
,
3
};
Shape
window_shape
{
2
,
2
};
auto
window_movement_strides
=
Strides
{
1
,
1
};
Shape
padding_below
{
1
,
1
};
Shape
padding_above
{
0
,
0
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
Shape
shape_r
{
2
,
1
,
3
,
3
};
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
AvgPool
>
(
A
,
window_shape
,
window_movement_strides
,
padding_below
,
padding_above
,
false
),
op
::
ParameterVector
{
A
});
auto
backend
=
runtime
::
Backend
::
create
(
"${BACKEND_NAME}"
);
// Create some tensors for input/output
auto
a
=
backend
->
create_tensor
(
element
::
f32
,
shape_a
);
copy_data
(
a
,
test
::
NDArray
<
float
,
4
>
(
{{{{
0
,
1
,
0
},
{
0
,
3
,
2
},
{
2
,
0
,
0
}},
{{
3
,
5
,
2
},
{
2
,
0
,
9
},
{
3
,
6
,
5
}}}})
.
get_vector
());
auto
result
=
backend
->
create_tensor
(
element
::
f32
,
shape_r
);
backend
->
call_with_validate
(
f
,
{
result
},
{
a
});
EXPECT_TRUE
(
test
::
all_close
(
test
::
NDArray
<
float
,
4
>
({{{{
0.0
f
/
1
,
1.0
f
/
2
,
1.0
f
/
2
},
{
0.0
f
/
2
,
4.0
f
/
4
,
6.0
f
/
4
},
{
2.0
f
/
2
,
5.0
f
/
4
,
5.0
f
/
4
}},
{{
3.0
f
/
1
,
8.0
f
/
2
,
7.0
f
/
2
},
{
5.0
f
/
2
,
10.0
f
/
4
,
16.0
f
/
4
},
{
5.0
f
/
2
,
11.0
f
/
4
,
20.0
f
/
4
}}}})
.
get_vector
(),
read_vector
<
float
>
(
result
)));
}
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
avg_pool_2d_2channel_2image_padded_only_below_include_in_computation
)
{
Shape
shape_a
{
2
,
1
,
3
,
3
};
Shape
window_shape
{
2
,
2
};
auto
window_movement_strides
=
Strides
{
1
,
1
};
Shape
padding_below
{
1
,
1
};
Shape
padding_above
{
0
,
0
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
Shape
shape_r
{
2
,
1
,
3
,
3
};
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
AvgPool
>
(
A
,
window_shape
,
window_movement_strides
,
padding_below
,
padding_above
,
true
),
op
::
ParameterVector
{
A
});
auto
backend
=
runtime
::
Backend
::
create
(
"${BACKEND_NAME}"
);
// Create some tensors for input/output
auto
a
=
backend
->
create_tensor
(
element
::
f32
,
shape_a
);
copy_data
(
a
,
test
::
NDArray
<
float
,
4
>
(
{{{{
0
,
1
,
0
},
{
0
,
3
,
2
},
{
2
,
0
,
0
}},
{{
3
,
5
,
2
},
{
2
,
0
,
9
},
{
3
,
6
,
5
}}}})
.
get_vector
());
auto
result
=
backend
->
create_tensor
(
element
::
f32
,
shape_r
);
backend
->
call_with_validate
(
f
,
{
result
},
{
a
});
EXPECT_TRUE
(
test
::
all_close
(
test
::
NDArray
<
float
,
4
>
({{{{
0.0
f
/
4
,
1.0
f
/
4
,
1.0
f
/
4
},
{
0.0
f
/
4
,
4.0
f
/
4
,
6.0
f
/
4
},
{
2.0
f
/
4
,
5.0
f
/
4
,
5.0
f
/
4
}},
{{
3.0
f
/
4
,
8.0
f
/
4
,
7.0
f
/
4
},
{
5.0
f
/
4
,
10.0
f
/
4
,
16.0
f
/
4
},
{
5.0
f
/
4
,
11.0
f
/
4
,
20.0
f
/
4
}}}})
.
get_vector
(),
read_vector
<
float
>
(
result
)));
}
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
avg_pool_2d_2channel_2image_padded_only_above_do_not_include_in_computation
)
{
Shape
shape_a
{
2
,
1
,
3
,
3
};
Shape
window_shape
{
2
,
2
};
auto
window_movement_strides
=
Strides
{
1
,
1
};
Shape
padding_below
{
0
,
0
};
Shape
padding_above
{
1
,
1
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
Shape
shape_r
{
2
,
1
,
3
,
3
};
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
AvgPool
>
(
A
,
window_shape
,
window_movement_strides
,
padding_below
,
padding_above
,
false
),
op
::
ParameterVector
{
A
});
auto
backend
=
runtime
::
Backend
::
create
(
"${BACKEND_NAME}"
);
// Create some tensors for input/output
auto
a
=
backend
->
create_tensor
(
element
::
f32
,
shape_a
);
copy_data
(
a
,
test
::
NDArray
<
float
,
4
>
(
{{{{
0
,
1
,
0
},
{
0
,
3
,
2
},
{
2
,
0
,
0
}},
{{
3
,
5
,
2
},
{
2
,
0
,
9
},
{
3
,
6
,
5
}}}})
.
get_vector
());
auto
result
=
backend
->
create_tensor
(
element
::
f32
,
shape_r
);
backend
->
call_with_validate
(
f
,
{
result
},
{
a
});
EXPECT_TRUE
(
test
::
all_close
(
test
::
NDArray
<
float
,
4
>
({{{{
4.0
f
/
4
,
6.0
f
/
4
,
2.0
f
/
2
},
{
5.0
f
/
4
,
5.0
f
/
4
,
2.0
f
/
2
},
{
2.0
f
/
2
,
0.0
f
/
2
,
0.0
f
/
1
}},
{{
10.0
f
/
4
,
16.0
f
/
4
,
11.0
f
/
2
},
{
11.0
f
/
4
,
20.0
f
/
4
,
14.0
f
/
2
},
{
9.0
f
/
2
,
11.0
f
/
2
,
5.0
f
/
1
}}}})
.
get_vector
(),
read_vector
<
float
>
(
result
)));
}
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
avg_pool_2d_2channel_2image_padded_only_above_include_in_computation
)
{
Shape
shape_a
{
2
,
1
,
3
,
3
};
Shape
window_shape
{
2
,
2
};
auto
window_movement_strides
=
Strides
{
1
,
1
};
Shape
padding_below
{
0
,
0
};
Shape
padding_above
{
1
,
1
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
Shape
shape_r
{
2
,
1
,
3
,
3
};
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
AvgPool
>
(
A
,
window_shape
,
window_movement_strides
,
padding_below
,
padding_above
,
true
),
op
::
ParameterVector
{
A
});
auto
backend
=
runtime
::
Backend
::
create
(
"${BACKEND_NAME}"
);
// Create some tensors for input/output
auto
a
=
backend
->
create_tensor
(
element
::
f32
,
shape_a
);
copy_data
(
a
,
test
::
NDArray
<
float
,
4
>
(
{{{{
0
,
1
,
0
},
{
0
,
3
,
2
},
{
2
,
0
,
0
}},
{{
3
,
5
,
2
},
{
2
,
0
,
9
},
{
3
,
6
,
5
}}}})
.
get_vector
());
auto
result
=
backend
->
create_tensor
(
element
::
f32
,
shape_r
);
backend
->
call_with_validate
(
f
,
{
result
},
{
a
});
EXPECT_TRUE
(
test
::
all_close
(
test
::
NDArray
<
float
,
4
>
({{{{
4.0
f
/
4
,
6.0
f
/
4
,
2.0
f
/
4
},
{
5.0
f
/
4
,
5.0
f
/
4
,
2.0
f
/
4
},
{
2.0
f
/
4
,
0.0
f
/
4
,
0.0
f
/
4
}},
{{
10.0
f
/
4
,
16.0
f
/
4
,
11.0
f
/
4
},
{
11.0
f
/
4
,
20.0
f
/
4
,
14.0
f
/
4
},
{
9.0
f
/
4
,
11.0
f
/
4
,
5.0
f
/
4
}}}})
.
get_vector
(),
read_vector
<
float
>
(
result
)));
}
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
avg_pool_2d_2channel_2image_3x3_padded_do_not_include_in_computation
)
{
Shape
shape_a
{
2
,
1
,
3
,
3
};
Shape
window_shape
{
3
,
3
};
auto
window_movement_strides
=
Strides
{
1
,
1
};
Shape
padding_below
{
2
,
2
};
Shape
padding_above
{
2
,
2
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
Shape
shape_r
{
2
,
1
,
5
,
5
};
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
AvgPool
>
(
A
,
window_shape
,
window_movement_strides
,
padding_below
,
padding_above
,
false
),
op
::
ParameterVector
{
A
});
auto
backend
=
runtime
::
Backend
::
create
(
"${BACKEND_NAME}"
);
// Create some tensors for input/output
auto
a
=
backend
->
create_tensor
(
element
::
f32
,
shape_a
);
copy_data
(
a
,
test
::
NDArray
<
float
,
4
>
(
{{{{
0
,
1
,
0
},
{
0
,
3
,
2
},
{
2
,
0
,
0
}},
{{
3
,
5
,
2
},
{
2
,
0
,
9
},
{
3
,
6
,
5
}}}})
.
get_vector
());
auto
result
=
backend
->
create_tensor
(
element
::
f32
,
shape_r
);
backend
->
call_with_validate
(
f
,
{
result
},
{
a
});
EXPECT_TRUE
(
test
::
all_close_f
(
test
::
NDArray
<
float
,
4
>
({{{{
0.0
f
/
1
,
1.0
f
/
2
,
1.0
f
/
3
,
1.0
f
/
2
,
0.0
f
/
1
},
{
0.0
f
/
2
,
4.0
f
/
4
,
6.0
f
/
6
,
6.0
f
/
4
,
2.0
f
/
2
},
{
2.0
f
/
3
,
6.0
f
/
6
,
8.0
f
/
9
,
6.0
f
/
6
,
2.0
f
/
3
},
{
2.0
f
/
2
,
5.0
f
/
4
,
7.0
f
/
6
,
5.0
f
/
4
,
2.0
f
/
2
},
{
2.0
f
/
1
,
2.0
f
/
2
,
2.0
f
/
3
,
0.0
f
/
2
,
0.0
f
/
1
}},
{{
3.0
f
/
1
,
8.0
f
/
2
,
10.0
f
/
3
,
7.0
f
/
2
,
2.0
f
/
1
},
{
5.0
f
/
2
,
10.0
f
/
4
,
21.0
f
/
6
,
16.0
f
/
4
,
11.0
f
/
2
},
{
8.0
f
/
3
,
19.0
f
/
6
,
35.0
f
/
9
,
27.0
f
/
6
,
16.0
f
/
3
},
{
5.0
f
/
2
,
11.0
f
/
4
,
25.0
f
/
6
,
20.0
f
/
4
,
14.0
f
/
2
},
{
3.0
f
/
1
,
9.0
f
/
2
,
14.0
f
/
3
,
11.0
f
/
2
,
5.0
f
/
1
}}}})
.
get_vector
(),
read_vector
<
float
>
(
result
)));
}
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
avg_pool_2d_2channel_2image_3x3_padded_include_in_computation
)
{
Shape
shape_a
{
2
,
1
,
3
,
3
};
Shape
window_shape
{
3
,
3
};
auto
window_movement_strides
=
Strides
{
1
,
1
};
Shape
padding_below
{
2
,
2
};
Shape
padding_above
{
2
,
2
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
Shape
shape_r
{
2
,
1
,
5
,
5
};
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
AvgPool
>
(
A
,
window_shape
,
window_movement_strides
,
padding_below
,
padding_above
,
true
),
op
::
ParameterVector
{
A
});
auto
backend
=
runtime
::
Backend
::
create
(
"${BACKEND_NAME}"
);
// Create some tensors for input/output
auto
a
=
backend
->
create_tensor
(
element
::
f32
,
shape_a
);
copy_data
(
a
,
test
::
NDArray
<
float
,
4
>
(
{{{{
0
,
1
,
0
},
{
0
,
3
,
2
},
{
2
,
0
,
0
}},
{{
3
,
5
,
2
},
{
2
,
0
,
9
},
{
3
,
6
,
5
}}}})
.
get_vector
());
auto
result
=
backend
->
create_tensor
(
element
::
f32
,
shape_r
);
backend
->
call_with_validate
(
f
,
{
result
},
{
a
});
EXPECT_TRUE
(
test
::
all_close_f
(
test
::
NDArray
<
float
,
4
>
({{{{
0.0
f
/
9
,
1.0
f
/
9
,
1.0
f
/
9
,
1.0
f
/
9
,
0.0
f
/
9
},
{
0.0
f
/
9
,
4.0
f
/
9
,
6.0
f
/
9
,
6.0
f
/
9
,
2.0
f
/
9
},
{
2.0
f
/
9
,
6.0
f
/
9
,
8.0
f
/
9
,
6.0
f
/
9
,
2.0
f
/
9
},
{
2.0
f
/
9
,
5.0
f
/
9
,
7.0
f
/
9
,
5.0
f
/
9
,
2.0
f
/
9
},
{
2.0
f
/
9
,
2.0
f
/
9
,
2.0
f
/
9
,
0.0
f
/
9
,
0.0
f
/
9
}},
{{
3.0
f
/
9
,
8.0
f
/
9
,
10.0
f
/
9
,
7.0
f
/
9
,
2.0
f
/
9
},
{
5.0
f
/
9
,
10.0
f
/
9
,
21.0
f
/
9
,
16.0
f
/
9
,
11.0
f
/
9
},
{
8.0
f
/
9
,
19.0
f
/
9
,
35.0
f
/
9
,
27.0
f
/
9
,
16.0
f
/
9
},
{
5.0
f
/
9
,
11.0
f
/
9
,
25.0
f
/
9
,
20.0
f
/
9
,
14.0
f
/
9
},
{
3.0
f
/
9
,
9.0
f
/
9
,
14.0
f
/
9
,
11.0
f
/
9
,
5.0
f
/
9
}}}})
.
get_vector
(),
read_vector
<
float
>
(
result
)));
}
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
avg_pool_2d_2channel_2image_3x3_strided_padded_do_not_include_in_computation
)
{
Shape
shape_a
{
2
,
1
,
3
,
3
};
Shape
window_shape
{
3
,
3
};
auto
window_movement_strides
=
Strides
{
2
,
2
};
Shape
padding_below
{
2
,
2
};
Shape
padding_above
{
2
,
2
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
Shape
shape_r
{
2
,
1
,
3
,
3
};
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
AvgPool
>
(
A
,
window_shape
,
window_movement_strides
,
padding_below
,
padding_above
,
false
),
op
::
ParameterVector
{
A
});
auto
backend
=
runtime
::
Backend
::
create
(
"${BACKEND_NAME}"
);
// Create some tensors for input/output
auto
a
=
backend
->
create_tensor
(
element
::
f32
,
shape_a
);
copy_data
(
a
,
test
::
NDArray
<
float
,
4
>
(
{{{{
0
,
1
,
0
},
{
0
,
3
,
2
},
{
2
,
0
,
0
}},
{{
3
,
5
,
2
},
{
2
,
0
,
9
},
{
3
,
6
,
5
}}}})
.
get_vector
());
auto
result
=
backend
->
create_tensor
(
element
::
f32
,
shape_r
);
backend
->
call_with_validate
(
f
,
{
result
},
{
a
});
EXPECT_TRUE
(
test
::
all_close_f
(
test
::
NDArray
<
float
,
4
>
({{{{
0.0
f
/
1
,
1.0
f
/
3
,
0.0
f
/
1
},
{
2.0
f
/
3
,
8.0
f
/
9
,
2.0
f
/
3
},
{
2.0
f
/
1
,
2.0
f
/
3
,
0.0
f
/
1
}},
{{
3.0
f
/
1
,
10.0
f
/
3
,
2.0
f
/
1
},
{
8.0
f
/
3
,
35.0
f
/
9
,
16.0
f
/
3
},
{
3.0
f
/
1
,
14.0
f
/
3
,
5.0
f
/
1
}}}})
.
get_vector
(),
read_vector
<
float
>
(
result
)));
}
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
avg_pool_2d_2channel_2image_3x3_strided_padded_include_in_computation
)
{
Shape
shape_a
{
2
,
1
,
3
,
3
};
Shape
window_shape
{
3
,
3
};
auto
window_movement_strides
=
Strides
{
2
,
2
};
Shape
padding_below
{
2
,
2
};
Shape
padding_above
{
2
,
2
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
Shape
shape_r
{
2
,
1
,
3
,
3
};
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
AvgPool
>
(
A
,
window_shape
,
window_movement_strides
,
padding_below
,
padding_above
,
true
),
op
::
ParameterVector
{
A
});
auto
backend
=
runtime
::
Backend
::
create
(
"${BACKEND_NAME}"
);
// Create some tensors for input/output
auto
a
=
backend
->
create_tensor
(
element
::
f32
,
shape_a
);
copy_data
(
a
,
test
::
NDArray
<
float
,
4
>
(
{{{{
0
,
1
,
0
},
{
0
,
3
,
2
},
{
2
,
0
,
0
}},
{{
3
,
5
,
2
},
{
2
,
0
,
9
},
{
3
,
6
,
5
}}}})
.
get_vector
());
auto
result
=
backend
->
create_tensor
(
element
::
f32
,
shape_r
);
backend
->
call_with_validate
(
f
,
{
result
},
{
a
});
EXPECT_TRUE
(
test
::
all_close_f
(
test
::
NDArray
<
float
,
4
>
({{{{
0.0
f
/
9
,
1.0
f
/
9
,
0.0
f
/
9
},
{
2.0
f
/
9
,
8.0
f
/
9
,
2.0
f
/
9
},
{
2.0
f
/
9
,
2.0
f
/
9
,
0.0
f
/
9
}},
{{
3.0
f
/
9
,
10.0
f
/
9
,
2.0
f
/
9
},
{
8.0
f
/
9
,
35.0
f
/
9
,
16.0
f
/
9
},
{
3.0
f
/
9
,
14.0
f
/
9
,
5.0
f
/
9
}}}})
.
get_vector
(),
read_vector
<
float
>
(
result
)));
}
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
avg_pool_2d_2channel_2image_3x3_strided_uneven_padded_do_not_include_in_computation
)
{
Shape
shape_a
{
2
,
1
,
3
,
3
};
Shape
window_shape
{
3
,
3
};
auto
window_movement_strides
=
Strides
{
2
,
3
};
Shape
padding_below
{
2
,
2
};
Shape
padding_above
{
2
,
2
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
Shape
shape_r
{
2
,
1
,
3
,
2
};
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
AvgPool
>
(
A
,
window_shape
,
window_movement_strides
,
padding_below
,
padding_above
,
false
),
op
::
ParameterVector
{
A
});
auto
backend
=
runtime
::
Backend
::
create
(
"${BACKEND_NAME}"
);
// Create some tensors for input/output
auto
a
=
backend
->
create_tensor
(
element
::
f32
,
shape_a
);
copy_data
(
a
,
test
::
NDArray
<
float
,
4
>
(
{{{{
0
,
1
,
0
},
{
0
,
3
,
2
},
{
2
,
0
,
0
}},
{{
3
,
5
,
2
},
{
2
,
0
,
9
},
{
3
,
6
,
5
}}}})
.
get_vector
());
auto
result
=
backend
->
create_tensor
(
element
::
f32
,
shape_r
);
backend
->
call_with_validate
(
f
,
{
result
},
{
a
});
EXPECT_TRUE
(
test
::
all_close_f
(
test
::
NDArray
<
float
,
4
>
(
{{{{
0.0
f
/
1
,
1.0
f
/
2
},
{
2.0
f
/
3
,
6.0
f
/
6
},
{
2.0
f
/
1
,
0.0
f
/
2
}},
{{
3.0
f
/
1
,
7.0
f
/
2
},
{
8.0
f
/
3
,
27.0
f
/
6
},
{
3.0
f
/
1
,
11.0
f
/
2
}}}})
.
get_vector
(),
read_vector
<
float
>
(
result
)));
}
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
avg_pool_2d_2channel_2image_3x3_strided_uneven_padded_include_in_computation
)
{
Shape
shape_a
{
2
,
1
,
3
,
3
};
Shape
window_shape
{
3
,
3
};
auto
window_movement_strides
=
Strides
{
2
,
3
};
Shape
padding_below
{
2
,
2
};
Shape
padding_above
{
2
,
2
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
Shape
shape_r
{
2
,
1
,
3
,
2
};
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
AvgPool
>
(
A
,
window_shape
,
window_movement_strides
,
padding_below
,
padding_above
,
true
),
op
::
ParameterVector
{
A
});
auto
backend
=
runtime
::
Backend
::
create
(
"${BACKEND_NAME}"
);
// Create some tensors for input/output
auto
a
=
backend
->
create_tensor
(
element
::
f32
,
shape_a
);
copy_data
(
a
,
test
::
NDArray
<
float
,
4
>
(
{{{{
0
,
1
,
0
},
{
0
,
3
,
2
},
{
2
,
0
,
0
}},
{{
3
,
5
,
2
},
{
2
,
0
,
9
},
{
3
,
6
,
5
}}}})
.
get_vector
());
auto
result
=
backend
->
create_tensor
(
element
::
f32
,
shape_r
);
backend
->
call_with_validate
(
f
,
{
result
},
{
a
});
EXPECT_TRUE
(
test
::
all_close_f
(
test
::
NDArray
<
float
,
4
>
(
{{{{
0.0
f
/
9
,
1.0
f
/
9
},
{
2.0
f
/
9
,
6.0
f
/
9
},
{
2.0
f
/
9
,
0.0
f
/
9
}},
{{
3.0
f
/
9
,
7.0
f
/
9
},
{
8.0
f
/
9
,
27.0
f
/
9
},
{
3.0
f
/
9
,
11.0
f
/
9
}}}})
.
get_vector
(),
read_vector
<
float
>
(
result
)));
}
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
avg_pool_3d_strided_uneven_padded_do_not_include_in_computation
)
{
Shape
shape_a
{
64
,
3
,
12
,
13
,
15
};
Shape
window_shape
{
4
,
5
,
4
};
auto
move_strides
=
Strides
{
2
,
3
,
4
};
Shape
padding_below
{
2
,
3
,
1
};
Shape
padding_above
{
3
,
1
,
2
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
auto
B
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
auto
cpu_f
=
make_shared
<
Function
>
(
make_shared
<
op
::
AvgPool
>
(
A
,
window_shape
,
move_strides
,
padding_below
,
padding_above
,
false
),
op
::
ParameterVector
{
A
});
auto
int_f
=
make_shared
<
Function
>
(
make_shared
<
op
::
AvgPool
>
(
B
,
window_shape
,
move_strides
,
padding_below
,
padding_above
,
false
),
op
::
ParameterVector
{
B
});
test
::
Uniform
<
float
>
rng
(
0.0
f
,
1.0
f
);
vector
<
vector
<
float
>>
args
;
for
(
shared_ptr
<
op
::
Parameter
>
param
:
int_f
->
get_parameters
())
{
vector
<
float
>
tensor_val
(
shape_size
(
param
->
get_shape
()));
rng
.
initialize
(
tensor_val
);
args
.
push_back
(
tensor_val
);
}
auto
int_results
=
execute
(
int_f
,
args
,
"INTERPRETER"
);
auto
backend_results
=
execute
(
cpu_f
,
args
,
"${BACKEND_NAME}"
);
for
(
size_t
i
=
0
;
i
<
backend_results
.
size
();
i
++
)
{
EXPECT_TRUE
(
test
::
all_close
(
backend_results
.
at
(
i
),
int_results
.
at
(
i
),
1.0e-4
f
,
1.0e-4
f
));
}
}
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
avg_pool_3d_uneven_strided_padded_include_in_computation
)
{
Shape
shape_a
{
64
,
3
,
7
,
8
,
10
};
Shape
window_shape
{
2
,
3
,
2
};
auto
move_strides
=
Strides
{
2
,
3
,
4
};
Shape
padding_below
{
5
,
6
,
4
};
Shape
padding_above
{
6
,
4
,
5
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
auto
B
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
auto
cpu_f
=
make_shared
<
Function
>
(
make_shared
<
op
::
AvgPool
>
(
A
,
window_shape
,
move_strides
,
padding_below
,
padding_above
,
true
),
op
::
ParameterVector
{
A
});
auto
int_f
=
make_shared
<
Function
>
(
make_shared
<
op
::
AvgPool
>
(
B
,
window_shape
,
move_strides
,
padding_below
,
padding_above
,
true
),
op
::
ParameterVector
{
B
});
test
::
Uniform
<
float
>
rng
(
0.0
f
,
1.0
f
);
vector
<
vector
<
float
>>
args
;
for
(
shared_ptr
<
op
::
Parameter
>
param
:
int_f
->
get_parameters
())
{
vector
<
float
>
tensor_val
(
shape_size
(
param
->
get_shape
()));
rng
.
initialize
(
tensor_val
);
args
.
push_back
(
tensor_val
);
}
auto
int_results
=
execute
(
int_f
,
args
,
"INTERPRETER"
);
auto
backend_results
=
execute
(
cpu_f
,
args
,
"${BACKEND_NAME}"
);
for
(
size_t
i
=
0
;
i
<
backend_results
.
size
();
i
++
)
{
EXPECT_TRUE
(
test
::
all_close
(
backend_results
.
at
(
i
),
int_results
.
at
(
i
),
1.0e-4
f
,
1.0e-4
f
));
}
}
test/backend_test.in.cpp
View file @
e07147f8
...
...
@@ -1441,387 +1441,6 @@ NGRAPH_TEST(${BACKEND_NAME}, replace_slice_3d_strided_different_strides)
read_vector
<
float
>
(
result
));
}
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
max_pool_1d_1channel_1image
)
{
Shape
shape_a
{
1
,
1
,
14
};
Shape
window_shape
{
3
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
Shape
shape_r
{
1
,
1
,
12
};
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
MaxPool
>
(
A
,
window_shape
),
op
::
ParameterVector
{
A
});
auto
backend
=
runtime
::
Backend
::
create
(
"${BACKEND_NAME}"
);
// Create some tensors for input/output
auto
a
=
backend
->
create_tensor
(
element
::
f32
,
shape_a
);
copy_data
(
a
,
test
::
NDArray
<
float
,
3
>
{{{
0
,
1
,
0
,
2
,
1
,
0
,
3
,
2
,
0
,
0
,
2
,
0
,
0
,
0
}}}.
get_vector
());
auto
result
=
backend
->
create_tensor
(
element
::
f32
,
shape_r
);
backend
->
call_with_validate
(
f
,
{
result
},
{
a
});
EXPECT_EQ
((
test
::
NDArray
<
float
,
3
>
({{{
1
,
2
,
2
,
2
,
3
,
3
,
3
,
2
,
2
,
2
,
2
,
0
}}}).
get_vector
()),
read_vector
<
float
>
(
result
));
}
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
max_pool_1d_1channel_2image
)
{
Shape
shape_a
{
2
,
1
,
14
};
Shape
window_shape
{
3
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
Shape
shape_r
{
2
,
1
,
12
};
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
MaxPool
>
(
A
,
window_shape
),
op
::
ParameterVector
{
A
});
auto
backend
=
runtime
::
Backend
::
create
(
"${BACKEND_NAME}"
);
// Create some tensors for input/output
auto
a
=
backend
->
create_tensor
(
element
::
f32
,
shape_a
);
copy_data
(
a
,
test
::
NDArray
<
float
,
3
>
({{{
0
,
1
,
0
,
2
,
1
,
0
,
3
,
2
,
0
,
0
,
2
,
0
,
0
,
0
}},
{{
0
,
2
,
1
,
1
,
0
,
0
,
0
,
2
,
0
,
1
,
0
,
0
,
1
,
2
}}})
.
get_vector
());
auto
result
=
backend
->
create_tensor
(
element
::
f32
,
shape_r
);
backend
->
call_with_validate
(
f
,
{
result
},
{
a
});
EXPECT_EQ
((
test
::
NDArray
<
float
,
3
>
(
{{{
1
,
2
,
2
,
2
,
3
,
3
,
3
,
2
,
2
,
2
,
2
,
0
}},
{{
2
,
2
,
1
,
1
,
0
,
2
,
2
,
2
,
1
,
1
,
1
,
2
}}})
.
get_vector
()),
read_vector
<
float
>
(
result
));
}
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
max_pool_1d_2channel_2image
)
{
Shape
shape_a
{
2
,
2
,
14
};
Shape
window_shape
{
3
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
Shape
shape_r
{
2
,
2
,
12
};
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
MaxPool
>
(
A
,
window_shape
),
op
::
ParameterVector
{
A
});
auto
backend
=
runtime
::
Backend
::
create
(
"${BACKEND_NAME}"
);
// Create some tensors for input/output
auto
a
=
backend
->
create_tensor
(
element
::
f32
,
shape_a
);
copy_data
(
a
,
test
::
NDArray
<
float
,
3
>
({{{
0
,
1
,
0
,
2
,
1
,
0
,
3
,
2
,
0
,
0
,
2
,
0
,
0
,
0
},
{
0
,
0
,
0
,
2
,
0
,
0
,
2
,
3
,
0
,
1
,
2
,
0
,
1
,
0
}},
{{
0
,
2
,
1
,
1
,
0
,
0
,
0
,
2
,
0
,
1
,
0
,
0
,
1
,
2
},
{
2
,
1
,
0
,
0
,
1
,
0
,
2
,
0
,
0
,
0
,
1
,
1
,
2
,
0
}}})
.
get_vector
());
auto
result
=
backend
->
create_tensor
(
element
::
f32
,
shape_r
);
backend
->
call_with_validate
(
f
,
{
result
},
{
a
});
EXPECT_EQ
((
test
::
NDArray
<
float
,
3
>
(
{{{
1
,
2
,
2
,
2
,
3
,
3
,
3
,
2
,
2
,
2
,
2
,
0
},
{
0
,
2
,
2
,
2
,
2
,
3
,
3
,
3
,
2
,
2
,
2
,
1
}},
{{
2
,
2
,
1
,
1
,
0
,
2
,
2
,
2
,
1
,
1
,
1
,
2
},
{
2
,
1
,
1
,
1
,
2
,
2
,
2
,
0
,
1
,
1
,
2
,
2
}}})
.
get_vector
()),
read_vector
<
float
>
(
result
));
}
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
max_pool_2d_2channel_2image
)
{
Shape
shape_a
{
2
,
2
,
5
,
5
};
Shape
window_shape
{
2
,
3
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
Shape
shape_r
{
2
,
2
,
4
,
3
};
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
MaxPool
>
(
A
,
window_shape
),
op
::
ParameterVector
{
A
});
auto
backend
=
runtime
::
Backend
::
create
(
"${BACKEND_NAME}"
);
// Create some tensors for input/output
auto
a
=
backend
->
create_tensor
(
element
::
f32
,
shape_a
);
copy_data
(
a
,
test
::
NDArray
<
float
,
4
>
({{{{
0
,
1
,
0
,
2
,
1
},
// img 0 chan 0
{
0
,
3
,
2
,
0
,
0
},
{
2
,
0
,
0
,
0
,
1
},
{
2
,
0
,
1
,
1
,
2
},
{
0
,
2
,
1
,
0
,
0
}},
{{
0
,
0
,
0
,
2
,
0
},
// img 0 chan 1
{
0
,
2
,
3
,
0
,
1
},
{
2
,
0
,
1
,
0
,
2
},
{
3
,
1
,
0
,
0
,
0
},
{
2
,
0
,
0
,
0
,
0
}}},
{{{
0
,
2
,
1
,
1
,
0
},
// img 1 chan 0
{
0
,
0
,
2
,
0
,
1
},
{
0
,
0
,
1
,
2
,
3
},
{
2
,
0
,
0
,
3
,
0
},
{
0
,
0
,
0
,
0
,
0
}},
{{
2
,
1
,
0
,
0
,
1
},
// img 1 chan 1
{
0
,
2
,
0
,
0
,
0
},
{
1
,
1
,
2
,
0
,
2
},
{
1
,
1
,
1
,
0
,
1
},
{
1
,
0
,
0
,
0
,
2
}}}})
.
get_vector
());
auto
result
=
backend
->
create_tensor
(
element
::
f32
,
shape_r
);
backend
->
call_with_validate
(
f
,
{
result
},
{
a
});
EXPECT_EQ
((
test
::
NDArray
<
float
,
4
>
({{{{
3
,
3
,
2
},
// img 0 chan 0
{
3
,
3
,
2
},
{
2
,
1
,
2
},
{
2
,
2
,
2
}},
{{
3
,
3
,
3
},
// img 0 chan 1
{
3
,
3
,
3
},
{
3
,
1
,
2
},
{
3
,
1
,
0
}}},
{{{
2
,
2
,
2
},
// img 1 chan 0
{
2
,
2
,
3
},
{
2
,
3
,
3
},
{
2
,
3
,
3
}},
{{
2
,
2
,
1
},
// img 1 chan 1
{
2
,
2
,
2
},
{
2
,
2
,
2
},
{
1
,
1
,
2
}}}})
.
get_vector
()),
read_vector
<
float
>
(
result
));
}
//this test cover the case with multiple image and with asymetric pad
//one bug been found on GPU side is covered by this test
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
max_pool_2d_2channel_2image_asym_pad
)
{
Shape
shape_a
{
2
,
2
,
4
,
4
};
Shape
window_shape
{
3
,
3
};
auto
window_movement_strides
=
Strides
{
2
,
2
};
Shape
padding_below
{
0
,
0
};
Shape
padding_above
{
1
,
1
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
Shape
shape_r
{
2
,
2
,
2
,
2
};
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
MaxPool
>
(
A
,
window_shape
,
window_movement_strides
,
padding_below
,
padding_above
),
op
::
ParameterVector
{
A
});
auto
backend
=
runtime
::
Backend
::
create
(
"${BACKEND_NAME}"
);
// Create some tensors for input/output
auto
a
=
backend
->
create_tensor
(
element
::
f32
,
shape_a
);
copy_data
(
a
,
test
::
NDArray
<
float
,
4
>
({{{{
0
,
1
,
0
,
2
},
// img 0 chan 0
{
0
,
3
,
2
,
0
},
{
2
,
0
,
0
,
0
},
{
0
,
2
,
1
,
0
}},
{{
0
,
0
,
0
,
2
},
// img 0 chan 1
{
0
,
2
,
3
,
0
},
{
2
,
0
,
1
,
0
},
{
2
,
0
,
0
,
0
}}},
{{{
0
,
2
,
1
,
1
},
// img 1 chan 0
{
0
,
0
,
2
,
0
},
{
0
,
0
,
1
,
2
},
{
0
,
0
,
0
,
0
}},
{{
2
,
1
,
0
,
0
},
// img 1 chan 1
{
0
,
2
,
0
,
0
},
{
1
,
1
,
2
,
0
},
{
1
,
0
,
0
,
0
}}}})
.
get_vector
());
auto
result
=
backend
->
create_tensor
(
element
::
f32
,
shape_r
);
backend
->
call_with_validate
(
f
,
{
result
},
{
a
});
EXPECT_EQ
((
test
::
NDArray
<
float
,
4
>
({{{{
3
,
2
},
// img 0 chan 0
{
2
,
1
}},
{{
3
,
3
},
// img 0 chan 1
{
2
,
1
}}},
{{{
2
,
2
},
// img 1 chan 0
{
1
,
2
}},
{{
2
,
2
},
// img 1 chan 1
{
2
,
2
}}}})
.
get_vector
()),
read_vector
<
float
>
(
result
));
}
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
max_pool_2d_1channel_1image_overpadded
)
{
Shape
shape_a
{
1
,
1
,
5
,
5
};
Shape
window_shape
{
2
,
3
};
auto
window_movement_strides
=
Strides
{
1
,
1
};
Shape
padding_below
{
2
,
0
};
Shape
padding_above
{
1
,
2
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
Shape
shape_r
{
1
,
1
,
7
,
5
};
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
MaxPool
>
(
A
,
window_shape
,
window_movement_strides
,
padding_below
,
padding_above
),
op
::
ParameterVector
{
A
});
auto
backend
=
runtime
::
Backend
::
create
(
"${BACKEND_NAME}"
);
// Create some tensors for input/output
auto
a
=
backend
->
create_tensor
(
element
::
f32
,
shape_a
);
copy_data
(
a
,
test
::
NDArray
<
float
,
4
>
({{{{
0
,
1
,
0
,
2
,
1
},
{
0
,
3
,
2
,
0
,
0
},
{
2
,
0
,
0
,
0
,
1
},
{
2
,
0
,
1
,
1
,
2
},
{
0
,
2
,
1
,
0
,
0
}}}})
.
get_vector
());
auto
result
=
backend
->
create_tensor
(
element
::
f32
,
shape_r
);
backend
->
call_with_validate
(
f
,
{
result
},
{
a
});
auto
min
=
std
::
numeric_limits
<
float
>::
lowest
();
EXPECT_TRUE
(
test
::
all_close
(
test
::
NDArray
<
float
,
4
>
({{{{
min
,
min
,
min
,
min
,
min
},
{
1
,
2
,
2
,
2
,
1
},
{
3
,
3
,
2
,
2
,
1
},
{
3
,
3
,
2
,
1
,
1
},
{
2
,
1
,
2
,
2
,
2
},
{
2
,
2
,
2
,
2
,
2
},
{
2
,
2
,
1
,
0
,
0
}}}})
.
get_vector
(),
read_vector
<
float
>
(
result
)));
}
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
max_pool_2d_1channel_1image_padded
)
{
Shape
shape_a
{
1
,
1
,
5
,
5
};
Shape
window_shape
{
2
,
3
};
auto
window_movement_strides
=
Strides
{
1
,
1
};
Shape
padding_below
{
1
,
0
};
Shape
padding_above
{
1
,
2
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
Shape
shape_r
{
1
,
1
,
6
,
5
};
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
MaxPool
>
(
A
,
window_shape
,
window_movement_strides
,
padding_below
,
padding_above
),
op
::
ParameterVector
{
A
});
auto
backend
=
runtime
::
Backend
::
create
(
"${BACKEND_NAME}"
);
// Create some tensors for input/output
auto
a
=
backend
->
create_tensor
(
element
::
f32
,
shape_a
);
copy_data
(
a
,
test
::
NDArray
<
float
,
4
>
({{{{
0
,
1
,
0
,
2
,
1
},
{
0
,
3
,
2
,
0
,
0
},
{
2
,
0
,
0
,
0
,
1
},
{
2
,
0
,
1
,
1
,
2
},
{
0
,
2
,
1
,
0
,
0
}}}})
.
get_vector
());
auto
result
=
backend
->
create_tensor
(
element
::
f32
,
shape_r
);
backend
->
call_with_validate
(
f
,
{
result
},
{
a
});
EXPECT_EQ
((
test
::
NDArray
<
float
,
4
>
({{{{
1
,
2
,
2
,
2
,
1
},
{
3
,
3
,
2
,
2
,
1
},
{
3
,
3
,
2
,
1
,
1
},
{
2
,
1
,
2
,
2
,
2
},
{
2
,
2
,
2
,
2
,
2
},
{
2
,
2
,
1
,
0
,
0
}}}})
.
get_vector
()),
read_vector
<
float
>
(
result
));
}
// Test to make sure that negative elements and padding are handled properly. Added this because
// mkldnn calls its padding "zero padding" but apparently that is not technically true (negative
// values still "win" versus out-of-bounds values), which is good.
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
max_pool_2d_1channel_1image_padded_negative_values
)
{
auto
shape_a
=
Shape
{
1
,
1
,
1
,
14
};
// 1 image, 1 channel, 1 row, 14 columns (if it's 1D we don't get mkldnn as of this writing)
Shape
window_shape
{
1
,
3
};
auto
window_movement_strides
=
Strides
{
1
,
1
};
Shape
padding_below
{
0
,
1
};
Shape
padding_above
{
0
,
2
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
Shape
shape_r
{
1
,
1
,
1
,
15
};
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
MaxPool
>
(
A
,
window_shape
,
window_movement_strides
,
padding_below
,
padding_above
),
op
::
ParameterVector
{
A
});
auto
backend
=
runtime
::
Backend
::
create
(
"${BACKEND_NAME}"
);
// Create some tensors for input/output
auto
a
=
backend
->
create_tensor
(
element
::
f32
,
shape_a
);
copy_data
(
a
,
test
::
NDArray
<
float
,
4
>
{{{{
-
1
,
-
2
,
-
3
,
-
3
,
-
2
,
-
1
,
-
3
,
-
2
,
-
2
,
-
2
,
-
2
,
-
3
,
-
4
,
-
5
}}}}
.
get_vector
());
auto
result
=
backend
->
create_tensor
(
element
::
f32
,
shape_r
);
backend
->
call_with_validate
(
f
,
{
result
},
{
a
});
EXPECT_EQ
(
(
test
::
NDArray
<
float
,
4
>
({{{{
-
1
,
-
1
,
-
2
,
-
2
,
-
1
,
-
1
,
-
1
,
-
2
,
-
2
,
-
2
,
-
2
,
-
2
,
-
3
,
-
4
,
-
5
}}}})
.
get_vector
()),
read_vector
<
float
>
(
result
));
}
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
max_pool_2d_1channel_1image_strided
)
{
Shape
shape_a
{
1
,
1
,
8
,
8
};
Shape
window_shape
{
2
,
3
};
auto
window_movement_strides
=
Strides
{
3
,
2
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
Shape
shape_r
{
1
,
1
,
3
,
3
};
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
MaxPool
>
(
A
,
window_shape
,
window_movement_strides
),
op
::
ParameterVector
{
A
});
auto
backend
=
runtime
::
Backend
::
create
(
"${BACKEND_NAME}"
);
// Create some tensors for input/output
auto
a
=
backend
->
create_tensor
(
element
::
f32
,
shape_a
);
copy_data
(
a
,
test
::
NDArray
<
float
,
4
>
({{{{
0
,
1
,
0
,
2
,
1
,
2
,
0
,
0
},
{
0
,
3
,
2
,
0
,
0
,
0
,
1
,
0
},
{
2
,
0
,
0
,
0
,
1
,
0
,
0
,
0
},
{
2
,
0
,
1
,
1
,
2
,
2
,
3
,
0
},
{
0
,
2
,
1
,
0
,
0
,
0
,
1
,
0
},
{
2
,
0
,
3
,
1
,
0
,
0
,
0
,
0
},
{
1
,
2
,
0
,
0
,
0
,
1
,
2
,
0
},
{
1
,
0
,
2
,
0
,
0
,
0
,
1
,
0
}}}})
.
get_vector
());
auto
result
=
backend
->
create_tensor
(
element
::
f32
,
shape_r
);
backend
->
call_with_validate
(
f
,
{
result
},
{
a
});
EXPECT_EQ
((
test
::
NDArray
<
float
,
4
>
({{{{
3
,
2
,
2
},
{
2
,
2
,
3
},
{
2
,
2
,
2
}}}}).
get_vector
()),
read_vector
<
float
>
(
result
));
}
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
max_pool_3d
)
{
Shape
shape_a
{
64
,
3
,
7
,
8
,
10
};
Shape
window_shape
{
2
,
3
,
2
};
auto
move_strides
=
Strides
{
2
,
3
,
4
};
Shape
padding_below
{
5
,
6
,
4
};
Shape
padding_above
{
6
,
4
,
5
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
auto
B
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
auto
cpu_f
=
make_shared
<
Function
>
(
make_shared
<
op
::
MaxPool
>
(
A
,
window_shape
,
move_strides
,
padding_below
,
padding_above
),
op
::
ParameterVector
{
A
});
auto
int_f
=
make_shared
<
Function
>
(
make_shared
<
op
::
MaxPool
>
(
B
,
window_shape
,
move_strides
,
padding_below
,
padding_above
),
op
::
ParameterVector
{
B
});
test
::
Uniform
<
float
>
rng
(
0.0
f
,
1.0
f
);
vector
<
vector
<
float
>>
args
;
for
(
shared_ptr
<
op
::
Parameter
>
param
:
int_f
->
get_parameters
())
{
vector
<
float
>
tensor_val
(
shape_size
(
param
->
get_shape
()));
rng
.
initialize
(
tensor_val
);
args
.
push_back
(
tensor_val
);
}
auto
int_results
=
execute
(
int_f
,
args
,
"INTERPRETER"
);
auto
cpu_results
=
execute
(
cpu_f
,
args
,
"${BACKEND_NAME}"
);
for
(
size_t
i
=
0
;
i
<
cpu_results
.
size
();
i
++
)
{
EXPECT_TRUE
(
test
::
all_close
(
cpu_results
.
at
(
i
),
int_results
.
at
(
i
),
1.0e-4
f
,
1.0e-4
f
));
}
}
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
reverse_0d
)
{
Shape
shape
{};
...
...
@@ -2737,841 +2356,6 @@ NGRAPH_TEST(${BACKEND_NAME}, computation_reuse)
EXPECT_EQ
(
rv_saved
,
rv
);
}
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
avg_pool_1d_1channel_1image
)
{
Shape
shape_a
{
1
,
1
,
14
};
Shape
window_shape
{
3
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
Shape
shape_r
{
1
,
1
,
12
};
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
AvgPool
>
(
A
,
window_shape
),
op
::
ParameterVector
{
A
});
auto
backend
=
runtime
::
Backend
::
create
(
"${BACKEND_NAME}"
);
// Create some tensors for input/output
auto
a
=
backend
->
create_tensor
(
element
::
f32
,
shape_a
);
copy_data
(
a
,
test
::
NDArray
<
float
,
3
>
{{{
0
,
1
,
0
,
2
,
1
,
0
,
3
,
2
,
0
,
0
,
2
,
0
,
0
,
0
}}}.
get_vector
());
auto
result
=
backend
->
create_tensor
(
element
::
f32
,
shape_r
);
float
denom
=
3.0
;
backend
->
call_with_validate
(
f
,
{
result
},
{
a
});
EXPECT_TRUE
(
test
::
all_close_f
(
test
::
NDArray
<
float
,
3
>
({{{
1
/
denom
,
3
/
denom
,
3
/
denom
,
3
/
denom
,
4
/
denom
,
5
/
denom
,
5
/
denom
,
2
/
denom
,
2
/
denom
,
2
/
denom
,
2
/
denom
,
0
/
denom
}}})
.
get_vector
(),
read_vector
<
float
>
(
result
)));
}
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
avg_pool_1d_1channel_2image
)
{
Shape
shape_a
{
2
,
1
,
14
};
Shape
window_shape
{
3
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
Shape
shape_r
{
2
,
1
,
12
};
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
AvgPool
>
(
A
,
window_shape
),
op
::
ParameterVector
{
A
});
auto
backend
=
runtime
::
Backend
::
create
(
"${BACKEND_NAME}"
);
// Create some tensors for input/output
auto
a
=
backend
->
create_tensor
(
element
::
f32
,
shape_a
);
copy_data
(
a
,
test
::
NDArray
<
float
,
3
>
({{{
0
,
1
,
0
,
2
,
1
,
0
,
3
,
2
,
0
,
0
,
2
,
0
,
0
,
0
}},
{{
0
,
2
,
1
,
1
,
0
,
0
,
0
,
2
,
0
,
1
,
0
,
0
,
1
,
2
}}})
.
get_vector
());
auto
result
=
backend
->
create_tensor
(
element
::
f32
,
shape_r
);
float
denom
=
3.0
;
backend
->
call_with_validate
(
f
,
{
result
},
{
a
});
EXPECT_TRUE
(
test
::
all_close_f
(
test
::
NDArray
<
float
,
3
>
({{{
1
/
denom
,
3
/
denom
,
3
/
denom
,
3
/
denom
,
4
/
denom
,
5
/
denom
,
5
/
denom
,
2
/
denom
,
2
/
denom
,
2
/
denom
,
2
/
denom
,
0
/
denom
}},
{{
3
/
denom
,
4
/
denom
,
2
/
denom
,
1
/
denom
,
0
/
denom
,
2
/
denom
,
2
/
denom
,
3
/
denom
,
1
/
denom
,
1
/
denom
,
1
/
denom
,
3
/
denom
}}})
.
get_vector
(),
read_vector
<
float
>
(
result
)));
}
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
avg_pool_1d_2channel_2image
)
{
Shape
shape_a
{
2
,
2
,
14
};
Shape
window_shape
{
3
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
Shape
shape_r
{
2
,
2
,
12
};
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
AvgPool
>
(
A
,
window_shape
),
op
::
ParameterVector
{
A
});
auto
backend
=
runtime
::
Backend
::
create
(
"${BACKEND_NAME}"
);
// Create some tensors for input/output
auto
a
=
backend
->
create_tensor
(
element
::
f32
,
shape_a
);
copy_data
(
a
,
test
::
NDArray
<
float
,
3
>
({{{
0
,
1
,
0
,
2
,
1
,
0
,
3
,
2
,
0
,
0
,
2
,
0
,
0
,
0
},
{
0
,
0
,
0
,
2
,
0
,
0
,
2
,
3
,
0
,
1
,
2
,
0
,
1
,
0
}},
{{
0
,
2
,
1
,
1
,
0
,
0
,
0
,
2
,
0
,
1
,
0
,
0
,
1
,
2
},
{
2
,
1
,
0
,
0
,
1
,
0
,
2
,
0
,
0
,
0
,
1
,
1
,
2
,
0
}}})
.
get_vector
());
auto
result
=
backend
->
create_tensor
(
element
::
f32
,
shape_r
);
float
denom
=
3.0
;
backend
->
call_with_validate
(
f
,
{
result
},
{
a
});
EXPECT_TRUE
(
test
::
all_close_f
(
test
::
NDArray
<
float
,
3
>
({{{
1
/
denom
,
3
/
denom
,
3
/
denom
,
3
/
denom
,
4
/
denom
,
5
/
denom
,
5
/
denom
,
2
/
denom
,
2
/
denom
,
2
/
denom
,
2
/
denom
,
0
/
denom
},
{
0
/
denom
,
2
/
denom
,
2
/
denom
,
2
/
denom
,
2
/
denom
,
5
/
denom
,
5
/
denom
,
4
/
denom
,
3
/
denom
,
3
/
denom
,
3
/
denom
,
1
/
denom
}},
{{
3
/
denom
,
4
/
denom
,
2
/
denom
,
1
/
denom
,
0
/
denom
,
2
/
denom
,
2
/
denom
,
3
/
denom
,
1
/
denom
,
1
/
denom
,
1
/
denom
,
3
/
denom
},
{
3
/
denom
,
1
/
denom
,
1
/
denom
,
1
/
denom
,
3
/
denom
,
2
/
denom
,
2
/
denom
,
0
/
denom
,
1
/
denom
,
2
/
denom
,
4
/
denom
,
3
/
denom
}}})
.
get_vector
(),
read_vector
<
float
>
(
result
)));
}
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
avg_pool_2d_2channel_2image
)
{
Shape
shape_a
{
2
,
2
,
5
,
5
};
Shape
window_shape
{
2
,
3
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
Shape
shape_r
{
2
,
2
,
4
,
3
};
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
AvgPool
>
(
A
,
window_shape
),
op
::
ParameterVector
{
A
});
auto
backend
=
runtime
::
Backend
::
create
(
"${BACKEND_NAME}"
);
// Create some tensors for input/output
auto
a
=
backend
->
create_tensor
(
element
::
f32
,
shape_a
);
copy_data
(
a
,
test
::
NDArray
<
float
,
4
>
({{{{
0
,
1
,
0
,
2
,
1
},
// img 0 chan 0
{
0
,
3
,
2
,
0
,
0
},
{
2
,
0
,
0
,
0
,
1
},
{
2
,
0
,
1
,
1
,
2
},
{
0
,
2
,
1
,
0
,
0
}},
{{
0
,
0
,
0
,
2
,
0
},
// img 0 chan 1
{
0
,
2
,
3
,
0
,
1
},
{
2
,
0
,
1
,
0
,
2
},
{
3
,
1
,
0
,
0
,
0
},
{
2
,
0
,
0
,
0
,
0
}}},
{{{
0
,
2
,
1
,
1
,
0
},
// img 1 chan 0
{
0
,
0
,
2
,
0
,
1
},
{
0
,
0
,
1
,
2
,
3
},
{
2
,
0
,
0
,
3
,
0
},
{
0
,
0
,
0
,
0
,
0
}},
{{
2
,
1
,
0
,
0
,
1
},
// img 1 chan 1
{
0
,
2
,
0
,
0
,
0
},
{
1
,
1
,
2
,
0
,
2
},
{
1
,
1
,
1
,
0
,
1
},
{
1
,
0
,
0
,
0
,
2
}}}})
.
get_vector
());
auto
result
=
backend
->
create_tensor
(
element
::
f32
,
shape_r
);
float
denom
=
2
*
3
;
backend
->
call_with_validate
(
f
,
{
result
},
{
a
});
EXPECT_TRUE
(
test
::
all_close_f
(
test
::
NDArray
<
float
,
4
>
({{{{
6
/
denom
,
8
/
denom
,
5
/
denom
},
// img 0 chan 0
{
7
/
denom
,
5
/
denom
,
3
/
denom
},
{
5
/
denom
,
2
/
denom
,
5
/
denom
},
{
6
/
denom
,
5
/
denom
,
5
/
denom
}},
{{
5
/
denom
,
7
/
denom
,
6
/
denom
},
// img 0 chan 1
{
8
/
denom
,
6
/
denom
,
7
/
denom
},
{
7
/
denom
,
2
/
denom
,
3
/
denom
},
{
6
/
denom
,
1
/
denom
,
0
/
denom
}}},
{{{
5
/
denom
,
6
/
denom
,
5
/
denom
},
// img 1 chan 0
{
3
/
denom
,
5
/
denom
,
9
/
denom
},
{
3
/
denom
,
6
/
denom
,
9
/
denom
},
{
2
/
denom
,
3
/
denom
,
3
/
denom
}},
{{
5
/
denom
,
3
/
denom
,
1
/
denom
},
// img 1 chan 1
{
6
/
denom
,
5
/
denom
,
4
/
denom
},
{
7
/
denom
,
5
/
denom
,
6
/
denom
},
{
4
/
denom
,
2
/
denom
,
4
/
denom
}}}})
.
get_vector
(),
read_vector
<
float
>
(
result
)));
}
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
avg_pool_2d_1channel_1image_strided
)
{
Shape
shape_a
{
1
,
1
,
8
,
8
};
Shape
window_shape
{
2
,
3
};
auto
window_movement_strides
=
Strides
{
3
,
2
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
Shape
shape_r
{
1
,
1
,
3
,
3
};
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
AvgPool
>
(
A
,
window_shape
,
window_movement_strides
),
op
::
ParameterVector
{
A
});
auto
backend
=
runtime
::
Backend
::
create
(
"${BACKEND_NAME}"
);
// Create some tensors for input/output
auto
a
=
backend
->
create_tensor
(
element
::
f32
,
shape_a
);
copy_data
(
a
,
test
::
NDArray
<
float
,
4
>
({{{{
0
,
1
,
0
,
2
,
1
,
2
,
0
,
0
},
{
0
,
3
,
2
,
0
,
0
,
0
,
1
,
0
},
{
2
,
0
,
0
,
0
,
1
,
0
,
0
,
0
},
{
2
,
0
,
1
,
1
,
2
,
2
,
3
,
0
},
{
0
,
2
,
1
,
0
,
0
,
0
,
1
,
0
},
{
2
,
0
,
3
,
1
,
0
,
0
,
0
,
0
},
{
1
,
2
,
0
,
0
,
0
,
1
,
2
,
0
},
{
1
,
0
,
2
,
0
,
0
,
0
,
1
,
0
}}}})
.
get_vector
());
auto
result
=
backend
->
create_tensor
(
element
::
f32
,
shape_r
);
float
denom
=
2
*
3
;
backend
->
call_with_validate
(
f
,
{
result
},
{
a
});
EXPECT_TRUE
(
test
::
all_close_f
(
test
::
NDArray
<
float
,
4
>
({{{{
6
/
denom
,
5
/
denom
,
4
/
denom
},
{
6
/
denom
,
5
/
denom
,
8
/
denom
},
{
6
/
denom
,
2
/
denom
,
4
/
denom
}}}})
.
get_vector
(),
read_vector
<
float
>
(
result
)));
}
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
avg_pool_2d_1channel_1image_padded_do_not_include_in_computation
)
{
Shape
shape_a
{
1
,
1
,
3
,
3
};
Shape
window_shape
{
2
,
2
};
auto
window_movement_strides
=
Strides
{
1
,
1
};
Shape
padding_below
{
1
,
1
};
Shape
padding_above
{
1
,
1
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
Shape
shape_r
{
1
,
1
,
4
,
4
};
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
AvgPool
>
(
A
,
window_shape
,
window_movement_strides
,
padding_below
,
padding_above
,
false
),
op
::
ParameterVector
{
A
});
auto
backend
=
runtime
::
Backend
::
create
(
"${BACKEND_NAME}"
);
// Create some tensors for input/output
auto
a
=
backend
->
create_tensor
(
element
::
f32
,
shape_a
);
copy_data
(
a
,
test
::
NDArray
<
float
,
4
>
({{{{
0
,
1
,
0
},
{
0
,
3
,
2
},
{
2
,
0
,
0
}}}}).
get_vector
());
auto
result
=
backend
->
create_tensor
(
element
::
f32
,
shape_r
);
backend
->
call_with_validate
(
f
,
{
result
},
{
a
});
EXPECT_TRUE
(
test
::
all_close
(
test
::
NDArray
<
float
,
4
>
({{{{
0.0
f
/
1
,
1.0
f
/
2
,
1.0
f
/
2
,
0.0
f
/
1
},
{
0.0
f
/
2
,
4.0
f
/
4
,
6.0
f
/
4
,
2.0
f
/
2
},
{
2.0
f
/
2
,
5.0
f
/
4
,
5.0
f
/
4
,
2.0
f
/
2
},
{
2.0
f
/
1
,
2.0
f
/
2
,
0.0
f
/
2
,
0.0
f
/
1
}}}})
.
get_vector
(),
read_vector
<
float
>
(
result
)));
}
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
avg_pool_2d_1channel_1image_padded_include_in_computation
)
{
Shape
shape_a
{
1
,
1
,
3
,
3
};
Shape
window_shape
{
2
,
2
};
auto
window_movement_strides
=
Strides
{
1
,
1
};
Shape
padding_below
{
1
,
1
};
Shape
padding_above
{
1
,
1
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
Shape
shape_r
{
1
,
1
,
4
,
4
};
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
AvgPool
>
(
A
,
window_shape
,
window_movement_strides
,
padding_below
,
padding_above
,
true
),
op
::
ParameterVector
{
A
});
auto
backend
=
runtime
::
Backend
::
create
(
"${BACKEND_NAME}"
);
// Create some tensors for input/output
auto
a
=
backend
->
create_tensor
(
element
::
f32
,
shape_a
);
copy_data
(
a
,
test
::
NDArray
<
float
,
4
>
({{{{
0
,
1
,
0
},
{
0
,
3
,
2
},
{
2
,
0
,
0
}}}}).
get_vector
());
auto
result
=
backend
->
create_tensor
(
element
::
f32
,
shape_r
);
backend
->
call_with_validate
(
f
,
{
result
},
{
a
});
EXPECT_TRUE
(
test
::
all_close
(
test
::
NDArray
<
float
,
4
>
({{{{
0.0
f
/
4
,
1.0
f
/
4
,
1.0
f
/
4
,
0.0
f
/
4
},
{
0.0
f
/
4
,
4.0
f
/
4
,
6.0
f
/
4
,
2.0
f
/
4
},
{
2.0
f
/
4
,
5.0
f
/
4
,
5.0
f
/
4
,
2.0
f
/
4
},
{
2.0
f
/
4
,
2.0
f
/
4
,
0.0
f
/
4
,
0.0
f
/
4
}}}})
.
get_vector
(),
read_vector
<
float
>
(
result
)));
}
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
avg_pool_2d_2channel_2image_padded_do_not_include_in_computation
)
{
Shape
shape_a
{
2
,
1
,
3
,
3
};
Shape
window_shape
{
2
,
2
};
auto
window_movement_strides
=
Strides
{
1
,
1
};
Shape
padding_below
{
1
,
1
};
Shape
padding_above
{
1
,
1
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
Shape
shape_r
{
2
,
1
,
4
,
4
};
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
AvgPool
>
(
A
,
window_shape
,
window_movement_strides
,
padding_below
,
padding_above
,
false
),
op
::
ParameterVector
{
A
});
auto
backend
=
runtime
::
Backend
::
create
(
"${BACKEND_NAME}"
);
// Create some tensors for input/output
auto
a
=
backend
->
create_tensor
(
element
::
f32
,
shape_a
);
copy_data
(
a
,
test
::
NDArray
<
float
,
4
>
(
{{{{
0
,
1
,
0
},
{
0
,
3
,
2
},
{
2
,
0
,
0
}},
{{
3
,
5
,
2
},
{
2
,
0
,
9
},
{
3
,
6
,
5
}}}})
.
get_vector
());
auto
result
=
backend
->
create_tensor
(
element
::
f32
,
shape_r
);
backend
->
call_with_validate
(
f
,
{
result
},
{
a
});
EXPECT_TRUE
(
test
::
all_close
(
test
::
NDArray
<
float
,
4
>
({{{{
0.0
f
/
1
,
1.0
f
/
2
,
1.0
f
/
2
,
0.0
f
/
1
},
{
0.0
f
/
2
,
4.0
f
/
4
,
6.0
f
/
4
,
2.0
f
/
2
},
{
2.0
f
/
2
,
5.0
f
/
4
,
5.0
f
/
4
,
2.0
f
/
2
},
{
2.0
f
/
1
,
2.0
f
/
2
,
0.0
f
/
2
,
0.0
f
/
1
}},
{{
3.0
f
/
1
,
8.0
f
/
2
,
7.0
f
/
2
,
2.0
f
/
1
},
{
5.0
f
/
2
,
10.0
f
/
4
,
16.0
f
/
4
,
11.0
f
/
2
},
{
5.0
f
/
2
,
11.0
f
/
4
,
20.0
f
/
4
,
14.0
f
/
2
},
{
3.0
f
/
1
,
9.0
f
/
2
,
11.0
f
/
2
,
5.0
f
/
1
}}}})
.
get_vector
(),
read_vector
<
float
>
(
result
)));
}
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
avg_pool_2d_2channel_2image_padded_include_in_computation
)
{
Shape
shape_a
{
2
,
1
,
3
,
3
};
Shape
window_shape
{
2
,
2
};
auto
window_movement_strides
=
Strides
{
1
,
1
};
Shape
padding_below
{
1
,
1
};
Shape
padding_above
{
1
,
1
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
Shape
shape_r
{
2
,
1
,
4
,
4
};
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
AvgPool
>
(
A
,
window_shape
,
window_movement_strides
,
padding_below
,
padding_above
,
true
),
op
::
ParameterVector
{
A
});
auto
backend
=
runtime
::
Backend
::
create
(
"${BACKEND_NAME}"
);
// Create some tensors for input/output
auto
a
=
backend
->
create_tensor
(
element
::
f32
,
shape_a
);
copy_data
(
a
,
test
::
NDArray
<
float
,
4
>
(
{{{{
0
,
1
,
0
},
{
0
,
3
,
2
},
{
2
,
0
,
0
}},
{{
3
,
5
,
2
},
{
2
,
0
,
9
},
{
3
,
6
,
5
}}}})
.
get_vector
());
auto
result
=
backend
->
create_tensor
(
element
::
f32
,
shape_r
);
backend
->
call_with_validate
(
f
,
{
result
},
{
a
});
EXPECT_TRUE
(
test
::
all_close
(
test
::
NDArray
<
float
,
4
>
({{{{
0.0
f
/
4
,
1.0
f
/
4
,
1.0
f
/
4
,
0.0
f
/
4
},
{
0.0
f
/
4
,
4.0
f
/
4
,
6.0
f
/
4
,
2.0
f
/
4
},
{
2.0
f
/
4
,
5.0
f
/
4
,
5.0
f
/
4
,
2.0
f
/
4
},
{
2.0
f
/
4
,
2.0
f
/
4
,
0.0
f
/
4
,
0.0
f
/
4
}},
{{
3.0
f
/
4
,
8.0
f
/
4
,
7.0
f
/
4
,
2.0
f
/
4
},
{
5.0
f
/
4
,
10.0
f
/
4
,
16.0
f
/
4
,
11.0
f
/
4
},
{
5.0
f
/
4
,
11.0
f
/
4
,
20.0
f
/
4
,
14.0
f
/
4
},
{
3.0
f
/
4
,
9.0
f
/
4
,
11.0
f
/
4
,
5.0
f
/
4
}}}})
.
get_vector
(),
read_vector
<
float
>
(
result
)));
}
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
avg_pool_2d_2channel_2image_padded_only_below_do_not_include_in_computation
)
{
Shape
shape_a
{
2
,
1
,
3
,
3
};
Shape
window_shape
{
2
,
2
};
auto
window_movement_strides
=
Strides
{
1
,
1
};
Shape
padding_below
{
1
,
1
};
Shape
padding_above
{
0
,
0
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
Shape
shape_r
{
2
,
1
,
3
,
3
};
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
AvgPool
>
(
A
,
window_shape
,
window_movement_strides
,
padding_below
,
padding_above
,
false
),
op
::
ParameterVector
{
A
});
auto
backend
=
runtime
::
Backend
::
create
(
"${BACKEND_NAME}"
);
// Create some tensors for input/output
auto
a
=
backend
->
create_tensor
(
element
::
f32
,
shape_a
);
copy_data
(
a
,
test
::
NDArray
<
float
,
4
>
(
{{{{
0
,
1
,
0
},
{
0
,
3
,
2
},
{
2
,
0
,
0
}},
{{
3
,
5
,
2
},
{
2
,
0
,
9
},
{
3
,
6
,
5
}}}})
.
get_vector
());
auto
result
=
backend
->
create_tensor
(
element
::
f32
,
shape_r
);
backend
->
call_with_validate
(
f
,
{
result
},
{
a
});
EXPECT_TRUE
(
test
::
all_close
(
test
::
NDArray
<
float
,
4
>
({{{{
0.0
f
/
1
,
1.0
f
/
2
,
1.0
f
/
2
},
{
0.0
f
/
2
,
4.0
f
/
4
,
6.0
f
/
4
},
{
2.0
f
/
2
,
5.0
f
/
4
,
5.0
f
/
4
}},
{{
3.0
f
/
1
,
8.0
f
/
2
,
7.0
f
/
2
},
{
5.0
f
/
2
,
10.0
f
/
4
,
16.0
f
/
4
},
{
5.0
f
/
2
,
11.0
f
/
4
,
20.0
f
/
4
}}}})
.
get_vector
(),
read_vector
<
float
>
(
result
)));
}
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
avg_pool_2d_2channel_2image_padded_only_below_include_in_computation
)
{
Shape
shape_a
{
2
,
1
,
3
,
3
};
Shape
window_shape
{
2
,
2
};
auto
window_movement_strides
=
Strides
{
1
,
1
};
Shape
padding_below
{
1
,
1
};
Shape
padding_above
{
0
,
0
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
Shape
shape_r
{
2
,
1
,
3
,
3
};
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
AvgPool
>
(
A
,
window_shape
,
window_movement_strides
,
padding_below
,
padding_above
,
true
),
op
::
ParameterVector
{
A
});
auto
backend
=
runtime
::
Backend
::
create
(
"${BACKEND_NAME}"
);
// Create some tensors for input/output
auto
a
=
backend
->
create_tensor
(
element
::
f32
,
shape_a
);
copy_data
(
a
,
test
::
NDArray
<
float
,
4
>
(
{{{{
0
,
1
,
0
},
{
0
,
3
,
2
},
{
2
,
0
,
0
}},
{{
3
,
5
,
2
},
{
2
,
0
,
9
},
{
3
,
6
,
5
}}}})
.
get_vector
());
auto
result
=
backend
->
create_tensor
(
element
::
f32
,
shape_r
);
backend
->
call_with_validate
(
f
,
{
result
},
{
a
});
EXPECT_TRUE
(
test
::
all_close
(
test
::
NDArray
<
float
,
4
>
({{{{
0.0
f
/
4
,
1.0
f
/
4
,
1.0
f
/
4
},
{
0.0
f
/
4
,
4.0
f
/
4
,
6.0
f
/
4
},
{
2.0
f
/
4
,
5.0
f
/
4
,
5.0
f
/
4
}},
{{
3.0
f
/
4
,
8.0
f
/
4
,
7.0
f
/
4
},
{
5.0
f
/
4
,
10.0
f
/
4
,
16.0
f
/
4
},
{
5.0
f
/
4
,
11.0
f
/
4
,
20.0
f
/
4
}}}})
.
get_vector
(),
read_vector
<
float
>
(
result
)));
}
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
avg_pool_2d_2channel_2image_padded_only_above_do_not_include_in_computation
)
{
Shape
shape_a
{
2
,
1
,
3
,
3
};
Shape
window_shape
{
2
,
2
};
auto
window_movement_strides
=
Strides
{
1
,
1
};
Shape
padding_below
{
0
,
0
};
Shape
padding_above
{
1
,
1
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
Shape
shape_r
{
2
,
1
,
3
,
3
};
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
AvgPool
>
(
A
,
window_shape
,
window_movement_strides
,
padding_below
,
padding_above
,
false
),
op
::
ParameterVector
{
A
});
auto
backend
=
runtime
::
Backend
::
create
(
"${BACKEND_NAME}"
);
// Create some tensors for input/output
auto
a
=
backend
->
create_tensor
(
element
::
f32
,
shape_a
);
copy_data
(
a
,
test
::
NDArray
<
float
,
4
>
(
{{{{
0
,
1
,
0
},
{
0
,
3
,
2
},
{
2
,
0
,
0
}},
{{
3
,
5
,
2
},
{
2
,
0
,
9
},
{
3
,
6
,
5
}}}})
.
get_vector
());
auto
result
=
backend
->
create_tensor
(
element
::
f32
,
shape_r
);
backend
->
call_with_validate
(
f
,
{
result
},
{
a
});
EXPECT_TRUE
(
test
::
all_close
(
test
::
NDArray
<
float
,
4
>
({{{{
4.0
f
/
4
,
6.0
f
/
4
,
2.0
f
/
2
},
{
5.0
f
/
4
,
5.0
f
/
4
,
2.0
f
/
2
},
{
2.0
f
/
2
,
0.0
f
/
2
,
0.0
f
/
1
}},
{{
10.0
f
/
4
,
16.0
f
/
4
,
11.0
f
/
2
},
{
11.0
f
/
4
,
20.0
f
/
4
,
14.0
f
/
2
},
{
9.0
f
/
2
,
11.0
f
/
2
,
5.0
f
/
1
}}}})
.
get_vector
(),
read_vector
<
float
>
(
result
)));
}
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
avg_pool_2d_2channel_2image_padded_only_above_include_in_computation
)
{
Shape
shape_a
{
2
,
1
,
3
,
3
};
Shape
window_shape
{
2
,
2
};
auto
window_movement_strides
=
Strides
{
1
,
1
};
Shape
padding_below
{
0
,
0
};
Shape
padding_above
{
1
,
1
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
Shape
shape_r
{
2
,
1
,
3
,
3
};
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
AvgPool
>
(
A
,
window_shape
,
window_movement_strides
,
padding_below
,
padding_above
,
true
),
op
::
ParameterVector
{
A
});
auto
backend
=
runtime
::
Backend
::
create
(
"${BACKEND_NAME}"
);
// Create some tensors for input/output
auto
a
=
backend
->
create_tensor
(
element
::
f32
,
shape_a
);
copy_data
(
a
,
test
::
NDArray
<
float
,
4
>
(
{{{{
0
,
1
,
0
},
{
0
,
3
,
2
},
{
2
,
0
,
0
}},
{{
3
,
5
,
2
},
{
2
,
0
,
9
},
{
3
,
6
,
5
}}}})
.
get_vector
());
auto
result
=
backend
->
create_tensor
(
element
::
f32
,
shape_r
);
backend
->
call_with_validate
(
f
,
{
result
},
{
a
});
EXPECT_TRUE
(
test
::
all_close
(
test
::
NDArray
<
float
,
4
>
({{{{
4.0
f
/
4
,
6.0
f
/
4
,
2.0
f
/
4
},
{
5.0
f
/
4
,
5.0
f
/
4
,
2.0
f
/
4
},
{
2.0
f
/
4
,
0.0
f
/
4
,
0.0
f
/
4
}},
{{
10.0
f
/
4
,
16.0
f
/
4
,
11.0
f
/
4
},
{
11.0
f
/
4
,
20.0
f
/
4
,
14.0
f
/
4
},
{
9.0
f
/
4
,
11.0
f
/
4
,
5.0
f
/
4
}}}})
.
get_vector
(),
read_vector
<
float
>
(
result
)));
}
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
avg_pool_2d_2channel_2image_3x3_padded_do_not_include_in_computation
)
{
Shape
shape_a
{
2
,
1
,
3
,
3
};
Shape
window_shape
{
3
,
3
};
auto
window_movement_strides
=
Strides
{
1
,
1
};
Shape
padding_below
{
2
,
2
};
Shape
padding_above
{
2
,
2
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
Shape
shape_r
{
2
,
1
,
5
,
5
};
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
AvgPool
>
(
A
,
window_shape
,
window_movement_strides
,
padding_below
,
padding_above
,
false
),
op
::
ParameterVector
{
A
});
auto
backend
=
runtime
::
Backend
::
create
(
"${BACKEND_NAME}"
);
// Create some tensors for input/output
auto
a
=
backend
->
create_tensor
(
element
::
f32
,
shape_a
);
copy_data
(
a
,
test
::
NDArray
<
float
,
4
>
(
{{{{
0
,
1
,
0
},
{
0
,
3
,
2
},
{
2
,
0
,
0
}},
{{
3
,
5
,
2
},
{
2
,
0
,
9
},
{
3
,
6
,
5
}}}})
.
get_vector
());
auto
result
=
backend
->
create_tensor
(
element
::
f32
,
shape_r
);
backend
->
call_with_validate
(
f
,
{
result
},
{
a
});
EXPECT_TRUE
(
test
::
all_close_f
(
test
::
NDArray
<
float
,
4
>
({{{{
0.0
f
/
1
,
1.0
f
/
2
,
1.0
f
/
3
,
1.0
f
/
2
,
0.0
f
/
1
},
{
0.0
f
/
2
,
4.0
f
/
4
,
6.0
f
/
6
,
6.0
f
/
4
,
2.0
f
/
2
},
{
2.0
f
/
3
,
6.0
f
/
6
,
8.0
f
/
9
,
6.0
f
/
6
,
2.0
f
/
3
},
{
2.0
f
/
2
,
5.0
f
/
4
,
7.0
f
/
6
,
5.0
f
/
4
,
2.0
f
/
2
},
{
2.0
f
/
1
,
2.0
f
/
2
,
2.0
f
/
3
,
0.0
f
/
2
,
0.0
f
/
1
}},
{{
3.0
f
/
1
,
8.0
f
/
2
,
10.0
f
/
3
,
7.0
f
/
2
,
2.0
f
/
1
},
{
5.0
f
/
2
,
10.0
f
/
4
,
21.0
f
/
6
,
16.0
f
/
4
,
11.0
f
/
2
},
{
8.0
f
/
3
,
19.0
f
/
6
,
35.0
f
/
9
,
27.0
f
/
6
,
16.0
f
/
3
},
{
5.0
f
/
2
,
11.0
f
/
4
,
25.0
f
/
6
,
20.0
f
/
4
,
14.0
f
/
2
},
{
3.0
f
/
1
,
9.0
f
/
2
,
14.0
f
/
3
,
11.0
f
/
2
,
5.0
f
/
1
}}}})
.
get_vector
(),
read_vector
<
float
>
(
result
)));
}
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
avg_pool_2d_2channel_2image_3x3_padded_include_in_computation
)
{
Shape
shape_a
{
2
,
1
,
3
,
3
};
Shape
window_shape
{
3
,
3
};
auto
window_movement_strides
=
Strides
{
1
,
1
};
Shape
padding_below
{
2
,
2
};
Shape
padding_above
{
2
,
2
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
Shape
shape_r
{
2
,
1
,
5
,
5
};
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
AvgPool
>
(
A
,
window_shape
,
window_movement_strides
,
padding_below
,
padding_above
,
true
),
op
::
ParameterVector
{
A
});
auto
backend
=
runtime
::
Backend
::
create
(
"${BACKEND_NAME}"
);
// Create some tensors for input/output
auto
a
=
backend
->
create_tensor
(
element
::
f32
,
shape_a
);
copy_data
(
a
,
test
::
NDArray
<
float
,
4
>
(
{{{{
0
,
1
,
0
},
{
0
,
3
,
2
},
{
2
,
0
,
0
}},
{{
3
,
5
,
2
},
{
2
,
0
,
9
},
{
3
,
6
,
5
}}}})
.
get_vector
());
auto
result
=
backend
->
create_tensor
(
element
::
f32
,
shape_r
);
backend
->
call_with_validate
(
f
,
{
result
},
{
a
});
EXPECT_TRUE
(
test
::
all_close_f
(
test
::
NDArray
<
float
,
4
>
({{{{
0.0
f
/
9
,
1.0
f
/
9
,
1.0
f
/
9
,
1.0
f
/
9
,
0.0
f
/
9
},
{
0.0
f
/
9
,
4.0
f
/
9
,
6.0
f
/
9
,
6.0
f
/
9
,
2.0
f
/
9
},
{
2.0
f
/
9
,
6.0
f
/
9
,
8.0
f
/
9
,
6.0
f
/
9
,
2.0
f
/
9
},
{
2.0
f
/
9
,
5.0
f
/
9
,
7.0
f
/
9
,
5.0
f
/
9
,
2.0
f
/
9
},
{
2.0
f
/
9
,
2.0
f
/
9
,
2.0
f
/
9
,
0.0
f
/
9
,
0.0
f
/
9
}},
{{
3.0
f
/
9
,
8.0
f
/
9
,
10.0
f
/
9
,
7.0
f
/
9
,
2.0
f
/
9
},
{
5.0
f
/
9
,
10.0
f
/
9
,
21.0
f
/
9
,
16.0
f
/
9
,
11.0
f
/
9
},
{
8.0
f
/
9
,
19.0
f
/
9
,
35.0
f
/
9
,
27.0
f
/
9
,
16.0
f
/
9
},
{
5.0
f
/
9
,
11.0
f
/
9
,
25.0
f
/
9
,
20.0
f
/
9
,
14.0
f
/
9
},
{
3.0
f
/
9
,
9.0
f
/
9
,
14.0
f
/
9
,
11.0
f
/
9
,
5.0
f
/
9
}}}})
.
get_vector
(),
read_vector
<
float
>
(
result
)));
}
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
avg_pool_2d_2channel_2image_3x3_strided_padded_do_not_include_in_computation
)
{
Shape
shape_a
{
2
,
1
,
3
,
3
};
Shape
window_shape
{
3
,
3
};
auto
window_movement_strides
=
Strides
{
2
,
2
};
Shape
padding_below
{
2
,
2
};
Shape
padding_above
{
2
,
2
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
Shape
shape_r
{
2
,
1
,
3
,
3
};
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
AvgPool
>
(
A
,
window_shape
,
window_movement_strides
,
padding_below
,
padding_above
,
false
),
op
::
ParameterVector
{
A
});
auto
backend
=
runtime
::
Backend
::
create
(
"${BACKEND_NAME}"
);
// Create some tensors for input/output
auto
a
=
backend
->
create_tensor
(
element
::
f32
,
shape_a
);
copy_data
(
a
,
test
::
NDArray
<
float
,
4
>
(
{{{{
0
,
1
,
0
},
{
0
,
3
,
2
},
{
2
,
0
,
0
}},
{{
3
,
5
,
2
},
{
2
,
0
,
9
},
{
3
,
6
,
5
}}}})
.
get_vector
());
auto
result
=
backend
->
create_tensor
(
element
::
f32
,
shape_r
);
backend
->
call_with_validate
(
f
,
{
result
},
{
a
});
EXPECT_TRUE
(
test
::
all_close_f
(
test
::
NDArray
<
float
,
4
>
({{{{
0.0
f
/
1
,
1.0
f
/
3
,
0.0
f
/
1
},
{
2.0
f
/
3
,
8.0
f
/
9
,
2.0
f
/
3
},
{
2.0
f
/
1
,
2.0
f
/
3
,
0.0
f
/
1
}},
{{
3.0
f
/
1
,
10.0
f
/
3
,
2.0
f
/
1
},
{
8.0
f
/
3
,
35.0
f
/
9
,
16.0
f
/
3
},
{
3.0
f
/
1
,
14.0
f
/
3
,
5.0
f
/
1
}}}})
.
get_vector
(),
read_vector
<
float
>
(
result
)));
}
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
avg_pool_2d_2channel_2image_3x3_strided_padded_include_in_computation
)
{
Shape
shape_a
{
2
,
1
,
3
,
3
};
Shape
window_shape
{
3
,
3
};
auto
window_movement_strides
=
Strides
{
2
,
2
};
Shape
padding_below
{
2
,
2
};
Shape
padding_above
{
2
,
2
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
Shape
shape_r
{
2
,
1
,
3
,
3
};
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
AvgPool
>
(
A
,
window_shape
,
window_movement_strides
,
padding_below
,
padding_above
,
true
),
op
::
ParameterVector
{
A
});
auto
backend
=
runtime
::
Backend
::
create
(
"${BACKEND_NAME}"
);
// Create some tensors for input/output
auto
a
=
backend
->
create_tensor
(
element
::
f32
,
shape_a
);
copy_data
(
a
,
test
::
NDArray
<
float
,
4
>
(
{{{{
0
,
1
,
0
},
{
0
,
3
,
2
},
{
2
,
0
,
0
}},
{{
3
,
5
,
2
},
{
2
,
0
,
9
},
{
3
,
6
,
5
}}}})
.
get_vector
());
auto
result
=
backend
->
create_tensor
(
element
::
f32
,
shape_r
);
backend
->
call_with_validate
(
f
,
{
result
},
{
a
});
EXPECT_TRUE
(
test
::
all_close_f
(
test
::
NDArray
<
float
,
4
>
({{{{
0.0
f
/
9
,
1.0
f
/
9
,
0.0
f
/
9
},
{
2.0
f
/
9
,
8.0
f
/
9
,
2.0
f
/
9
},
{
2.0
f
/
9
,
2.0
f
/
9
,
0.0
f
/
9
}},
{{
3.0
f
/
9
,
10.0
f
/
9
,
2.0
f
/
9
},
{
8.0
f
/
9
,
35.0
f
/
9
,
16.0
f
/
9
},
{
3.0
f
/
9
,
14.0
f
/
9
,
5.0
f
/
9
}}}})
.
get_vector
(),
read_vector
<
float
>
(
result
)));
}
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
avg_pool_2d_2channel_2image_3x3_strided_uneven_padded_do_not_include_in_computation
)
{
Shape
shape_a
{
2
,
1
,
3
,
3
};
Shape
window_shape
{
3
,
3
};
auto
window_movement_strides
=
Strides
{
2
,
3
};
Shape
padding_below
{
2
,
2
};
Shape
padding_above
{
2
,
2
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
Shape
shape_r
{
2
,
1
,
3
,
2
};
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
AvgPool
>
(
A
,
window_shape
,
window_movement_strides
,
padding_below
,
padding_above
,
false
),
op
::
ParameterVector
{
A
});
auto
backend
=
runtime
::
Backend
::
create
(
"${BACKEND_NAME}"
);
// Create some tensors for input/output
auto
a
=
backend
->
create_tensor
(
element
::
f32
,
shape_a
);
copy_data
(
a
,
test
::
NDArray
<
float
,
4
>
(
{{{{
0
,
1
,
0
},
{
0
,
3
,
2
},
{
2
,
0
,
0
}},
{{
3
,
5
,
2
},
{
2
,
0
,
9
},
{
3
,
6
,
5
}}}})
.
get_vector
());
auto
result
=
backend
->
create_tensor
(
element
::
f32
,
shape_r
);
backend
->
call_with_validate
(
f
,
{
result
},
{
a
});
EXPECT_TRUE
(
test
::
all_close_f
(
test
::
NDArray
<
float
,
4
>
(
{{{{
0.0
f
/
1
,
1.0
f
/
2
},
{
2.0
f
/
3
,
6.0
f
/
6
},
{
2.0
f
/
1
,
0.0
f
/
2
}},
{{
3.0
f
/
1
,
7.0
f
/
2
},
{
8.0
f
/
3
,
27.0
f
/
6
},
{
3.0
f
/
1
,
11.0
f
/
2
}}}})
.
get_vector
(),
read_vector
<
float
>
(
result
)));
}
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
avg_pool_2d_2channel_2image_3x3_strided_uneven_padded_include_in_computation
)
{
Shape
shape_a
{
2
,
1
,
3
,
3
};
Shape
window_shape
{
3
,
3
};
auto
window_movement_strides
=
Strides
{
2
,
3
};
Shape
padding_below
{
2
,
2
};
Shape
padding_above
{
2
,
2
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
Shape
shape_r
{
2
,
1
,
3
,
2
};
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
AvgPool
>
(
A
,
window_shape
,
window_movement_strides
,
padding_below
,
padding_above
,
true
),
op
::
ParameterVector
{
A
});
auto
backend
=
runtime
::
Backend
::
create
(
"${BACKEND_NAME}"
);
// Create some tensors for input/output
auto
a
=
backend
->
create_tensor
(
element
::
f32
,
shape_a
);
copy_data
(
a
,
test
::
NDArray
<
float
,
4
>
(
{{{{
0
,
1
,
0
},
{
0
,
3
,
2
},
{
2
,
0
,
0
}},
{{
3
,
5
,
2
},
{
2
,
0
,
9
},
{
3
,
6
,
5
}}}})
.
get_vector
());
auto
result
=
backend
->
create_tensor
(
element
::
f32
,
shape_r
);
backend
->
call_with_validate
(
f
,
{
result
},
{
a
});
EXPECT_TRUE
(
test
::
all_close_f
(
test
::
NDArray
<
float
,
4
>
(
{{{{
0.0
f
/
9
,
1.0
f
/
9
},
{
2.0
f
/
9
,
6.0
f
/
9
},
{
2.0
f
/
9
,
0.0
f
/
9
}},
{{
3.0
f
/
9
,
7.0
f
/
9
},
{
8.0
f
/
9
,
27.0
f
/
9
},
{
3.0
f
/
9
,
11.0
f
/
9
}}}})
.
get_vector
(),
read_vector
<
float
>
(
result
)));
}
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
avg_pool_3d_strided_uneven_padded_do_not_include_in_computation
)
{
Shape
shape_a
{
64
,
3
,
12
,
13
,
15
};
Shape
window_shape
{
4
,
5
,
4
};
auto
move_strides
=
Strides
{
2
,
3
,
4
};
Shape
padding_below
{
2
,
3
,
1
};
Shape
padding_above
{
3
,
1
,
2
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
auto
B
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
auto
cpu_f
=
make_shared
<
Function
>
(
make_shared
<
op
::
AvgPool
>
(
A
,
window_shape
,
move_strides
,
padding_below
,
padding_above
,
false
),
op
::
ParameterVector
{
A
});
auto
int_f
=
make_shared
<
Function
>
(
make_shared
<
op
::
AvgPool
>
(
B
,
window_shape
,
move_strides
,
padding_below
,
padding_above
,
false
),
op
::
ParameterVector
{
B
});
test
::
Uniform
<
float
>
rng
(
0.0
f
,
1.0
f
);
vector
<
vector
<
float
>>
args
;
for
(
shared_ptr
<
op
::
Parameter
>
param
:
int_f
->
get_parameters
())
{
vector
<
float
>
tensor_val
(
shape_size
(
param
->
get_shape
()));
rng
.
initialize
(
tensor_val
);
args
.
push_back
(
tensor_val
);
}
auto
int_results
=
execute
(
int_f
,
args
,
"INTERPRETER"
);
auto
backend_results
=
execute
(
cpu_f
,
args
,
"${BACKEND_NAME}"
);
for
(
size_t
i
=
0
;
i
<
backend_results
.
size
();
i
++
)
{
EXPECT_TRUE
(
test
::
all_close
(
backend_results
.
at
(
i
),
int_results
.
at
(
i
),
1.0e-4
f
,
1.0e-4
f
));
}
}
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
avg_pool_3d_uneven_strided_padded_include_in_computation
)
{
Shape
shape_a
{
64
,
3
,
7
,
8
,
10
};
Shape
window_shape
{
2
,
3
,
2
};
auto
move_strides
=
Strides
{
2
,
3
,
4
};
Shape
padding_below
{
5
,
6
,
4
};
Shape
padding_above
{
6
,
4
,
5
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
auto
B
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
auto
cpu_f
=
make_shared
<
Function
>
(
make_shared
<
op
::
AvgPool
>
(
A
,
window_shape
,
move_strides
,
padding_below
,
padding_above
,
true
),
op
::
ParameterVector
{
A
});
auto
int_f
=
make_shared
<
Function
>
(
make_shared
<
op
::
AvgPool
>
(
B
,
window_shape
,
move_strides
,
padding_below
,
padding_above
,
true
),
op
::
ParameterVector
{
B
});
test
::
Uniform
<
float
>
rng
(
0.0
f
,
1.0
f
);
vector
<
vector
<
float
>>
args
;
for
(
shared_ptr
<
op
::
Parameter
>
param
:
int_f
->
get_parameters
())
{
vector
<
float
>
tensor_val
(
shape_size
(
param
->
get_shape
()));
rng
.
initialize
(
tensor_val
);
args
.
push_back
(
tensor_val
);
}
auto
int_results
=
execute
(
int_f
,
args
,
"INTERPRETER"
);
auto
backend_results
=
execute
(
cpu_f
,
args
,
"${BACKEND_NAME}"
);
for
(
size_t
i
=
0
;
i
<
backend_results
.
size
();
i
++
)
{
EXPECT_TRUE
(
test
::
all_close
(
backend_results
.
at
(
i
),
int_results
.
at
(
i
),
1.0e-4
f
,
1.0e-4
f
));
}
}
NGRAPH_TEST
(
$
{
BACKEND_NAME
},
pad_interior_1d
)
{
Shape
shape_a
{
6
};
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment