Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
N
ngraph
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
ngraph
Commits
dfa5d4d1
Commit
dfa5d4d1
authored
Jul 22, 2019
by
Scott Cyphers
Browse files
Options
Browse Files
Download
Plain Diff
Merge branch 's-barannikov/new_op_form/batch_norm' into cyphers/s-barannikov
parents
7fbdfd5c
77dd3bc2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
77 additions
and
77 deletions
+77
-77
batch_norm.cpp
src/ngraph/op/batch_norm.cpp
+49
-48
batch_norm.hpp
src/ngraph/op/batch_norm.hpp
+28
-29
No files found.
src/ngraph/op/batch_norm.cpp
View file @
dfa5d4d1
...
...
@@ -22,12 +22,15 @@
#include "ngraph/op/get_output_element.hpp"
#include "ngraph/validation_util.hpp"
const
std
::
string
ngraph
::
op
::
BatchNormTraining
::
type_name
{
"BatchNormTraining"
};
using
namespace
std
;
using
namespace
ngraph
;
ngraph
::
op
::
BatchNormTraining
::
BatchNormTraining
(
Output
<
ngraph
::
Node
>
input
,
Output
<
ngraph
::
Node
>
gamma
,
Output
<
ngraph
::
Node
>
beta
,
double
epsilon
)
const
string
op
::
BatchNormTraining
::
type_name
{
"BatchNormTraining"
};
op
::
BatchNormTraining
::
BatchNormTraining
(
const
Output
<
Node
>&
input
,
const
Output
<
Node
>&
gamma
,
const
Output
<
Node
>&
beta
,
double
epsilon
)
:
Op
({
gamma
,
beta
,
input
})
,
m_epsilon
(
epsilon
)
{
...
...
@@ -35,17 +38,17 @@ ngraph::op::BatchNormTraining::BatchNormTraining(Output<ngraph::Node> input,
}
// DEPRECATED
ngraph
::
op
::
BatchNormTraining
::
BatchNormTraining
(
double
eps
,
Output
<
ngraph
::
Node
>
gamma
,
Output
<
ngraph
::
Node
>
beta
,
Output
<
ngraph
::
Node
>
input
)
op
::
BatchNormTraining
::
BatchNormTraining
(
double
eps
,
const
Output
<
Node
>&
gamma
,
const
Output
<
Node
>&
beta
,
const
Output
<
Node
>&
input
)
:
Op
({
gamma
,
beta
,
input
})
,
m_epsilon
(
eps
)
{
constructor_validate_and_infer_types
();
}
void
ngraph
::
op
::
BatchNormTraining
::
validate_and_infer_types
()
void
op
::
BatchNormTraining
::
validate_and_infer_types
()
{
element
::
Type
result_et
;
PartialShape
result_batch_shape
;
...
...
@@ -66,16 +69,15 @@ void ngraph::op::BatchNormTraining::validate_and_infer_types()
set_output_type
(
2
,
result_et
,
result_channel_shape
);
}
std
::
shared_ptr
<
ngraph
::
Node
>
ngraph
::
op
::
BatchNormTraining
::
copy_with_new_args
(
const
NodeVector
&
new_args
)
const
std
::
shared_ptr
<
Node
>
op
::
BatchNormTraining
::
copy_with_new_args
(
const
NodeVector
&
new_args
)
const
{
check_new_args_count
(
this
,
new_args
);
return
std
::
make_shared
<
BatchNormTraining
>
(
new_args
.
at
(
2
),
new_args
.
at
(
0
),
new_args
.
at
(
1
),
m_epsilon
);
}
void
ngraph
::
op
::
BatchNormTraining
::
generate_adjoints
(
autodiff
::
Adjoints
&
adjoints
,
const
NodeVector
&
deltas
)
void
op
::
BatchNormTraining
::
generate_adjoints
(
autodiff
::
Adjoints
&
adjoints
,
const
NodeVector
&
deltas
)
{
auto
gamma
=
input
(
0
).
get_source_output
();
auto
beta
=
input
(
1
).
get_source_output
();
...
...
@@ -102,14 +104,14 @@ void ngraph::op::BatchNormTraining::generate_adjoints(autodiff::Adjoints& adjoin
adjoints
.
add_delta
(
beta
,
dbeta
);
}
const
st
d
::
string
ngraph
::
op
::
BatchNormInference
::
type_name
{
"BatchNormInference"
};
const
st
ring
op
::
BatchNormInference
::
type_name
{
"BatchNormInference"
};
ngraph
::
op
::
BatchNormInference
::
BatchNormInference
(
Output
<
ngraph
::
Node
>
input
,
Output
<
ngraph
::
Node
>
gamma
,
Output
<
ngraph
::
Node
>
beta
,
Output
<
ngraph
::
Node
>
mean
,
Output
<
ngraph
::
Node
>
variance
,
double
epsilon
)
op
::
BatchNormInference
::
BatchNormInference
(
const
Output
<
Node
>&
input
,
const
Output
<
Node
>&
gamma
,
const
Output
<
Node
>&
beta
,
const
Output
<
Node
>&
mean
,
const
Output
<
Node
>&
variance
,
double
epsilon
)
:
Op
({
gamma
,
beta
,
input
,
mean
,
variance
})
,
m_epsilon
(
epsilon
)
{
...
...
@@ -117,19 +119,19 @@ ngraph::op::BatchNormInference::BatchNormInference(Output<ngraph::Node> input,
}
// DEPRECATED
ngraph
::
op
::
BatchNormInference
::
BatchNormInference
(
double
eps
,
Output
<
ngraph
::
Node
>
gamma
,
Output
<
ngraph
::
Node
>
beta
,
Output
<
ngraph
::
Node
>
input
,
Output
<
ngraph
::
Node
>
mean
,
Output
<
ngraph
::
Node
>
variance
)
op
::
BatchNormInference
::
BatchNormInference
(
double
eps
,
const
Output
<
Node
>&
gamma
,
const
Output
<
Node
>&
beta
,
const
Output
<
Node
>&
input
,
const
Output
<
Node
>&
mean
,
const
Output
<
Node
>&
variance
)
:
Op
({
gamma
,
beta
,
input
,
mean
,
variance
})
,
m_epsilon
(
eps
)
{
constructor_validate_and_infer_types
();
}
void
ngraph
::
op
::
BatchNormInference
::
validate_and_infer_types
()
void
op
::
BatchNormInference
::
validate_and_infer_types
()
{
element
::
Type
result_et
;
PartialShape
result_batch_shape
;
...
...
@@ -152,23 +154,22 @@ void ngraph::op::BatchNormInference::validate_and_infer_types()
set_output_type
(
0
,
result_et
,
result_batch_shape
);
}
std
::
shared_ptr
<
ngraph
::
Node
>
ngraph
::
op
::
BatchNormInference
::
copy_with_new_args
(
const
NodeVector
&
new_args
)
const
std
::
shared_ptr
<
Node
>
op
::
BatchNormInference
::
copy_with_new_args
(
const
NodeVector
&
new_args
)
const
{
check_new_args_count
(
this
,
new_args
);
return
std
::
make_shared
<
BatchNormInference
>
(
new_args
.
at
(
2
),
new_args
.
at
(
0
),
new_args
.
at
(
1
),
new_args
.
at
(
3
),
new_args
.
at
(
4
),
m_epsilon
);
}
const
st
d
::
string
ngraph
::
op
::
BatchNormTrainingBackprop
::
type_name
{
"BatchNormTrainingBackprop"
};
const
st
ring
op
::
BatchNormTrainingBackprop
::
type_name
{
"BatchNormTrainingBackprop"
};
ngraph
::
op
::
BatchNormTrainingBackprop
::
BatchNormTrainingBackprop
(
Output
<
ngraph
::
Node
>
input
,
Output
<
ngraph
::
Node
>
gamma
,
Output
<
ngraph
::
Node
>
beta
,
Output
<
ngraph
::
Node
>
mean
,
Output
<
ngraph
::
Node
>
variance
,
Output
<
ngraph
::
Node
>
delta
,
double
epsilon
)
op
::
BatchNormTrainingBackprop
::
BatchNormTrainingBackprop
(
const
Output
<
Node
>&
input
,
const
Output
<
Node
>&
gamma
,
const
Output
<
Node
>&
beta
,
const
Output
<
Node
>&
mean
,
const
Output
<
Node
>&
variance
,
const
Output
<
Node
>&
delta
,
double
epsilon
)
:
Op
({
gamma
,
beta
,
input
,
mean
,
variance
,
delta
})
,
m_epsilon
(
epsilon
)
...
...
@@ -177,13 +178,13 @@ ngraph::op::BatchNormTrainingBackprop::BatchNormTrainingBackprop(Output<ngraph::
constructor_validate_and_infer_types
();
}
ngraph
::
op
::
BatchNormTrainingBackprop
::
BatchNormTrainingBackprop
(
double
epsilon
,
Output
<
ngraph
::
Node
>
gamma
,
Output
<
ngraph
::
Node
>
beta
,
Output
<
ngraph
::
Node
>
input
,
Output
<
ngraph
::
Node
>
mean
,
Output
<
ngraph
::
Node
>
variance
,
Output
<
ngraph
::
Node
>
delta
)
op
::
BatchNormTrainingBackprop
::
BatchNormTrainingBackprop
(
double
epsilon
,
const
Output
<
Node
>&
gamma
,
const
Output
<
Node
>&
beta
,
const
Output
<
Node
>&
input
,
const
Output
<
Node
>&
mean
,
const
Output
<
Node
>&
variance
,
const
Output
<
Node
>&
delta
)
:
Op
({
gamma
,
beta
,
input
,
mean
,
variance
,
delta
})
,
m_epsilon
(
epsilon
)
...
...
@@ -192,7 +193,7 @@ ngraph::op::BatchNormTrainingBackprop::BatchNormTrainingBackprop(double epsilon,
constructor_validate_and_infer_types
();
}
void
ngraph
::
op
::
BatchNormTrainingBackprop
::
validate_and_infer_types
()
void
op
::
BatchNormTrainingBackprop
::
validate_and_infer_types
()
{
PartialShape
input_and_delta_shape
{
get_input_partial_shape
(
INPUT_DATA
)};
...
...
@@ -239,8 +240,8 @@ void ngraph::op::BatchNormTrainingBackprop::validate_and_infer_types()
set_output_type
(
2
,
result_et
,
result_channel_shape
);
}
std
::
shared_ptr
<
ngraph
::
Node
>
ngraph
::
op
::
BatchNormTrainingBackprop
::
copy_with_new_args
(
const
NodeVector
&
new_args
)
const
std
::
shared_ptr
<
Node
>
op
::
BatchNormTrainingBackprop
::
copy_with_new_args
(
const
NodeVector
&
new_args
)
const
{
check_new_args_count
(
this
,
new_args
);
return
std
::
make_shared
<
op
::
BatchNormTrainingBackprop
>
(
new_args
.
at
(
2
),
...
...
src/ngraph/op/batch_norm.hpp
View file @
dfa5d4d1
...
...
@@ -39,9 +39,9 @@ namespace ngraph
/// \param gamma gamma scaling for normalized value. [C]
/// \param beta bias added to the scaled normalized value [C]
/// \param epsilon Avoids divsion by 0 if input has 0 variance
BatchNormTraining
(
Output
<
Node
>
input
,
Output
<
Node
>
gamma
,
Output
<
Node
>
beta
,
BatchNormTraining
(
const
Output
<
Node
>&
input
,
const
Output
<
Node
>&
gamma
,
const
Output
<
Node
>&
beta
,
double
epsilon
);
NGRAPH_DEPRECATED_DOC
...
...
@@ -66,9 +66,9 @@ namespace ngraph
/// output[2]: shall have rank 1, with the same span as input's channel axis.
NGRAPH_DEPRECATED
(
"Use another constructor"
)
BatchNormTraining
(
double
eps
,
Output
<
Node
>
gamma
,
Output
<
Node
>
beta
,
Output
<
Node
>
input
);
const
Output
<
Node
>&
gamma
,
const
Output
<
Node
>&
beta
,
const
Output
<
Node
>&
input
);
void
validate_and_infer_types
()
override
;
...
...
@@ -101,11 +101,11 @@ namespace ngraph
/// \param mean value for mean normalization [C]
/// \param variance value for variance normalization [C]
/// \param epsilon Avoids divsion by 0 if input has 0 variance
BatchNormInference
(
Output
<
ngraph
::
Node
>
input
,
Output
<
ngraph
::
Node
>
gamma
,
Output
<
ngraph
::
Node
>
beta
,
Output
<
ngraph
::
Node
>
mean
,
Output
<
ngraph
::
Node
>
variance
,
BatchNormInference
(
const
Output
<
Node
>&
input
,
const
Output
<
Node
>&
gamma
,
const
Output
<
Node
>&
beta
,
const
Output
<
Node
>&
mean
,
const
Output
<
Node
>&
variance
,
double
epsilon
);
NGRAPH_DEPRECATED_DOC
...
...
@@ -128,11 +128,11 @@ namespace ngraph
/// output: shall have the same shape as 'input'.
NGRAPH_DEPRECATED
(
"Use another constructor"
)
BatchNormInference
(
double
eps
,
Output
<
ngraph
::
Node
>
gamma
,
Output
<
ngraph
::
Node
>
beta
,
Output
<
ngraph
::
Node
>
input
,
Output
<
ngraph
::
Node
>
mean
,
Output
<
ngraph
::
Node
>
variance
);
const
Output
<
Node
>&
gamma
,
const
Output
<
Node
>&
beta
,
const
Output
<
Node
>&
input
,
const
Output
<
Node
>&
mean
,
const
Output
<
Node
>&
variance
);
void
validate_and_infer_types
()
override
;
...
...
@@ -165,24 +165,23 @@ namespace ngraph
static
const
std
::
string
type_name
;
const
std
::
string
&
description
()
const
override
{
return
type_name
;
}
BatchNormTrainingBackprop
()
=
default
;
BatchNormTrainingBackprop
(
Output
<
Node
>
input
,
Output
<
Node
>
gamma
,
Output
<
Node
>
beta
,
Output
<
Node
>
mean
,
Output
<
Node
>
variance
,
Output
<
Node
>
delta
,
BatchNormTrainingBackprop
(
const
Output
<
Node
>&
input
,
const
Output
<
Node
>&
gamma
,
const
Output
<
Node
>&
beta
,
const
Output
<
Node
>&
mean
,
const
Output
<
Node
>&
variance
,
const
Output
<
Node
>&
delta
,
double
epsilon
);
NGRAPH_DEPRECATED_DOC
NGRAPH_DEPRECATED
(
"Use another constructor"
)
BatchNormTrainingBackprop
(
double
epsilon
,
Output
<
Node
>
gamma
,
Output
<
Node
>
beta
,
Output
<
Node
>
input
,
Output
<
Node
>
mean
,
Output
<
Node
>
variance
,
Output
<
Node
>
delta
);
const
Output
<
Node
>&
gamma
,
const
Output
<
Node
>&
beta
,
const
Output
<
Node
>&
input
,
const
Output
<
Node
>&
mean
,
const
Output
<
Node
>&
variance
,
const
Output
<
Node
>&
delta
);
void
validate_and_infer_types
()
override
;
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment