Commit dd5c6fb6 authored by Diego Caballero's avatar Diego Caballero Committed by nmostafa

[MLIR] Add JIT compilation and execution of mlir code

parent a5c99754
...@@ -14,22 +14,6 @@ ...@@ -14,22 +14,6 @@
// limitations under the License. // limitations under the License.
//***************************************************************************** //*****************************************************************************
#include "compiler.hpp" #include "compiler.hpp"
#include <memory>
#include "mlir/ExecutionEngine/ExecutionEngine.h"
#include "mlir/ExecutionEngine/OptUtils.h"
#include "mlir/LLVMIR/LLVMDialect.h"
#include "mlir/LLVMIR/Transforms.h"
#include "mlir/Pass/PassManager.h"
#include "mlir/Target/LLVMIR.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/Passes.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/ErrorOr.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/TargetSelect.h"
#include "ngraph/descriptor/tensor.hpp" #include "ngraph/descriptor/tensor.hpp"
#include "ngraph/graph_util.hpp" #include "ngraph/graph_util.hpp"
...@@ -41,7 +25,25 @@ ...@@ -41,7 +25,25 @@
#include "ngraph/runtime/cpu/mlir/lowerer.hpp" #include "ngraph/runtime/cpu/mlir/lowerer.hpp"
#include "ngraph/type/element_type.hpp" #include "ngraph/type/element_type.hpp"
#include <llvm/ADT/STLExtras.h>
#include <llvm/IR/Module.h>
#include <llvm/Support/ErrorOr.h>
#include <llvm/Support/MemoryBuffer.h>
#include <llvm/Support/SourceMgr.h>
#include <llvm/Support/TargetSelect.h>
#include <memory>
#include <mlir/ExecutionEngine/ExecutionEngine.h>
#include <mlir/ExecutionEngine/MemRefUtils.h>
#include <mlir/ExecutionEngine/OptUtils.h>
#include <mlir/LLVMIR/LLVMDialect.h>
#include <mlir/LLVMIR/Transforms.h>
#include <mlir/Pass/PassManager.h>
#include <mlir/Target/LLVMIR.h>
#include <mlir/Transforms/DialectConversion.h>
#include <mlir/Transforms/Passes.h>
using llvm::SmallVector; using llvm::SmallVector;
using llvm::StringRef;
using llvm::make_unique; using llvm::make_unique;
using namespace ngraph::runtime::cpu; using namespace ngraph::runtime::cpu;
...@@ -50,9 +52,9 @@ using namespace ngraph::runtime::cpu; ...@@ -50,9 +52,9 @@ using namespace ngraph::runtime::cpu;
namespace ngraph namespace ngraph
{ {
void MLIRCompiler::init_mlir() void MLIRCompiler::init_mlir()
{ {
mlir::registerDialect<NGDialect>(); mlir::registerDialect<NGDialect>();
// Register any LLVM command line options // Register any LLVM command line options
llvm::cl::ParseEnvironmentOptions("ngraph", "MLIR_LLVM_OPTIONS", ""); llvm::cl::ParseEnvironmentOptions("ngraph", "MLIR_LLVM_OPTIONS", "");
} }
...@@ -60,8 +62,10 @@ namespace ngraph ...@@ -60,8 +62,10 @@ namespace ngraph
{ {
build_module(); // MLIR gen build_module(); // MLIR gen
lower_dialect(); lower_dialect();
lower_to_llvm(); optimize();
// JIT and invoke main bind_tensors_to_arguments();
execute();
cleanup();
} }
void MLIRCompiler::build_module() void MLIRCompiler::build_module()
...@@ -228,7 +232,7 @@ namespace ngraph ...@@ -228,7 +232,7 @@ namespace ngraph
} }
} }
void MLIRCompiler::lower_to_llvm() void MLIRCompiler::optimize()
{ {
mlir::PassManager pm; mlir::PassManager pm;
// Lower affine ops // Lower affine ops
...@@ -236,33 +240,6 @@ namespace ngraph ...@@ -236,33 +240,6 @@ namespace ngraph
auto rr = pm.run(m_module.get()); auto rr = pm.run(m_module.get());
(void)rr; (void)rr;
assert(succeeded(rr) && "affine loop lowering failed"); assert(succeeded(rr) && "affine loop lowering failed");
// std to llvm dialect
auto converter = mlir::createStdToLLVMConverter();
auto r = converter->convert(m_module.get());
(void)r;
assert(succeeded(r) && "second conversion failed");
auto llvmModule = mlir::translateModuleToLLVMIR(*m_module);
if (!llvmModule)
{
llvm::errs() << "Failed to emit LLVM IR\n";
return;
}
// Initialize LLVM targets.
llvm::InitializeNativeTarget();
llvm::InitializeNativeTargetAsmPrinter();
mlir::ExecutionEngine::setupTargetTriple(llvmModule.get());
auto optPipeline = mlir::makeOptimizingTransformer(/* optLevel=*/3, /* sizeLevel=*/0);
if (auto err = optPipeline(llvmModule.get()))
{
llvm::errs() << "Failed to optimize LLVM IR " << err << "\n";
return;
}
if (std::getenv("NGRAPH_MLIR_DUMP_ALL") != nullptr)
{
llvmModule->dump();
}
return;
} }
// MLIR builders // MLIR builders
...@@ -323,4 +300,76 @@ namespace ngraph ...@@ -323,4 +300,76 @@ namespace ngraph
} }
m_builder->create<NG_ReturnOp>(mlir::UnknownLoc::get(&m_context), value_list); m_builder->create<NG_ReturnOp>(mlir::UnknownLoc::get(&m_context), value_list);
} }
void MLIRCompiler::bind_tensors_to_arguments()
{
NGRAPH_ASSERT(m_module && "MLIR module is not ready.");
mlir::Function* func = m_module->getNamedFunction("main");
NGRAPH_ASSERT(func && !func->getBlocks().empty()) << "Function not found";
// Create list with a type-erased double pointer for each invocation arguments.
// We currently use 'allocateMemRefArguments', which creates a
// SmallVector<StaticFloatMemref*>. StaticFloatMemref is just a struct with the
// actual pointer to the data.
// TODO (dcab): Only f32 arguments are supported for now. We may want to implement
// this more generically by just allocating a void double pointer.
auto expected_arguments = allocateMemRefArguments(func);
NGRAPH_ASSERT(expected_arguments) << "Arguments can't be created";
m_invoke_args = std::move(*expected_arguments);
NGRAPH_ASSERT(m_invoke_args.size() == m_external_tensors.size())
<< "Number of external tensors doesn't match number of function arguments";
// Assign external tensor pointers to invocation arguments.
for (size_t i = 0, num_args = m_invoke_args.size(); i < num_args; ++i)
{
((mlir::StaticFloatMemRef*)m_invoke_args[i])->data = (float*)m_external_tensors[i];
}
}
void MLIRCompiler::execute()
{
NGRAPH_ASSERT(m_module && "MLIR module is not ready.");
// Lower Standard dialect to LLVM dialect.
auto converter = mlir::createStdToLLVMConverter();
auto r = converter->convert(m_module.get());
(void)r;
NGRAPH_ASSERT(succeeded(r)) << "second conversion failed";
// Initialize LLVM targets.
llvm::InitializeNativeTarget();
llvm::InitializeNativeTargetAsmPrinter();
// Create an MLIR execution engine. Note that it takes a null pass manager
// to make sure it won't run "default" passes on the MLIR that would trigger
// a second conversion to LLVM IR. The execution engine eagerly JIT-compiles
// the module.
auto maybeEngine = mlir::ExecutionEngine::create(m_module.get(), /*pm=*/nullptr);
NGRAPH_ASSERT(maybeEngine) << "failed to construct an execution engine";
m_engine = std::move(maybeEngine.get());
// Invoke the JIT-compiled function with the arguments. Note that, for API
// uniformity reasons, it takes a list of type-erased pointers to arguments.
// Please, note that 'invoke' method is overloaded with a parameter pack version.
// Make sure the MutableArrayRef version is invoked.
auto invocationResult =
m_engine->invoke("main", llvm::MutableArrayRef<void*>(m_invoke_args));
NGRAPH_ASSERT(!invocationResult) << "JIT invocation of 'main' failed\n";
}
void MLIRCompiler::cleanup()
{
// Free void double pointer arguments without freeing external tensor data.
for (auto* arg : m_invoke_args)
{
free(arg);
}
// Free MLIR function builder.
if (m_builder)
m_builder.reset(nullptr);
}
} }
...@@ -15,20 +15,20 @@ ...@@ -15,20 +15,20 @@
//***************************************************************************** //*****************************************************************************
#pragma once #pragma once
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/Location.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/StandardTypes.h"
#include "mlir/IR/Types.h"
#include "mlir/StandardOps/Ops.h"
#include "llvm/ADT/STLExtras.h"
#include "ngraph/descriptor/tensor.hpp" #include "ngraph/descriptor/tensor.hpp"
#include "ngraph/node.hpp" #include "ngraph/node.hpp"
// TODO(dcab): Revisit and do fw decl when possible.
#include <mlir/ExecutionEngine/ExecutionEngine.h>
#include <mlir/IR/Attributes.h>
#include <mlir/IR/Builders.h>
#include <mlir/IR/Location.h>
#include <mlir/IR/MLIRContext.h>
#include <mlir/IR/Module.h>
#include <mlir/IR/StandardTypes.h>
#include <mlir/IR/Types.h>
#include <mlir/StandardOps/Ops.h>
namespace ngraph namespace ngraph
{ {
namespace runtime namespace runtime
...@@ -41,10 +41,13 @@ namespace ngraph ...@@ -41,10 +41,13 @@ namespace ngraph
using TensorList = std::vector<descriptor::Tensor*>; using TensorList = std::vector<descriptor::Tensor*>;
using TypeList = llvm::SmallVector<mlir::Type, 4>; using TypeList = llvm::SmallVector<mlir::Type, 4>;
MLIRCompiler(const std::vector<const Node*>& sub_graph) MLIRCompiler(const std::vector<const Node*>& sub_graph,
const std::vector<void*>& external_tensors)
: m_sub_graph(sub_graph.begin(), sub_graph.end()) : m_sub_graph(sub_graph.begin(), sub_graph.end())
, m_external_tensors(external_tensors)
{ {
} }
static void init_mlir(); static void init_mlir();
// compiles and runs a subgraph in MLIR // compiles and runs a subgraph in MLIR
void compile(); void compile();
...@@ -59,7 +62,11 @@ namespace ngraph ...@@ -59,7 +62,11 @@ namespace ngraph
private: private:
void build_module(); void build_module();
void lower_dialect(); void lower_dialect();
void lower_to_llvm(); void optimize();
void bind_tensors_to_arguments();
void execute();
void cleanup();
void build_tensors_list(); void build_tensors_list();
mlir::Type get_mlir_type(const descriptor::Tensor* tensor); mlir::Type get_mlir_type(const descriptor::Tensor* tensor);
mlir::Type get_mlir_type(const element::Type& type); mlir::Type get_mlir_type(const element::Type& type);
...@@ -82,6 +89,7 @@ namespace ngraph ...@@ -82,6 +89,7 @@ namespace ngraph
mlir::MLIRContext m_context; mlir::MLIRContext m_context;
std::unique_ptr<mlir::Module> m_module; std::unique_ptr<mlir::Module> m_module;
std::unique_ptr<mlir::FuncBuilder> m_builder; std::unique_ptr<mlir::FuncBuilder> m_builder;
std::unique_ptr<mlir::ExecutionEngine> m_engine;
using TensorToInfo = std::pair<descriptor::Tensor*, TensorInfo>; using TensorToInfo = std::pair<descriptor::Tensor*, TensorInfo>;
using TensorToInfoMap = std::unordered_map<descriptor::Tensor*, TensorInfo>; using TensorToInfoMap = std::unordered_map<descriptor::Tensor*, TensorInfo>;
...@@ -90,6 +98,9 @@ namespace ngraph ...@@ -90,6 +98,9 @@ namespace ngraph
using MLIRCompOpMap = std::unordered_map<std::type_index, MLIRCompOpFunction>; using MLIRCompOpMap = std::unordered_map<std::type_index, MLIRCompOpFunction>;
llvm::SmallVector<const Node*, 4> m_sub_graph; llvm::SmallVector<const Node*, 4> m_sub_graph;
const std::vector<void*>& m_external_tensors;
llvm::SmallVector<void*, 8> m_invoke_args;
// Maps tensor to the value it represents in the IR // Maps tensor to the value it represents in the IR
// use for MLIR dialect gen // use for MLIR dialect gen
TensorToInfoMap m_tensor_to_value_map; TensorToInfoMap m_tensor_to_value_map;
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment