Commit dd5bd9ad authored by Louis Feng's avatar Louis Feng

Merge branch 'master' into louisfeng/NGMX-296-conv_bias

parents 97c2ce20 ad58cb29
......@@ -36,7 +36,7 @@ General Instructions
These instructions assume that your system has been prepared in accordance
with the above prerequisites.
$ cd private-ngraph-cpp
$ cd ngraph-cpp
$ mkdir build
$ cd build
$ cmake .. \
......
set(FILE_NAME ${CMAKE_BINARY_DIR}/include/nlohmann/detail/macro_scope.hpp)
file(READ ${FILE_NAME} FILE_CONTENTS)
string(REPLACE
"#if (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__) < 40900"
"#if (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__) < 40805"
REWRITTEN_FILE
"${FILE_CONTENTS}"
)
file(WRITE ${FILE_NAME} "${REWRITTEN_FILE}")
message(STATUS "json library gcc minimum version number patched")
......@@ -34,6 +34,9 @@ if (${CMAKE_VERSION} VERSION_LESS 3.2)
BUILD_COMMAND ""
INSTALL_COMMAND ""
UPDATE_COMMAND ""
# cmake does not allow calling cmake functions so we call a cmake script in the Module
# directory.
PATCH_COMMAND ${CMAKE_COMMAND} -P ${CMAKE_MODULE_PATH}patch_json.cmake
)
else()
ExternalProject_Add(
......@@ -44,6 +47,9 @@ else()
BUILD_COMMAND ""
INSTALL_COMMAND ""
UPDATE_COMMAND ""
# cmake does not allow calling cmake functions so we call a cmake script in the Module
# directory.
PATCH_COMMAND ${CMAKE_COMMAND} -P ${CMAKE_MODULE_PATH}patch_json.cmake
)
endif()
......
......@@ -67,6 +67,7 @@ set (SRC
ops/replace_slice.cpp
ops/reshape.cpp
ops/reverse.cpp
ops/result.cpp
ops/select.cpp
ops/select_and_scatter.cpp
ops/sin.cpp
......@@ -184,8 +185,8 @@ if (NGRAPH_CPU_ENABLE AND LLVM_INCLUDE_DIR AND
runtime/cpu/mkldnn_emitter.cpp
runtime/cpu/mkldnn_invoke.cpp
runtime/cpu/mkldnn_utils.cpp
runtime/cpu/ops/convert_layout.cpp
runtime/cpu/ops/conv_bias.cpp
runtime/cpu/ops/convert_layout.cpp
runtime/cpu/ops/matmul_bias.cpp
runtime/cpu/pass/cpu_assignment.cpp
runtime/cpu/pass/cpu_fusion.cpp
......
......@@ -27,7 +27,7 @@ using namespace ngraph;
atomic<size_t> Function::m_next_instance_id(0);
Function::Function(const NodeVector& results,
Function::Function(const ResultVector& results,
const op::ParameterVector& parameters,
const std::string& name)
: m_results(results)
......@@ -37,14 +37,50 @@ Function::Function(const NodeVector& results,
, m_name(name)
, m_unique_name("Function_" + to_string(m_instance_id))
{
init();
}
Function::Function(const NodeVector& results,
const op::ParameterVector& parameters,
const std::string& name)
: m_results(results.size())
, m_parameters(parameters)
, m_temporary_pool_size(0)
, m_instance_id(m_next_instance_id.fetch_add(1))
, m_name(name)
, m_unique_name("Function_" + to_string(m_instance_id))
{
std::transform(results.begin(), results.end(), m_results.begin(), [](std::shared_ptr<Node> n) {
return std::make_shared<op::Result>(n);
});
init();
}
Function::Function(const std::shared_ptr<Node>& result,
const op::ParameterVector& parameters,
const std::string& name)
: Function(NodeVector{result}, parameters, name)
{
}
void Function::init()
{
for (auto r : m_results)
{
for (descriptor::Output& output : r->get_outputs())
{
output.get_tensor().set_is_output();
}
}
traverse_nodes(this, [&](shared_ptr<Node> node) {
std::shared_ptr<op::Parameter> p = std::dynamic_pointer_cast<op::Parameter>(node);
if (nullptr != p)
{
auto it = std::find_if(parameters.begin(),
parameters.end(),
auto it = std::find_if(m_parameters.begin(),
m_parameters.end(),
[p](std::shared_ptr<op::Parameter> q) { return (p == q); });
if (it == parameters.end())
if (it == m_parameters.end())
{
throw ngraph_error("Function references undeclared parameter");
}
......@@ -52,13 +88,6 @@ Function::Function(const NodeVector& results,
});
}
Function::Function(const std::shared_ptr<Node>& result,
const op::ParameterVector& parameters,
const std::string& name)
: Function(NodeVector{result}, parameters, name)
{
}
std::list<shared_ptr<Node>> Function::get_ordered_ops()
{
return topological_sort(get_ops());
......@@ -156,18 +185,7 @@ std::list<shared_ptr<Node>> Function::get_ops() const
return ops;
}
void Function::replace_output_op(std::shared_ptr<Node> old, std::shared_ptr<Node> repl)
{
auto it = std::find(begin(m_results), end(m_results), old);
if (it != end(m_results))
{
NGRAPH_DEBUG << "Replacing output " << old->get_name() << " w/ " << repl->get_name();
*it = repl;
}
}
void Function::replace_node(std::shared_ptr<Node> old, std::shared_ptr<Node> repl)
{
replace_output_op(old, repl);
ngraph::replace_node(old, repl, true);
ngraph::replace_node(old, repl);
}
......@@ -25,6 +25,7 @@
#include "ngraph/node.hpp"
#include "ngraph/ops/parameter_vector.hpp"
#include "ngraph/ops/result_vector.hpp"
#include "ngraph/types/type.hpp"
namespace ngraph
......@@ -41,6 +42,12 @@ namespace ngraph
const op::ParameterVector& parameters,
const std::string& name = "");
Function(const ResultVector& results,
const op::ParameterVector& parameters,
const std::string& name = "");
void init();
virtual ~Function() {}
public:
/// Return the number of outputs for this function.
......@@ -57,8 +64,8 @@ namespace ngraph
/// Return the function parameters
const op::ParameterVector& get_parameters() const { return m_parameters; }
/// Return the ops that generate the results
const NodeVector get_results() const { return m_results; }
/// Return a list of function's outputs
const ResultVector& get_results() const { return m_results; }
/// Check that there is a single result and return it.
std::shared_ptr<Node> get_result() const;
......@@ -73,13 +80,11 @@ namespace ngraph
size_t get_instance_id() { return m_instance_id; }
size_t get_temporary_pool_size();
void set_temporary_pool_size(size_t);
// updates old w/ repl in m_results list
void replace_output_op(std::shared_ptr<Node> old, std::shared_ptr<Node> repl);
// updates graph and m_results list
void replace_node(std::shared_ptr<Node> old, std::shared_ptr<Node> repl);
protected:
NodeVector m_results;
ResultVector m_results;
op::ParameterVector m_parameters;
size_t m_temporary_pool_size;
......
......@@ -29,6 +29,8 @@
#include "ngraph/node_vector.hpp"
#include "ngraph/ops/constant.hpp"
#include "ngraph/ops/parameter.hpp"
#include "ngraph/ops/result.hpp"
#include "ngraph/ops/result_vector.hpp"
#include "ngraph/placement.hpp"
#include "ngraph/util.hpp"
......@@ -114,13 +116,11 @@ void ngraph::free_nodes(shared_ptr<Function> p)
}
}
void ngraph::replace_node(std::shared_ptr<Node> target,
std::shared_ptr<Node> replacement,
bool replace_output)
void ngraph::replace_node(std::shared_ptr<Node> target, std::shared_ptr<Node> replacement)
{
if (target->is_output() && !replace_output)
if (target->is_output())
{
return;
throw ngraph_error("Result nodes cannot be replaced.");
}
// Fix input/output descriptors
......@@ -197,6 +197,15 @@ std::list<std::shared_ptr<ngraph::Node>>
return result_list;
}
void ngraph::NodeMap::update(std::shared_ptr<ngraph::Node> orig, std::shared_ptr<ngraph::Node> val)
{
if (!exists(orig))
{
throw ngraph_error("Node doesn't exist!");
}
m_node_map[orig] = val;
}
void ngraph::NodeMap::add(std::shared_ptr<ngraph::Node> orig,
std::shared_ptr<ngraph::Node> replacement)
{
......@@ -252,10 +261,15 @@ std::shared_ptr<ngraph::Function> ngraph::clone_function(std::shared_ptr<ngraph:
clone_nodes(func->get_ops(), node_map);
// get cloned function results and parameters
NodeVector cloned_results;
ResultVector cloned_results;
for (shared_ptr<Node> node : func->get_results())
{
cloned_results.push_back(node_map.get(node));
auto result = std::dynamic_pointer_cast<op::Result>(node_map.get(node));
if (!result)
{
throw ngraph_error("Results should be of type op::Result");
}
cloned_results.push_back(result);
}
std::vector<std::shared_ptr<op::Parameter>> cloned_params;
for (auto param : func->get_parameters())
......@@ -435,8 +449,8 @@ static shared_ptr<Function> build_largest_colocated_function(
}
}
}
return make_shared<Function>(outputs, collected_parameters);
auto func = make_shared<Function>(outputs, collected_parameters);
return func;
}
// The returned nodes contains the node N with highest order. If N is placed at P, the returned
......@@ -528,7 +542,7 @@ vector<shared_ptr<Function>> ngraph::split_function_by_placement(
// Remove input-output and constant-output aliasing
if (f_parameters.count(node) == 0 && node->description() != "Constant")
{
unvisited_outputs.insert(node);
unvisited_outputs.insert(node->get_input_op(0));
}
}
......@@ -571,6 +585,24 @@ vector<shared_ptr<Function>> ngraph::split_function_by_placement(
unvisited_outputs = updated_unvisited_outputs;
}
unordered_map<shared_ptr<Node>, shared_ptr<Node>> map_source_node_to_result;
for (auto cf : colocated_functions)
{
for (auto r : cf->get_results())
{
map_source_node_to_result[r->get_input_op(0)] = r;
}
}
for (auto it = map_parameter_to_source_node.begin(); it != map_parameter_to_source_node.end();
++it)
{
if (map_source_node_to_result.count(it->second) != 0)
{
it->second = map_source_node_to_result[it->second];
}
}
// The colocated_functions should be called in reversed order
reverse(colocated_functions.begin(), colocated_functions.end());
return colocated_functions;
......
......@@ -48,9 +48,8 @@ namespace ngraph
void free_nodes(std::shared_ptr<Function>);
void replace_node(std::shared_ptr<Node> target,
std::shared_ptr<Node> replacement,
bool replace_output = false);
void replace_node(std::shared_ptr<Node> target, std::shared_ptr<Node> replacement);
void replace_node_users_arguments(std::shared_ptr<Node> target,
std::shared_ptr<Node> replacement);
......@@ -78,6 +77,8 @@ namespace ngraph
return (m_node_map.count(orig) != 0);
}
void update(std::shared_ptr<ngraph::Node> orig, std::shared_ptr<ngraph::Node> val);
const std::unordered_map<std::shared_ptr<ngraph::Node>, std::shared_ptr<ngraph::Node>>&
get_node_map() const
{
......
......@@ -23,6 +23,7 @@
#include "ngraph/descriptor/layout/tensor_view_layout.hpp"
#include "ngraph/descriptor/primary_tensor_view.hpp"
#include "ngraph/ops/parameter.hpp"
#include "ngraph/ops/result.hpp"
#include "ngraph/placement.hpp"
using namespace std;
......@@ -34,7 +35,6 @@ Node::Node(const std::string& node_type, const NodeVector& arguments)
: m_node_type(node_type)
, m_instance_id(m_next_instance_id.fetch_add(1))
, m_unique_name(description() + "_" + to_string(m_instance_id))
, m_is_output(false)
, m_arguments(arguments)
{
// Add this node as a user of each argument.
......@@ -68,7 +68,7 @@ void Node::add_output(const element::Type& element_type, const Shape& shape)
auto tensor_view_descriptor = make_shared<descriptor::PrimaryTensorView>(
tensor_view_type,
ngraph::descriptor::Tensor::make_tensor_name(this, i),
is_output(),
false,
is_parameter(),
is_constant());
m_outputs.emplace_back(this, i, tensor_view_descriptor);
......@@ -96,16 +96,7 @@ bool Node::is_parameter() const
bool Node::is_output() const
{
return m_is_output;
}
void Node::set_is_output()
{
m_is_output = true;
for (descriptor::Output& output : get_outputs())
{
output.get_tensor().set_is_output();
}
return false;
}
bool Node::is_constant() const
......
......@@ -102,8 +102,7 @@ namespace ngraph
void set_value_type_checked(const element::Type& element_type, const Shape& shape);
bool is_parameter() const;
bool is_output() const;
void set_is_output();
virtual bool is_output() const;
virtual bool is_constant() const;
virtual bool is_commutative() { return false; }
size_t get_instance_id() const { return m_instance_id; }
......@@ -200,7 +199,6 @@ namespace ngraph
static std::atomic<size_t> m_next_instance_id;
std::deque<descriptor::Input> m_inputs;
std::deque<descriptor::Output> m_outputs;
bool m_is_output;
std::unordered_map<Node*, autodiff::Adjoints> m_adjoint_map;
Placement m_placement = Placement::DEFAULT;
......
......@@ -23,6 +23,11 @@ namespace ngraph
{
class Node;
namespace op
{
class Result;
}
/// \brief Zero or more nodes.
class NodeVector : public std::vector<std::shared_ptr<Node>>
{
......
/*******************************************************************************
* Copyright 2017-2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#include <memory>
#include <typeindex>
#include <typeinfo>
#include "ngraph/node.hpp"
#include "ngraph/ops/result.hpp"
using namespace std;
using namespace ngraph;
op::Result::Result(const std::shared_ptr<Node>& arg)
: RequiresTensorViewArgs("Result", {arg})
{
if (arg->get_outputs().size() != 1)
{
throw ngraph_error("Expected a single-output argument");
}
//always borrow the placement conf even the default one
set_placement(arg->get_placement());
set_value_type_checked(arg->get_element_type(), arg->get_shape());
}
std::shared_ptr<Node> op::Result::copy_with_new_args(const NodeVector& new_args) const
{
if (new_args.size() != 1)
{
throw ngraph_error("Incorrect number of new arguments");
}
if (new_args.at(0)->get_outputs().size() != 1)
{
throw ngraph_error("Expected a single-output argument");
}
return std::make_shared<Result>(new_args.at(0));
}
/*******************************************************************************
* Copyright 2017-2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#pragma once
#include <memory>
#include "ngraph/ops/util/requires_tensor_view_args.hpp"
namespace ngraph
{
namespace op
{
class Result : public util::RequiresTensorViewArgs
{
public:
/// \brief Constructs an arcsin operation.
///
/// \param arg Node that produces the input tensor.
Result(const std::shared_ptr<Node>& arg);
virtual std::shared_ptr<Node>
copy_with_new_args(const NodeVector& new_args) const override;
virtual bool is_output() const override { return true; }
protected:
virtual void generate_adjoints(autodiff::Adjoints& adjoints,
const std::shared_ptr<Node>& delta) override
{
adjoints.add_delta(get_input_op(0), delta);
}
};
}
}
/*******************************************************************************
* Copyright 2017-2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#pragma once
#include <memory>
#include <vector>
#include "ngraph/ops/result.hpp"
namespace ngraph
{
/// \brief Zero or more nodes.
class ResultVector : public std::vector<std::shared_ptr<op::Result>>
{
public:
ResultVector(size_t size)
: std::vector<std::shared_ptr<op::Result>>(size)
{
}
ResultVector(const std::initializer_list<std::shared_ptr<op::Result>>& nodes)
: std::vector<std::shared_ptr<op::Result>>(nodes)
{
}
ResultVector(const std::vector<std::shared_ptr<op::Result>>& nodes)
: std::vector<std::shared_ptr<op::Result>>(nodes)
{
}
ResultVector(const ResultVector& nodes)
: std::vector<std::shared_ptr<op::Result>>(nodes)
{
}
ResultVector() {}
};
}
......@@ -30,12 +30,10 @@ using namespace std;
using namespace ngraph;
ngraph::pass::Manager::Manager()
: m_to_set_is_output(true)
{
}
ngraph::pass::Manager::Manager(bool to_set_is_output)
: m_to_set_is_output(to_set_is_output)
{
}
......@@ -56,17 +54,6 @@ void ngraph::pass::Manager::run_passes(shared_ptr<Function> func)
set<shared_ptr<Function>> tfs(begin(fs), end(fs));
get_state().set_functions(tfs);
if (m_to_set_is_output)
{
for (shared_ptr<Function> f : get_state().get_functions())
{
for (size_t i = 0; i < f->get_output_size(); ++i)
{
f->get_output_op(i)->set_is_output();
}
}
}
for (shared_ptr<PassBase> pass : m_pass_list)
{
pass->set_state(get_state());
......
......@@ -57,5 +57,4 @@ public:
private:
std::vector<std::shared_ptr<PassBase>> m_pass_list;
ManagerState m_state;
bool m_to_set_is_output;
};
......@@ -150,3 +150,50 @@ void ngraph::pass::ReshapeElimination::construct_reshapex2_pattern()
auto m = std::make_shared<ngraph::pattern::Matcher>(reshape2, callback);
this->add_matcher(m);
}
void ngraph::pass::ReshapeElimination::construct_dot_transpose_pattern()
{
//dot(A,B).T = dot (B.T, A.T)
auto dot_pred = [](std::shared_ptr<Node> n) {
return static_cast<bool>(std::dynamic_pointer_cast<op::Dot>(n));
};
auto pdot = std::make_shared<pattern::op::Label>(element::f32, Shape{2, 1}, dot_pred);
auto preshape = std::make_shared<op::Reshape>(pdot, AxisVector{1, 0}, Shape{1, 2});
ngraph::pattern::gr_callback_fn callback = [](pattern::Matcher& m) {
NGRAPH_DEBUG << "In callback for construct_dot_transpose_pattern against node = "
<< m.match_root()->get_name();
std::shared_ptr<Node> nn;
auto mtranspose = std::dynamic_pointer_cast<op::Reshape>(m.match_root());
//this also checks the rank
if (mtranspose->get_input_order() != AxisVector{1, 0})
{
NGRAPH_DEBUG << "Reshape isn't transpose. "
<< vector_to_string(mtranspose->get_input_order());
return nn;
}
auto mdot = mtranspose->get_input_op(0);
if (mdot->get_shape().size() != 2)
{
NGRAPH_DEBUG << "Dot has the wrong shape. " << vector_to_string(mdot->get_shape());
return nn;
}
auto arg0 = mdot->get_input_op(0);
auto reshape0_shape = Shape{arg0->get_shape().at(1), arg0->get_shape().at(0)};
auto reshape0 = std::make_shared<op::Reshape>(arg0, AxisVector{1, 0}, reshape0_shape);
auto arg1 = mdot->get_input_op(1);
auto reshape1_shape = Shape{arg1->get_shape().at(1), arg1->get_shape().at(0)};
auto reshape1 = std::make_shared<op::Reshape>(arg1, AxisVector{1, 0}, reshape1_shape);
auto tdot = std::shared_ptr<Node>(new op::Dot(reshape1, reshape0));
return tdot;
};
auto m = std::make_shared<ngraph::pattern::Matcher>(preshape, callback);
this->add_matcher(m);
}
......@@ -32,11 +32,13 @@ public:
ReshapeElimination()
: GraphRewrite()
{
construct_dot_transpose_pattern();
construct_identity_reshape_pattern();
construct_reshapex2_pattern();
}
private:
void construct_dot_transpose_pattern();
void construct_identity_reshape_pattern();
void construct_reshapex2_pattern();
};
......@@ -72,6 +72,7 @@
#include "ngraph/ops/remainder.hpp"
#include "ngraph/ops/replace_slice.hpp"
#include "ngraph/ops/reshape.hpp"
#include "ngraph/ops/result.hpp"
#include "ngraph/ops/reverse.hpp"
#include "ngraph/ops/select.hpp"
#include "ngraph/ops/select_and_scatter.hpp"
......@@ -240,7 +241,7 @@ namespace ngraph
const Shape& arg0_shape = cg->get_arg0_shape(); //W
const Shape& arg1_shape = cg->get_arg1_shape(); //x
const Shape& arg2_shape = args[2].get_shape(); //bias (C)
const Shape& arg2_shape = node->get_shape(); //bias (C)
static const char* ctranspose = "cblas::Transpose::Transpose, ";
static const char* cnotranspose = "cblas::Transpose::None, ";
......@@ -270,16 +271,23 @@ namespace ngraph
writer << "{ // " << node->get_name() << "\n";
writer.indent++;
const char* cbeta = "0.0f";
if (args.size() > 2)
{
writer << "memcpy(" << out[0].get_name() << ", " << args[2].get_name() << ", "
<< out[0].get_size() * out[0].get_element_type().size() << ");\n";
cbeta = "1.0f";
}
writer << "cblas::cblas_sgemm("
<< "cblas::Layout::RowMajor, " << tranpose_a << tranpose_b << m << ", " << n
<< ", " << k << ",\n"
<< " 1.0f, " << args[0].get_name() << ", " << max(1UL, lda) << ", "
<< args[1].get_name() << ", " << max(1UL, ldb) << ", 1.0f,\n"
<< args[1].get_name() << ", " << max(1UL, ldb) << ", " << cbeta << ",\n"
<< " " << out[0].get_name() << ", " << max(1UL, arg2_shape[1])
<< ");\n";
writer.indent--;
writer << "}\n";
}
......@@ -3526,6 +3534,15 @@ namespace ngraph
}
}
}
template <>
void CPU_Emitter::EMITTER_DECL(ngraph::op::Result)
{
writer << "kernel::result<" << out[0].get_type() << ">(" << args[0].get_name()
<< ",\n";
writer << " " << out[0].get_name() << ",\n";
writer << " " << shape_size(node->get_shape()) << ");\n";
}
}
}
}
......
......@@ -82,6 +82,7 @@
#include "ngraph/ops/remainder.hpp"
#include "ngraph/ops/replace_slice.hpp"
#include "ngraph/ops/reshape.hpp"
#include "ngraph/ops/result.hpp"
#include "ngraph/ops/reverse.hpp"
#include "ngraph/ops/select.hpp"
#include "ngraph/ops/select_and_scatter.hpp"
......@@ -234,6 +235,7 @@ static const runtime::cpu::OpMap dispatcher{
{TI(ngraph::op::Not), &runtime::cpu::CPU_Emitter::emit<op::Not>},
{TI(ngraph::op::MaxPool), &runtime::cpu::CPU_Emitter::emit<op::MaxPool>},
{TI(ngraph::op::Reverse), &runtime::cpu::CPU_Emitter::emit<op::Reverse>},
{TI(ngraph::op::Result), &runtime::cpu::CPU_Emitter::emit<op::Result>},
{TI(ngraph::op::ReduceWindow), &runtime::cpu::CPU_Emitter::emit<op::ReduceWindow>},
{TI(ngraph::op::SelectAndScatter), &runtime::cpu::CPU_Emitter::emit<op::SelectAndScatter>},
{TI(ngraph::op::AvgPool), &runtime::cpu::CPU_Emitter::emit<op::AvgPool>},
......@@ -323,6 +325,7 @@ void runtime::cpu::CPU_ExternalFunction::compile()
#include "ngraph/runtime/kernel/relu.hpp"
#include "ngraph/runtime/kernel/replace_slice.hpp"
#include "ngraph/runtime/kernel/reshape.hpp"
#include "ngraph/runtime/kernel/result.hpp"
#include "ngraph/runtime/kernel/reverse.hpp"
#include "ngraph/runtime/kernel/select_and_scatter.hpp"
#include "ngraph/runtime/kernel/slice.hpp"
......@@ -611,6 +614,7 @@ using namespace ngraph::runtime;
}
// create output alias map
/*
size_t output_index = 0;
unordered_map<descriptor::TensorView*, vector<size_t>> output_alias_map;
vector<size_t> aliases;
......@@ -626,49 +630,18 @@ using namespace ngraph::runtime;
}
output_index++;
}
*/
// Add outputs to the variable name map
output_index = 0;
for (size_t i = 0; i < current_function->get_output_size(); ++i)
{
shared_ptr<Node> op = current_function->get_output_op(i);
shared_ptr<descriptor::TensorView> tv = op->get_output_tensor_view();
const element::Type& et = tv->get_tensor_view_type()->get_element_type();
bool parameter_as_output = false;
for (shared_ptr<ngraph::op::Parameter> param : current_function->get_parameters())
{
for (const descriptor::Output& pout : param->get_outputs())
{
shared_ptr<descriptor::TensorView> ptv = pout.get_tensor_view();
if (tv == ptv)
{
parameter_as_output = true;
writer << "memcpy(static_cast<" << et.c_type_string() << "*>(outputs["
<< output_index << "]), "
<< m_variable_name_map[ptv->get_tensor().get_name()] << ", "
<< ptv->get_tensor().size() << ");\n";
break;
}
}
}
if (!parameter_as_output && !contains(aliases, output_index))
{
if (contains(constants, tv.get()))
{
writer << "memcpy(outputs[" << output_index << "], "
<< tv->get_tensor().get_name() << ", " << tv->get_tensor().size()
<< ");\n";
}
else
{
string type = et.c_type_string();
string type = tv->get_tensor_view_type()->get_element_type().c_type_string();
stringstream ss;
ss << "((" << type << "*)(outputs[" << output_index << "]))";
ss << "((" << type << "*)(outputs[" << i << "]))";
m_variable_name_map[tv->get_tensor().get_name()] = ss.str();
}
}
output_index++;
}
for (shared_ptr<Node> node : current_function->get_ordered_ops())
{
......@@ -758,7 +731,6 @@ using namespace ngraph::runtime;
// Emit operation epilogue
if (!node->is_parameter() && !node->is_constant())
{
handle_output_alias(writer, *node, output_alias_map);
if (m_emit_timing)
{
emit_debug_function_exit(writer, node.get(), in, out);
......@@ -895,35 +867,6 @@ using namespace ngraph::runtime;
}
}
void runtime::cpu::CPU_ExternalFunction::handle_output_alias(
codegen::CodeWriter& writer,
const Node& node,
const unordered_map<descriptor::TensorView*, vector<size_t>>& output_alias_map)
{
for (const descriptor::Output& output : node.get_outputs())
{
shared_ptr<descriptor::TensorView> otv = output.get_tensor_view();
auto it = output_alias_map.find(otv.get());
if (it != output_alias_map.end())
{
const vector<size_t>& outputs = it->second;
if (outputs.size() > 1)
{
writer << "{ // handle output alias for previous op\n";
writer.indent++;
for (size_t i = 1; i < outputs.size(); i++)
{
writer << "memcpy(static_cast<void*>(outputs[" << outputs[i]
<< "]), static_cast<void*>(outputs[" << outputs[0] << "]), "
<< otv->get_tensor().size() << ");\n";
}
writer.indent--;
writer << "}\n";
}
}
}
}
shared_ptr<ngraph::runtime::CallFrame> runtime::cpu::CPU_ExternalFunction::make_call_frame()
{
if (!m_is_compiled)
......
......@@ -113,6 +113,7 @@ namespace ngraph
size_t build_relu_forward(const mkldnn::memory::desc& input_desc,
const mkldnn::memory::desc& result_desc);
size_t build_elementwise_add(
const mkldnn::memory::desc& input0_data_desc,
const mkldnn::memory::desc& input1_data_desc,
......
......@@ -21,13 +21,14 @@
std::shared_ptr<ngraph::Node>
ngraph::op::MatmulBias::copy_with_new_args(const NodeVector& new_args) const
{
if (new_args.size() != 2)
if (new_args.size() != 2 && new_args.size() != 3)
{
throw ngraph_error("Incorrect number of new arguments");
}
return std::make_shared<MatmulBias>(new_args.at(0),
new_args.at(1),
new_args.at(1),
new_args.size() == 3 ? new_args.at(2) : nullptr,
m_shape_w,
m_shape_x,
m_transpose_w,
......@@ -41,7 +42,9 @@ ngraph::op::MatmulBias::MatmulBias(std::shared_ptr<ngraph::Node> W,
Shape shape_x,
bool transpose_w,
bool transpose_x)
: RequiresTensorViewArgs("MatMulBias", {W, x, b})
: RequiresTensorViewArgs("MatMulBias",
b == nullptr ? std::vector<std::shared_ptr<Node>>{W, x}
: std::vector<std::shared_ptr<Node>>{W, x, b})
, m_shape_w(shape_w)
, m_shape_x(shape_x)
, m_transpose_w(transpose_w)
......@@ -74,8 +77,12 @@ ngraph::op::MatmulBias::MatmulBias(std::shared_ptr<ngraph::Node> W,
}
Shape dot_shape{shape_w.at(1 - dot_dimension_w), shape_x.at(1 - dot_dimension_x)};
NGRAPH_DEBUG << "dot_shape shape = " << vector_to_string(dot_shape)
<< " , b shape = " << vector_to_string(b->get_shape());
NGRAPH_DEBUG << "dot_shape shape = " << vector_to_string(dot_shape);
if (b)
{
NGRAPH_DEBUG << "b shape = " << vector_to_string(b->get_shape());
}
add_output(W->get_element_type(), dot_shape);
}
......@@ -31,6 +31,7 @@
#include "ngraph/ops/divide.hpp"
#include "ngraph/ops/dot.hpp"
#include "ngraph/ops/multiply.hpp"
#include "ngraph/ops/pad.hpp"
#include "ngraph/ops/parameter.hpp"
#include "ngraph/ops/reshape.hpp"
#include "ngraph/ops/sqrt.hpp"
......@@ -51,6 +52,12 @@ static bool init_cblas_arg(std::shared_ptr<ngraph::Node> reshape,
if (!r_w)
{
if (arg->get_shape().size() != 2)
{
NGRAPH_DEBUG << arg->get_name() << " 's rank != 2 "
<< ngraph::vector_to_string(arg->get_shape());
return false;
}
return true; //nth to do; reshape isn't a reshape
}
......@@ -108,7 +115,38 @@ static std::vector<T> apply_permutation(std::vector<T> input, ngraph::AxisVector
return output;
}
void ngraph::runtime::cpu::pass::CPUFusion::construct_gemm_pattern()
void ngraph::runtime::cpu::pass::CPUFusion::construct_matmulbias_pattern()
{
Shape shape_w{2, 4};
Shape shape_x{4, 1};
Shape shape_b{1};
auto W = std::make_shared<pattern::op::Label>(element::f32, shape_w);
auto x = std::make_shared<pattern::op::Label>(element::f32, shape_x);
auto b = std::make_shared<pattern::op::Label>(element::f32, shape_b);
auto pmmb = std::make_shared<op::MatmulBias>(
W, x, nullptr, W->get_shape(), x->get_shape(), false, false);
auto pbroadcast = std::make_shared<op::Broadcast>(b, pmmb->get_shape(), AxisSet{0});
auto padd = pmmb + pbroadcast;
ngraph::pattern::gr_callback_fn callback = [W, x](pattern::Matcher& m) {
NGRAPH_DEBUG << "In callback for construct_matmulbias_pattern against node = "
<< m.match_root()->get_name();
auto mpattern = m.match_root(); //add
auto m_matmul = mpattern->get_input_op(0);
auto m_broadcast = mpattern->get_input_op(1);
auto pattern_map = m.get_pattern_map();
return m_matmul->copy_with_new_args(
NodeVector{pattern_map[W], pattern_map[x], m_broadcast});
};
auto m = std::make_shared<ngraph::pattern::Matcher>(padd, callback);
this->add_matcher(m);
}
void ngraph::runtime::cpu::pass::CPUFusion::construct_matmul_pattern()
{
Shape shape_w{2, 4};
Shape shape_x{4, 1};
......@@ -126,30 +164,34 @@ void ngraph::runtime::cpu::pass::CPUFusion::construct_gemm_pattern()
auto skip_x = std::make_shared<pattern::op::Any>(x, reshape_pred);
auto pdot = std::make_shared<op::Dot>(skip_w, skip_x);
auto b = std::make_shared<pattern::op::Label>(element::f32, shape_b);
auto pbroadcast = std::make_shared<op::Broadcast>(b, shape_dot, AxisSet{0});
auto padd = pdot + pbroadcast;
ngraph::pattern::gr_callback_fn callback = [W, x, b](pattern::Matcher& m) {
NGRAPH_DEBUG << "In callback for construct_gemm_pattern against node = "
ngraph::pattern::gr_callback_fn callback = [W, x](pattern::Matcher& m) {
NGRAPH_DEBUG << "In callback for construct_matmul_pattern against node = "
<< m.match_root()->get_name();
auto pattern_map = m.get_pattern_map();
std::shared_ptr<Node> nn = nullptr;
std::shared_ptr<Node> nn;
auto mpattern = m.match_root();
auto dot = m.match_root();
if (mpattern->get_element_type() != element::f32)
{
NGRAPH_DEBUG << "mpattern = " << mpattern->get_name() << " type is not float!";
return nn;
}
auto dot = mpattern->get_input_op(0);
if (dot->get_shape().size() != 2)
{
NGRAPH_DEBUG << "dot = " << dot->get_name() << " shape is not equal to 2!";
return nn;
}
if (shape_size(dot->get_shape()) == 0)
{
NGRAPH_DEBUG << "dot has a zero dimension";
return nn;
}
bool transpose_w = false;
Shape shape_arg0{pattern_map[W]->get_shape()};
if (!init_cblas_arg(dot->get_input_op(0), pattern_map[W], transpose_w, shape_arg0))
......@@ -166,7 +208,7 @@ void ngraph::runtime::cpu::pass::CPUFusion::construct_gemm_pattern()
auto cg = std::shared_ptr<Node>(new op::MatmulBias(pattern_map[W],
pattern_map[x],
mpattern->get_input_op(1),
nullptr,
shape_arg0,
shape_arg1,
transpose_w,
......@@ -174,7 +216,7 @@ void ngraph::runtime::cpu::pass::CPUFusion::construct_gemm_pattern()
return cg;
};
auto m = std::make_shared<ngraph::pattern::Matcher>(padd, callback);
auto m = std::make_shared<ngraph::pattern::Matcher>(pdot, callback);
this->add_matcher(m);
}
......@@ -274,6 +316,205 @@ void ngraph::runtime::cpu::pass::CPUFusion::construct_fprop_bn()
this->add_matcher(m);
}
static bool
zero_padded_conv_consistency_check(const std::shared_ptr<ngraph::Node>& match_root,
const std::shared_ptr<ngraph::op::Constant>& pad_value_op,
const std::shared_ptr<ngraph::Node>& pad_input,
const std::shared_ptr<ngraph::op::Pad>& matched_pad,
const std::shared_ptr<ngraph::op::Convolution>& matched_conv,
size_t batch_index,
size_t channel_index)
{
// Only match float32 convolutions
if (match_root->get_element_type() != ngraph::element::f32)
{
return false;
}
// Only match zero padding
if (pad_value_op->get_vector<float>().at(0) != 0.0f)
{
return false;
}
// Only match 4D tensors
if (pad_input->get_shape().size() != 4)
{
return false;
}
// Only match no interior padding
if (matched_pad->get_padding_interior() != ngraph::Shape(pad_input->get_shape().size()))
{
return false;
}
// Only match convolutions with no padding specification
if (matched_conv->get_padding_below() != ngraph::CoordinateDiff(2) ||
matched_conv->get_padding_above() != ngraph::CoordinateDiff(2))
{
return false;
}
// Only match no padding in the batch dimension
if (matched_pad->get_padding_above().at(batch_index) != 0 ||
matched_pad->get_padding_below().at(batch_index) != 0)
{
return false;
}
// Only match no padding in the channel dimension
if (matched_pad->get_padding_above().at(channel_index) != 0 ||
matched_pad->get_padding_below().at(channel_index) != 0)
{
return false;
}
return true;
}
void ngraph::runtime::cpu::pass::CPUFusion::construct_zero_padded_reshaped_conv()
{
auto pad_input = std::make_shared<pattern::op::Label>(element::f32, Shape{});
auto pad_value = std::make_shared<pattern::op::Label>(element::f32, Shape{});
auto pad = std::make_shared<op::Pad>(pad_input, pad_value, Shape{}, Shape{}, Shape{});
auto pad_label = std::make_shared<pattern::op::Label>(pad, nullptr, NodeVector{pad});
auto reshape = std::make_shared<op::Reshape>(pad_label, AxisVector{}, Shape{1, 1, 1, 1});
auto reshape_label =
std::make_shared<pattern::op::Label>(reshape, nullptr, NodeVector{reshape});
auto conv_filter = std::make_shared<pattern::op::Label>(element::f32, Shape{1, 1, 1, 1});
auto conv = std::make_shared<op::Convolution>(reshape_label,
conv_filter,
Strides{1, 1},
Strides{1, 1},
CoordinateDiff{1, 1},
CoordinateDiff{1, 1},
Strides{1, 1});
auto conv_label = std::make_shared<pattern::op::Label>(conv, nullptr, NodeVector{conv});
ngraph::pattern::gr_callback_fn callback =
[pad_input, pad_value, pad_label, reshape_label, conv_filter, conv_label](
pattern::Matcher& m) -> std::shared_ptr<Node> {
auto pattern_map = m.get_pattern_map();
auto pad_value_op = std::dynamic_pointer_cast<op::Constant>(pattern_map[pad_value]);
const auto& matched_conv =
std::dynamic_pointer_cast<op::Convolution>(pattern_map[conv_label]);
const auto& matched_pad = std::dynamic_pointer_cast<op::Pad>(pattern_map[pad_label]);
const auto& matched_reshape =
std::dynamic_pointer_cast<op::Reshape>(pattern_map[reshape_label]);
const auto& input_order = matched_reshape->get_input_order();
auto hoisted_reshape_output_shape =
apply_permutation<Shape::value_type>(pattern_map[pad_input]->get_shape(), input_order);
auto hoisted_reshape = std::make_shared<op::Reshape>(
pattern_map[pad_input],
input_order,
Shape(hoisted_reshape_output_shape.begin(), hoisted_reshape_output_shape.end()));
if (!zero_padded_conv_consistency_check(m.match_root(),
pad_value_op,
pattern_map[pad_input],
matched_pad,
matched_conv,
input_order[0],
input_order[1]))
{
return nullptr;
}
CoordinateDiff padding_below{static_cast<CoordinateDiff::value_type>(
matched_pad->get_padding_below().at(input_order[2])),
static_cast<CoordinateDiff::value_type>(
matched_pad->get_padding_below().at(input_order[3]))};
CoordinateDiff padding_above{static_cast<CoordinateDiff::value_type>(
matched_pad->get_padding_above().at(input_order[2])),
static_cast<CoordinateDiff::value_type>(
matched_pad->get_padding_above().at(input_order[3]))};
auto zero_padded_conv =
std::make_shared<op::Convolution>(hoisted_reshape,
pattern_map[conv_filter],
matched_conv->get_window_movement_strides(),
matched_conv->get_window_dilation_strides(),
padding_below,
padding_above,
matched_conv->get_data_dilation_strides());
return zero_padded_conv;
};
this->add_matcher(std::make_shared<ngraph::pattern::Matcher>(conv_label, callback));
}
void ngraph::runtime::cpu::pass::CPUFusion::construct_zero_padded_conv()
{
auto pad_input = std::make_shared<pattern::op::Label>(element::f32, Shape{1, 1, 1, 1});
auto pad_value = std::make_shared<pattern::op::Label>(element::f32, Shape{});
auto pad = std::make_shared<op::Pad>(
pad_input, pad_value, Shape{0, 0, 0, 0}, Shape{0, 0, 0, 0}, Shape{0, 0, 0, 0});
auto pad_label = std::make_shared<pattern::op::Label>(pad, nullptr, NodeVector{pad});
auto conv_filter = std::make_shared<pattern::op::Label>(element::f32, Shape{1, 1, 1, 1});
auto conv = std::make_shared<op::Convolution>(pad_label,
conv_filter,
Strides{1, 1},
Strides{1, 1},
CoordinateDiff{1, 1},
CoordinateDiff{1, 1},
Strides{1, 1});
auto conv_label = std::make_shared<pattern::op::Label>(conv, nullptr, NodeVector{conv});
ngraph::pattern::gr_callback_fn callback =
[pad_input, pad_value, pad_label, conv_filter, conv_label](
pattern::Matcher& m) -> std::shared_ptr<Node> {
auto pattern_map = m.get_pattern_map();
auto pad_value_op = std::dynamic_pointer_cast<op::Constant>(pattern_map[pad_value]);
const auto& matched_conv =
std::dynamic_pointer_cast<op::Convolution>(pattern_map[conv_label]);
const auto& matched_pad = std::dynamic_pointer_cast<op::Pad>(pattern_map[pad_label]);
if (!zero_padded_conv_consistency_check(m.match_root(),
pad_value_op,
pattern_map[pad_input],
matched_pad,
matched_conv,
0,
1))
{
return nullptr;
}
CoordinateDiff padding_below{
static_cast<CoordinateDiff::value_type>(matched_pad->get_padding_below().at(2)),
static_cast<CoordinateDiff::value_type>(matched_pad->get_padding_below().at(3))};
CoordinateDiff padding_above{
static_cast<CoordinateDiff::value_type>(matched_pad->get_padding_above().at(2)),
static_cast<CoordinateDiff::value_type>(matched_pad->get_padding_above().at(3))};
auto zero_padded_conv =
std::make_shared<op::Convolution>(pattern_map[pad_input],
pattern_map[conv_filter],
matched_conv->get_window_movement_strides(),
matched_conv->get_window_dilation_strides(),
padding_below,
padding_above,
matched_conv->get_data_dilation_strides());
return zero_padded_conv;
};
this->add_matcher(std::make_shared<ngraph::pattern::Matcher>(conv_label, callback));
}
void ngraph::runtime::cpu::pass::CPUFusion::construct_conv_bias()
{
Shape shape{2, 2, 1, 1};
......
......@@ -38,13 +38,19 @@ public:
CPUFusion()
: GraphRewrite()
{
construct_gemm_pattern();
construct_matmul_pattern();
construct_matmulbias_pattern();
construct_fprop_bn();
construct_zero_padded_reshaped_conv();
construct_zero_padded_conv();
construct_conv_bias();
}
private:
void construct_gemm_pattern();
void construct_matmul_pattern();
void construct_matmulbias_pattern();
void construct_fprop_bn();
void construct_conv_bias();
void construct_zero_padded_reshaped_conv();
void construct_zero_padded_conv();
construct_conv_bias();
};
......@@ -31,6 +31,7 @@
#include "ngraph/ops/convolution.hpp"
#include "ngraph/ops/op.hpp"
#include "ngraph/ops/relu.hpp"
#include "ngraph/ops/result.hpp"
#include "ngraph/runtime/cpu/cpu_layout_descriptor.hpp"
#include "ngraph/runtime/cpu/cpu_op_annotations.hpp"
#include "ngraph/runtime/cpu/mkldnn_utils.hpp"
......@@ -629,6 +630,16 @@ namespace ngraph
}
}
template <>
void CPULayout::LAYOUT_DECL(ngraph::op::Result)
{
auto input_layout =
runtime::cpu::mkldnn_utils::get_input_mkldnn_format(node.get(), 0);
vector<memory::format> prim_output_formats;
prim_output_formats.push_back(input_layout);
set_output_layouts(node, prim_output_formats);
}
template <>
void CPULayout::LAYOUT_DECL(ngraph::op::Relu)
{
......@@ -708,6 +719,7 @@ static const runtime::cpu::pass::LayoutOpMap s_dispatcher{
{TI(ngraph::op::AvgPoolBackprop),
&runtime::cpu::pass::CPULayout::layout<ngraph::op::AvgPoolBackprop>},
{TI(ngraph::op::Relu), &runtime::cpu::pass::CPULayout::layout<ngraph::op::Relu>},
{TI(ngraph::op::Result), &runtime::cpu::pass::CPULayout::layout<ngraph::op::Result>},
{TI(ngraph::op::ReluBackprop),
&runtime::cpu::pass::CPULayout::layout<ngraph::op::ReluBackprop>},
};
......
......@@ -18,6 +18,7 @@
#include <cstdlib>
#include <iomanip>
#include "ngraph/ops/result.hpp"
#include "ngraph/runtime/host_tensor_view.hpp"
#include "ngraph/runtime/interpreter/int_call_frame.hpp"
......@@ -52,32 +53,17 @@ void runtime::interpreter::INT_CallFrame::call(
tensor_map.insert({tv, input_tvs[arg_index++]});
}
}
std::vector<size_t> aliased_outputs;
for (size_t i = 0; i < output_tvs.size(); i++)
{
shared_ptr<Node> op = function->get_output_op(i);
descriptor::TensorView* tv = op->get_output_tensor_view(0).get();
string name = tv->get_tensor().get_name();
if (contains_key(tensor_map, tv))
for (size_t i = 0; i < function->get_output_size(); i++)
{
if (op->description() == "Parameter")
auto output_op = function->get_output_op(i);
if (!std::dynamic_pointer_cast<op::Result>(output_op))
{
// Here we handle the special case where an output is just a copy of an input
memcpy(output_tvs[i]->get_data_ptr(),
tensor_map.at(tv)->get_data_ptr(),
tv->get_tensor().size());
throw ngraph_error("One of function's outputs isn't op::Result");
}
else
{
// This is a computed value returned more than once and will need to be copied at the end
aliased_outputs.push_back(i);
}
}
else
{
descriptor::TensorView* tv = function->get_output_op(i)->get_output_tensor_view(0).get();
tensor_map.insert({tv, output_tvs[i]});
}
}
// Invoke computation
for (shared_ptr<Node> op : function->get_ordered_ops())
......@@ -163,29 +149,6 @@ void runtime::interpreter::INT_CallFrame::call(
}
}
}
for (size_t i : aliased_outputs)
{
shared_ptr<Node> op = function->get_output_op(i);
size_t first_output;
for (first_output = 0; first_output <= i; ++first_output)
{
if (function->get_output_op(first_output) == op)
{
break;
}
}
if (first_output == i)
{
throw ngraph_error("Internal error: duplicate output missing");
}
descriptor::TensorView* tv = op->get_output_tensor_view(0).get();
string name = tv->get_tensor().get_name();
// Here we handle the special case where an output is just a copy of an input
memcpy(output_tvs[i]->get_data_ptr(),
output_tvs[first_output]->get_data_ptr(),
tv->get_tensor().size());
}
}
void runtime::interpreter::INT_CallFrame::generate_calls(
......
......@@ -39,6 +39,7 @@
#include "ngraph/ops/reduce_window.hpp"
#include "ngraph/ops/replace_slice.hpp"
#include "ngraph/ops/reshape.hpp"
#include "ngraph/ops/result.hpp"
#include "ngraph/ops/reverse.hpp"
#include "ngraph/ops/select_and_scatter.hpp"
#include "ngraph/ops/slice.hpp"
......@@ -89,6 +90,7 @@
#include "ngraph/runtime/kernel/relu.hpp"
#include "ngraph/runtime/kernel/replace_slice.hpp"
#include "ngraph/runtime/kernel/reshape.hpp"
#include "ngraph/runtime/kernel/result.hpp"
#include "ngraph/runtime/kernel/reverse.hpp"
#include "ngraph/runtime/kernel/select.hpp"
#include "ngraph/runtime/kernel/select_and_scatter.hpp"
......@@ -720,6 +722,13 @@ private:
reshape->get_input_order(),
out[0]->get_shape());
}
else if (node_op == "Result")
{
ngraph::op::Result* res = dynamic_cast<ngraph::op::Result*>(&node);
kernel::result(reinterpret_cast<T*>(args[0]->get_data_ptr()),
reinterpret_cast<T*>(out[0]->get_data_ptr()),
shape_size(res->get_shape()));
}
else if (node_op == "Reverse")
{
ngraph::op::Reverse* reverse = dynamic_cast<ngraph::op::Reverse*>(&node);
......
// ----------------------------------------------------------------------------
// Copyright 2017 Nervana Systems Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// ----------------------------------------------------------------------------
#pragma once
#include <algorithm>
#include <cmath>
#include <numeric>
#include <vector>
#include "ngraph/shape.hpp"
namespace ngraph
{
namespace runtime
{
namespace kernel
{
template <typename T>
void result(T* arg, T* out, size_t count)
{
memcpy(out, arg, sizeof(T) * count);
}
}
}
}
......@@ -64,6 +64,7 @@
#include "ngraph/ops/remainder.hpp"
#include "ngraph/ops/replace_slice.hpp"
#include "ngraph/ops/reshape.hpp"
#include "ngraph/ops/result.hpp"
#include "ngraph/ops/reverse.hpp"
#include "ngraph/ops/select.hpp"
#include "ngraph/ops/select_and_scatter.hpp"
......@@ -667,6 +668,10 @@ static shared_ptr<ngraph::Function>
auto output_shape = node_js.at("output_shape").get<vector<size_t>>();
node = make_shared<op::Reshape>(args[0], input_order, output_shape);
}
else if (node_op == "Result")
{
node = make_shared<op::Result>(args[0]);
}
else if (node_op == "Reverse")
{
auto reversed_axes = node_js.at("reversed_axes").get<set<size_t>>();
......@@ -1061,6 +1066,9 @@ static json write(const Node& n)
node["input_order"] = tmp->get_input_order();
node["output_shape"] = tmp->get_output_shape();
}
else if (node_op == "Result")
{
}
else if (node_op == "Reverse")
{
auto tmp = dynamic_cast<const op::Reverse*>(&n);
......
......@@ -25,9 +25,12 @@
#include "ngraph/graph_util.hpp"
#include "ngraph/log.hpp"
#include "ngraph/node.hpp"
#include "ngraph/ops/result_vector.hpp"
#include "ngraph/runtime/backend.hpp"
#include "ngraph/util.hpp"
#include <iostream>
using namespace std;
std::string ngraph::to_cplusplus_sourcecode_literal(bool val)
......@@ -239,10 +242,21 @@ ngraph::FpropCache ngraph::cache_fprop(std::shared_ptr<ngraph::Function> fprop,
}
// create the new outputs for fprop and the new fprop function
NodeVector fprop_outputs{fprop->get_results()};
fprop_outputs.insert(fprop_outputs.end(),
fprop_cache.fprop_output_nodes.begin(),
fprop_cache.fprop_output_nodes.end());
ResultVector fprop_outputs;
for (auto fpr : fprop->get_results())
{
fprop_outputs.push_back(fpr);
}
for (auto fpir : fprop_cache.fprop_output_nodes)
{
if (std::dynamic_pointer_cast<op::Result>(fpir))
{
throw ngraph_error("Expected op::Result in fprop->get_results()");
}
fprop_outputs.push_back(std::make_shared<op::Result>(fpir));
}
fprop_cache.fprop = std::make_shared<Function>(fprop_outputs, fprop->get_parameters());
......@@ -251,10 +265,15 @@ ngraph::FpropCache ngraph::cache_fprop(std::shared_ptr<ngraph::Function> fprop,
ngraph::clone_nodes(bprop->get_ops(), node_param_map);
// get cloned bprop results
NodeVector cloned_results;
ResultVector cloned_results;
for (auto node : bprop->get_results())
{
cloned_results.push_back(node_param_map.get(node));
auto result = std::dynamic_pointer_cast<op::Result>(node_param_map.get(node));
if (!result)
{
throw ngraph_error("Expected op::Result values for op::Result keys in node_param_map");
}
cloned_results.push_back(result);
}
// get clone bprop parameters
......
......@@ -40,7 +40,7 @@ TEST(build_graph, build_simple)
auto cluster_0 = make_shared<Function>(dot, op::ParameterVector{arg0, arg1, arg2, arg3});
ASSERT_EQ(cluster_0->get_output_op(0), dot);
ASSERT_EQ(cluster_0->get_output_op(0)->get_input_op(0), dot);
}
// Check node comparisons
......
......@@ -134,6 +134,42 @@ TEST(cpu_fusion, gemm_cpu)
ASSERT_TRUE(read_vector<float>(result) == expected);
}
TEST(cpu_fusion, gemm_cpu_no_bias)
{
auto shapeA = Shape{3, 2};
auto shapeB = Shape{2, 3};
auto shapeC = Shape{2, 2};
auto A = make_shared<op::Parameter>(element::f32, shapeA);
auto B = make_shared<op::Parameter>(element::f32, shapeB);
auto reshape_w = make_shared<op::Reshape>(A, AxisVector{1, 0}, Shape{2, 3});
auto reshape_x = make_shared<op::Reshape>(B, AxisVector{1, 0}, Shape{3, 2});
auto cg =
make_shared<op::MatmulBias>(A, B, nullptr, A->get_shape(), B->get_shape(), true, true);
auto f = make_shared<Function>(cg, op::ParameterVector{A, B});
auto manager = runtime::Manager::get("CPU");
auto external = manager->compile(f);
auto backend = manager->allocate_backend();
auto cf = backend->make_call_frame(external);
shared_ptr<runtime::TensorView> a = backend->make_primary_tensor_view(element::f32, shapeA);
shared_ptr<runtime::TensorView> b = backend->make_primary_tensor_view(element::f32, shapeB);
shared_ptr<runtime::TensorView> result =
backend->make_primary_tensor_view(element::f32, shapeC);
vector<float> dataA{1.0f, 4.0f, 1.0f, 4.0f, 1.0f, 4.0f};
vector<float> dataB{3.0f, 3.0f, 3.0f, 9.0f, 9.0f, 9.0f};
copy_data(a, dataA);
copy_data(b, dataB);
cf->call({a, b}, {result});
vector<float> expected{9, 27, 36, 108};
ASSERT_TRUE(read_vector<float>(result) == expected);
}
TEST(cpu_fusion, cpu_fusion_pass_basic)
{
Shape shape{};
......@@ -155,6 +191,50 @@ TEST(cpu_fusion, cpu_fusion_pass_basic)
ASSERT_NE(std::dynamic_pointer_cast<op::MatmulBias>(graph->get_input_op(0)), nullptr);
}
TEST(cpu_fusion, cpu_fusion_pass_matmul_bias)
{
Shape shape_w{2, 4};
Shape shape_x{4, 1};
Shape shape_b{1};
auto W = make_shared<op::Parameter>(element::f32, shape_w);
auto x = make_shared<op::Parameter>(element::f32, shape_x);
auto b = make_shared<op::Parameter>(element::f32, shape_b);
auto mmb = std::make_shared<op::MatmulBias>(
W, x, nullptr, W->get_shape(), x->get_shape(), false, false);
auto broadcast = std::make_shared<op::Broadcast>(b, mmb->get_shape(), AxisSet{0});
auto add = mmb + broadcast;
auto graph = make_shared<op::Abs>(add);
pass::Manager pass_manager;
pass_manager.register_pass<runtime::cpu::pass::CPUFusion>();
auto func = make_shared<Function>(graph, op::ParameterVector{W, x, b});
pass_manager.run_passes(func);
auto gmm = graph->get_input_op(0);
ASSERT_TRUE(std::dynamic_pointer_cast<op::MatmulBias>(gmm));
ASSERT_EQ(gmm->get_input_op(2), broadcast);
}
TEST(cpu_fusion, cpu_fusion_pass_matmul_no_bias)
{
Shape shape_w{4, 2};
Shape shape_x{1, 4};
auto W = make_shared<op::Parameter>(element::f32, shape_w);
auto x = make_shared<op::Parameter>(element::f32, shape_x);
auto reshape_w = std::make_shared<op::Reshape>(W, AxisVector{1, 0}, Shape{2, 4});
auto reshape_x = std::make_shared<op::Reshape>(x, AxisVector{1, 0}, Shape{4, 1});
auto re_dot = make_shared<op::Dot>(reshape_w, reshape_x);
auto graph = make_shared<op::Abs>(re_dot);
pass::Manager pass_manager;
pass_manager.register_pass<runtime::cpu::pass::CPUFusion>();
auto func = make_shared<Function>(graph, op::ParameterVector{W, x});
pass_manager.run_passes(func);
size_t mmb = count_ops_of_type<op::MatmulBias>(func);
ASSERT_EQ(mmb, 1);
}
TEST(cpu_fusion, gemm_mlp)
{
const string json_path = file_util::path_join(SERIALIZED_ZOO, "mxnet/mnist_mlp_forward.json");
......@@ -164,8 +244,8 @@ TEST(cpu_fusion, gemm_mlp)
pass::Manager pass_manager;
pass_manager.register_pass<runtime::cpu::pass::CPUFusion>();
pass_manager.run_passes(func);
size_t ccg = count_ops_of_type<op::MatmulBias>(func);
ASSERT_EQ(ccg, 3);
size_t mmb = count_ops_of_type<op::MatmulBias>(func);
ASSERT_EQ(mmb, 3);
}
//TODO: Move this test to backend_test.in.cpp once we have the INTERPRETER
......@@ -403,6 +483,98 @@ TEST(cpu_fusion, bn_bprop_n4c3h2w2)
vector<float> expected_dbeta{320.f, 320.f, 320.f};
ASSERT_TRUE(ngraph::test::all_close(read_vector<float>(_dbeta), expected_dbeta, 1e-4f, 1e-8f));
}
TEST(cpu_fusion, zero_padded_reshaped_conv)
{
auto X = make_shared<op::Parameter>(element::f32, Shape{1, 2, 2, 1});
auto F = make_shared<op::Parameter>(element::f32, Shape{1, 1, 1, 1});
auto pad_value = op::Constant::create<float>(element::f32, Shape{}, std::vector<float>{0.0f});
auto pad =
make_shared<op::Pad>(X, pad_value, Shape{0, 1, 0, 0}, Shape{0, 0, 1, 0}, Shape{0, 0, 0, 0});
auto reshape = make_shared<op::Reshape>(pad, AxisVector{0, 3, 1, 2}, Shape{1, 1, 3, 3});
auto conv = make_shared<op::Convolution>(reshape,
F,
Strides{1, 1},
Strides{1, 1},
CoordinateDiff{0, 0},
CoordinateDiff{0, 0},
Strides{1, 1});
auto func = make_shared<Function>(conv, op::ParameterVector{X, F});
ASSERT_EQ(count_ops_of_type<op::Pad>(func), 1);
auto manager = runtime::Manager::get("CPU");
auto external = manager->compile(func);
auto backend = manager->allocate_backend();
auto cf = backend->make_call_frame(external);
ASSERT_EQ(count_ops_of_type<op::Pad>(func), 0);
}
TEST(cpu_fusion, zero_padded_conv)
{
auto X = make_shared<op::Parameter>(element::f32, Shape{1, 1, 2, 2});
auto F = make_shared<op::Parameter>(element::f32, Shape{1, 1, 1, 1});
auto pad_value = op::Constant::create<float>(element::f32, Shape{}, std::vector<float>{0.0f});
auto pad =
make_shared<op::Pad>(X, pad_value, Shape{0, 0, 0, 1}, Shape{0, 0, 1, 0}, Shape{0, 0, 0, 0});
auto conv = make_shared<op::Convolution>(pad,
F,
Strides{1, 1},
Strides{1, 1},
CoordinateDiff{0, 0},
CoordinateDiff{0, 0},
Strides{1, 1});
auto func = make_shared<Function>(conv, op::ParameterVector{X, F});
ASSERT_EQ(count_ops_of_type<op::Pad>(func), 1);
auto manager = runtime::Manager::get("CPU");
auto external = manager->compile(func);
auto backend = manager->allocate_backend();
auto cf = backend->make_call_frame(external);
ASSERT_EQ(count_ops_of_type<op::Pad>(func), 0);
}
TEST(cpu_fusion, non_zero_padded_conv)
{
auto X = make_shared<op::Parameter>(element::f32, Shape{1, 1, 2, 2});
auto F = make_shared<op::Parameter>(element::f32, Shape{1, 1, 1, 1});
auto pad_value = op::Constant::create<float>(element::f32, Shape{}, std::vector<float>{1.0f});
auto pad =
make_shared<op::Pad>(X, pad_value, Shape{0, 0, 0, 1}, Shape{0, 0, 1, 0}, Shape{0, 0, 0, 0});
auto conv = make_shared<op::Convolution>(pad,
F,
Strides{1, 1},
Strides{1, 1},
CoordinateDiff{0, 0},
CoordinateDiff{0, 0},
Strides{1, 1});
auto func = make_shared<Function>(conv, op::ParameterVector{X, F});
ASSERT_EQ(count_ops_of_type<op::Pad>(func), 1);
auto manager = runtime::Manager::get("CPU");
auto external = manager->compile(func);
auto backend = manager->allocate_backend();
auto cf = backend->make_call_frame(external);
ASSERT_EQ(count_ops_of_type<op::Pad>(func), 1);
}
TEST(cpu_fusion, fuse_conv_bias)
{
pass::Manager pass_manager;
......
......@@ -218,11 +218,6 @@ public:
{
map_parameter_to_index[f->get_parameters().at(i)] = i;
}
unordered_map<shared_ptr<Node>, size_t> map_result_to_index;
for (size_t i = 0; i < f->get_results().size(); ++i)
{
map_result_to_index[f->get_results().at(i)] = i;
}
// Parameter's source is either itself, or the output node of the upstream function
unordered_map<shared_ptr<op::Parameter>, shared_ptr<Node>> map_parameter_to_source_node;
......@@ -231,6 +226,13 @@ public:
vector<shared_ptr<Function>> funcs =
split_function_by_placement(f, map_parameter_to_source_node);
auto main_func = funcs.back();
unordered_map<shared_ptr<Node>, size_t> map_result_to_index;
for (size_t i = 0; i < main_func->get_results().size(); ++i)
{
map_result_to_index[main_func->get_results().at(i)] = i;
}
// Make call frames
vector<shared_ptr<runtime::CallFrame>> call_frames;
for (auto func : funcs)
......
......@@ -47,14 +47,22 @@ TEST(liveness, constant)
auto tmp = f->get_ordered_ops();
vector<shared_ptr<Node>> sorted{tmp.begin(), tmp.end()};
ASSERT_EQ(2, sorted.size());
ASSERT_EQ(3, sorted.size());
EXPECT_EQ(0, sorted[0]->liveness_live_list.size());
EXPECT_EQ(0, sorted[0]->liveness_new_list.size());
EXPECT_EQ(0, sorted[0]->liveness_free_list.size());
EXPECT_EQ(0, sorted[1]->liveness_live_list.size());
EXPECT_EQ(0, sorted[1]->liveness_new_list.size());
//op::Negative is live on output to op::Result
EXPECT_EQ(1, sorted[1]->liveness_live_list.size());
//op::Negative is new
EXPECT_EQ(1, sorted[1]->liveness_new_list.size());
EXPECT_EQ(0, sorted[1]->liveness_free_list.size());
//op::Negative is live on input to op::Result
EXPECT_EQ(1, sorted[2]->liveness_live_list.size());
EXPECT_EQ(0, sorted[2]->liveness_new_list.size());
//op::Negative is freed
EXPECT_EQ(1, sorted[2]->liveness_free_list.size());
}
TEST(liveness, liveness)
......
......@@ -234,5 +234,5 @@ TEST(memory_layout, constant)
pass_manager.run_passes(f);
auto sorted = f->get_ordered_ops();
size_t temporary_pool_size = f->get_temporary_pool_size();
EXPECT_EQ(0, temporary_pool_size);
EXPECT_EQ(4, temporary_pool_size);
}
......@@ -42,6 +42,7 @@
#include "ngraph/runtime/cpu/pass/cpu_fusion.hpp"
#include "ngraph/serializer.hpp"
#include "util/matcher.hpp"
#include "util/test_tools.hpp"
using namespace ngraph;
using namespace std;
......@@ -89,9 +90,9 @@ bool sum_predicate(std::shared_ptr<Node> gn)
return false;
}
NGRAPH_DEBUG << "looking at function's result "
<< r->get_functions()[0]->get_result()->get_name();
if (auto sum = std::dynamic_pointer_cast<op::Add>(r->get_functions()[0]->get_result()))
auto result = r->get_functions()[0]->get_result()->get_input_op(0);
NGRAPH_DEBUG << "looking at function's result " << result->get_name();
if (auto sum = std::dynamic_pointer_cast<op::Add>(result))
{
auto parm1 = std::dynamic_pointer_cast<op::Parameter>(sum->get_input_op(0));
auto parm2 = std::dynamic_pointer_cast<op::Parameter>(sum->get_input_op(1));
......@@ -297,7 +298,7 @@ TEST(pattern, graph_rewrite)
ASSERT_TRUE(graph_b->get_output_inputs(0).empty());
auto expected = ngraph::NodeVector{a, b, a, c, b};
ASSERT_TRUE(f->get_results() == expected);
ASSERT_TRUE(count_ops_of_type<op::Add>(f) == 0);
}
{
......
......@@ -82,3 +82,27 @@ TEST(reshape_elimination, bn_bprop_rewrite)
size_t count_after = count_ops_of_type<op::Reshape>(func);
ASSERT_TRUE(count_after < count_before);
}
TEST(reshape_elimination, dot_transpose_to_dot_w_transpose_args)
{
Shape shape_w{2, 4};
Shape shape_x{4, 1};
auto W = make_shared<op::Parameter>(element::f32, shape_w);
auto x = make_shared<op::Parameter>(element::f32, shape_x);
auto dot = make_shared<op::Dot>(W, x);
auto reshape_dot = std::make_shared<op::Reshape>(dot, AxisVector{1, 0}, Shape{1, 2});
auto graph = make_shared<op::Abs>(reshape_dot);
pass::Manager pass_manager;
pass_manager.register_pass<pass::ReshapeElimination>();
auto func = make_shared<Function>(graph, op::ParameterVector{W, x});
pass_manager.run_passes(func);
auto gdot = graph->get_input_op(0);
ASSERT_TRUE(std::dynamic_pointer_cast<op::Dot>(gdot));
ASSERT_TRUE(std::dynamic_pointer_cast<op::Reshape>(gdot->get_input_op(0)));
ASSERT_TRUE(std::dynamic_pointer_cast<op::Reshape>(gdot->get_input_op(1)));
ASSERT_EQ(gdot->get_input_op(0)->get_input_op(0), x);
ASSERT_EQ(gdot->get_input_op(1)->get_input_op(0), W);
ASSERT_EQ(gdot->get_shape(), (Shape{1, 2}));
}
......@@ -33,12 +33,13 @@ bool validate_list(const list<shared_ptr<Node>>& nodes)
auto node_tmp = *it;
auto dependencies_tmp = node_tmp->get_input_ops();
vector<Node*> dependencies;
for (shared_ptr<Node> n : dependencies_tmp)
{
dependencies.push_back(n.get());
}
auto tmp = it++;
for (; tmp != nodes.rend(); tmp++)
auto tmp = it;
for (tmp++; tmp != nodes.rend(); tmp++)
{
auto dep_tmp = *tmp;
auto found = find(dependencies.begin(), dependencies.end(), dep_tmp.get());
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment