Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
N
ngraph
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
ngraph
Commits
da4e9a0e
Commit
da4e9a0e
authored
May 24, 2019
by
Adam Rogowiec
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
GRUCell operator.
parent
3e12cefa
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
215 additions
and
0 deletions
+215
-0
CMakeLists.txt
src/ngraph/CMakeLists.txt
+2
-0
ngraph.hpp
src/ngraph/ngraph.hpp
+1
-0
gru_cell.cpp
src/ngraph/op/fused/gru_cell.cpp
+0
-0
gru_cell.hpp
src/ngraph/op/fused/gru_cell.hpp
+175
-0
fused_op_tbl.hpp
src/ngraph/op/fused_op_tbl.hpp
+1
-0
intelgpu_backend.cpp
src/ngraph/runtime/intelgpu/intelgpu_backend.cpp
+3
-0
serializer.cpp
src/ngraph/serializer.cpp
+33
-0
No files found.
src/ngraph/CMakeLists.txt
View file @
da4e9a0e
...
...
@@ -302,6 +302,8 @@ set (SRC
op/fused/grn.hpp
op/fused/group_conv.hpp
op/fused/group_conv.cpp
op/fused/gru_cell.cpp
op/fused/gru_cell.hpp
op/fused/lstm_cell.cpp
op/fused/lstm_cell.hpp
op/fused/mvn.cpp
...
...
src/ngraph/ngraph.hpp
View file @
da4e9a0e
...
...
@@ -102,6 +102,7 @@
#include "ngraph/op/fused/gemm.hpp"
#include "ngraph/op/fused/grn.hpp"
#include "ngraph/op/fused/group_conv.hpp"
#include "ngraph/op/fused/gru_cell.hpp"
#include "ngraph/op/fused/hard_sigmoid.hpp"
#include "ngraph/op/fused/lstm_cell.hpp"
#include "ngraph/op/fused/mvn.hpp"
...
...
src/ngraph/op/fused/gru_cell.cpp
0 → 100644
View file @
da4e9a0e
This diff is collapsed.
Click to expand it.
src/ngraph/op/fused/gru_cell.hpp
0 → 100644
View file @
da4e9a0e
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#pragma once
#include <cstddef>
#include <memory>
#include <string>
#include <vector>
#include "ngraph/node.hpp"
#include "ngraph/op/fused/rnn_cell_base.hpp"
#include "ngraph/op/util/activation_functions.hpp"
#include "ngraph/op/util/fused_op.hpp"
namespace
ngraph
{
namespace
op
{
///
/// \brief Class for GRU cell node.
///
/// \note It follows notation and equations defined as in ONNX standard:
/// https://github.com/onnx/onnx/blob/master/docs/Operators.md#GRU
///
/// Note this class represents only single *cell* and not whole GRU *layer*.
///
class
GRUCell
:
public
util
::
FusedOp
,
public
RNNCellBase
{
public
:
///
/// \brief Constructs GRUCell node.
///
/// \param[in] X The input tensor with shape: [batch_size, input_size].
/// \param[in] W The weight tensor with shape:
/// [gates_count * hidden_size, input_size].
/// \param[in] R The recurrence weight tensor with shape:
/// [gates_count * hidden_size, hidden_size].
/// \param[in] H_t The hidden state tensor at current time step with
/// shape: [batch_size, hidden_size].
/// \param[in] hidden_size The number of hidden units for recurrent cell.
///
GRUCell
(
const
std
::
shared_ptr
<
Node
>&
X
,
const
std
::
shared_ptr
<
Node
>&
W
,
const
std
::
shared_ptr
<
Node
>&
R
,
const
std
::
shared_ptr
<
Node
>&
H_t
,
std
::
size_t
hidden_size
);
///
/// \brief Constructs GRUCell node.
///
/// \param[in] X The input tensor with shape: [batch_size, input_size].
/// \param[in] W The weight tensor with shape:
/// [gates_count * hidden_size, input_size].
/// \param[in] R The recurrence weight tensor with shape:
/// [gates_count * hidden_size, hidden_size].
/// \param[in] H_t The hidden state tensor at current time step with
/// shape: [batch_size, hidden_size].
/// \param[in] hidden_size The number of hidden units for recurrent cell.
/// \param[in] activations The vector of activation functions used inside
/// recurrent cell.
/// \param[in] activation_alpha The vector of alpha parameters for activation
/// functions in order respective to activation list.
/// \param[in] activation_beta The vector of beta parameters for activation functions
/// in order respective to activation list.
/// \param[in] clip The value defining clipping range [-clip, clip] on
/// input of activation functions.
///
GRUCell
(
const
std
::
shared_ptr
<
Node
>&
X
,
const
std
::
shared_ptr
<
Node
>&
W
,
const
std
::
shared_ptr
<
Node
>&
R
,
const
std
::
shared_ptr
<
Node
>&
H_t
,
std
::
size_t
hidden_size
,
const
std
::
vector
<
std
::
string
>&
activations
,
const
std
::
vector
<
float
>&
activation_alpha
,
const
std
::
vector
<
float
>&
activation_beta
,
float
clip
,
bool
linear_before_reset
);
///
/// \brief Constructs GRUCell node.
///
/// \param[in] X The input tensor with shape: [batch_size, input_size].
/// \param[in] W The weight tensor with shape:
/// [gates_count * hidden_size, input_size].
/// \param[in] R The recurrence weight tensor with shape:
/// [gates_count * hidden_size, hidden_size].
/// \param[in] H_t The hidden state tensor at current time step with
/// shape: [batch_size, hidden_size].
/// \param[in] hidden_size The number of hidden units for recurrent cell.
/// \param[in] B The bias tensor for input gate with shape:
/// [2 * gates_count * hidden_size].
/// \param[in] activations The vector of activation functions used inside
/// recurrent cell.
/// \param[in] activation_alpha The vector of alpha parameters for activation
/// functions in order respective to activation list.
/// \param[in] activation_beta The vector of beta parameters for activation functions
/// in order respective to activation list.
/// \param[in] clip The value defining clipping range [-clip, clip] on
/// input of activation functions.
///
GRUCell
(
const
std
::
shared_ptr
<
Node
>&
X
,
const
std
::
shared_ptr
<
Node
>&
W
,
const
std
::
shared_ptr
<
Node
>&
R
,
const
std
::
shared_ptr
<
Node
>&
H_t
,
std
::
size_t
hidden_size
,
const
std
::
shared_ptr
<
Node
>&
B
,
const
std
::
vector
<
std
::
string
>&
activations
=
std
::
vector
<
std
::
string
>
{
"sigmoid"
,
"tanh"
},
const
std
::
vector
<
float
>&
activation_alpha
=
{},
const
std
::
vector
<
float
>&
activation_beta
=
{},
float
clip
=
0.
f
,
bool
linear_before_reset
=
false
);
virtual
void
pre_validate_and_infer_types
()
override
;
virtual
NodeVector
decompose_op
()
const
override
;
virtual
std
::
shared_ptr
<
Node
>
copy_with_new_args
(
const
NodeVector
&
new_args
)
const
override
;
bool
get_linear_before_reset
()
const
{
return
m_linear_before_reset
;
}
private
:
///
/// \brief The input data tensor. Shape: [batch_size, input_size].
///
std
::
shared_ptr
<
Node
>
m_X
;
///
/// \brief The weight tensor. Shape: [gates_count * hidden_size, input_size].
///
std
::
shared_ptr
<
Node
>
m_W
;
///
/// \brief The recurrence weight tensor. Shape: [gates_count * hidden_size, hidden_size].
///
std
::
shared_ptr
<
Node
>
m_R
;
///
/// \brief The hidden state tensor at current time step. Shape: [batch_size, hidden_size].
///
std
::
shared_ptr
<
Node
>
m_H_t
;
///
/// \brief The bias tensor for the gates. Shape: [2 * gates_count * hidden_size].
/// \note Concatenation of `[Wb[zrh], Rb[zrh]]`.
///
std
::
shared_ptr
<
Node
>
m_B
;
///
/// \brief The Activation function f.
///
ActivationFunction
m_activation_f
;
///
/// \brief The Activation function g.
///
ActivationFunction
m_activation_g
;
static
constexpr
std
::
size_t
m_gates_count
{
3
};
///
/// \brief Control whether or not apply the linear transformation.
///
/// \note The linear transformation may be applied when computing the output of hidden gate.
/// It's done before multiplying by the output of the reset gate.
///
bool
m_linear_before_reset
;
};
}
}
src/ngraph/op/fused_op_tbl.hpp
View file @
da4e9a0e
...
...
@@ -26,6 +26,7 @@ NGRAPH_OP(Elu, ngraph::op)
NGRAPH_OP
(
GRN
,
ngraph
::
op
)
NGRAPH_OP
(
Gemm
,
ngraph
::
op
)
NGRAPH_OP
(
GroupConvolution
,
ngraph
::
op
)
NGRAPH_OP
(
GRUCell
,
ngraph
::
op
)
NGRAPH_OP
(
HardSigmoid
,
ngraph
::
op
)
NGRAPH_OP
(
LSTMCell
,
ngraph
::
op
)
NGRAPH_OP
(
MVN
,
ngraph
::
op
)
...
...
src/ngraph/runtime/intelgpu/intelgpu_backend.cpp
View file @
da4e9a0e
...
...
@@ -84,6 +84,7 @@
#include "ngraph/op/fused/gemm.hpp"
#include "ngraph/op/fused/grn.hpp"
#include "ngraph/op/fused/group_conv.hpp"
#include "ngraph/op/fused/gru_cell.hpp"
#include "ngraph/op/fused/hard_sigmoid.hpp"
#include "ngraph/op/fused/lstm_cell.hpp"
#include "ngraph/op/fused/mvn.hpp"
...
...
@@ -2061,6 +2062,7 @@ shared_ptr<runtime::Executable>
case
OP_TYPEID
:
:
GatherND
:
case
OP_TYPEID
:
:
GenerateMask
:
case
OP_TYPEID
:
:
GRN
:
case
OP_TYPEID
:
:
GRUCell
:
case
OP_TYPEID
:
:
HardSigmoid
:
case
OP_TYPEID
:
:
LSTMCell
:
case
OP_TYPEID
:
:
MVN
:
...
...
@@ -2180,6 +2182,7 @@ bool runtime::intelgpu::IntelGPUBackend::is_supported_impl(const Node& node)
case
OP_TYPEID
:
:
Elu
:
case
OP_TYPEID
:
:
Gemm
:
case
OP_TYPEID
:
:
GRN
:
case
OP_TYPEID
:
:
GRUCell
:
case
OP_TYPEID
:
:
LSTMCell
:
case
OP_TYPEID
:
:
MVN
:
case
OP_TYPEID
:
:
Normalize
:
...
...
src/ngraph/serializer.cpp
View file @
da4e9a0e
...
...
@@ -73,6 +73,7 @@
#include "ngraph/op/fused/gemm.hpp"
#include "ngraph/op/fused/grn.hpp"
#include "ngraph/op/fused/group_conv.hpp"
#include "ngraph/op/fused/gru_cell.hpp"
#include "ngraph/op/fused/hard_sigmoid.hpp"
#include "ngraph/op/fused/lstm_cell.hpp"
#include "ngraph/op/fused/mvn.hpp"
...
...
@@ -999,6 +1000,27 @@ static shared_ptr<ngraph::Function>
node
=
make_shared
<
op
::
GRN
>
(
args
[
0
],
bias
);
break
;
}
case
OP_TYPEID
:
:
GRUCell
:
{
auto
hidden_size
=
node_js
.
at
(
"hidden_size"
).
get
<
size_t
>
();
auto
clip
=
node_js
.
at
(
"clip"
).
get
<
float
>
();
auto
activations
=
node_js
.
at
(
"activations"
).
get
<
vector
<
string
>>
();
auto
activation_alpha
=
node_js
.
at
(
"activation_alpha"
).
get
<
vector
<
float
>>
();
auto
activation_beta
=
node_js
.
at
(
"activation_beta"
).
get
<
vector
<
float
>>
();
auto
linear_before_reset
=
node_js
.
at
(
"linear_before_reset"
).
get
<
bool
>
();
node
=
make_shared
<
op
::
GRUCell
>
(
args
[
0
],
args
[
1
],
args
[
2
],
args
[
3
],
hidden_size
,
args
[
4
],
activations
,
activation_alpha
,
activation_beta
,
clip
,
linear_before_reset
);
break
;
}
case
OP_TYPEID
:
:
HardSigmoid
:
{
auto
alpha
=
node_js
.
at
(
"alpha"
).
get
<
float
>
();
...
...
@@ -1989,6 +2011,17 @@ static json write(const Node& n, bool binary_constant_data)
node
[
"bias"
]
=
tmp
->
get_bias
();
break
;
}
case
OP_TYPEID
:
:
GRUCell
:
{
auto
tmp
=
dynamic_cast
<
const
op
::
GRUCell
*>
(
&
n
);
node
[
"hidden_size"
]
=
tmp
->
get_hidden_size
();
node
[
"clip"
]
=
tmp
->
get_clip
();
node
[
"activations"
]
=
tmp
->
get_activations
();
node
[
"activation_alpha"
]
=
tmp
->
get_activation_alpha
();
node
[
"activation_beta"
]
=
tmp
->
get_activation_beta
();
node
[
"linear_before_reset"
]
=
tmp
->
get_linear_before_reset
();
break
;
}
case
OP_TYPEID
:
:
HardSigmoid
:
{
auto
tmp
=
dynamic_cast
<
const
op
::
HardSigmoid
*>
(
&
n
);
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment