Unverified Commit d933d531 authored by Adam Procter's avatar Adam Procter Committed by GitHub

Convolution backprop ops (#416)

parent a87675fe
# API Changes
## Changes to convolution and pooling ops
* Backprop ops have been added for convolution ops.
* The convolution and pooling ops have had several methods/fields renamed, to reflect a shift
in terminology from "images" to "data". Generally this just means that you will have to
`s/image_batch/data_batch/` and `s/image_dilation_strides/data_dilation_strides/`.
* The following functions have been removed:
+ `AvgPool`: `get_channel_count get_input_image_physical_shape get_input_image_virtual_shape get_output_image_shape get_batch_size get_image_dimension_count`
+ `MaxPool`: `get_channel_count get_input_image_shape get_output_image_shape get_batch_size get_image_dimension_count`
+ `Convolution`: `get_input_channel_count get_output_channel_count get_input_image_physical_shape get_input_image_virtual_shape get_output_image_shape get_window_physical_shape get_window_virtual_shape get_batch_size get_image_dimension_count`
All of the above information can be inferred from the shapes and parameters of the op.
## Negative convolution padding
`Convolution` now allows negative padding. This means that the `padding_below` and `padding_above`
......
......@@ -37,109 +37,115 @@ op::AvgPool::AvgPool(const std::shared_ptr<Node>& arg,
if (arg_shape.size() < 3)
{
throw ngraph_error(
"Average-pool image batch input must have rank of at least 3 (one batch axis, one "
"channel axis, at least one image dimension).");
"Average-pool data batch input must have rank of at least 3 (one batch axis, one "
"channel axis, at least one spatial dimension).");
}
m_batch_size = arg_shape[0];
if (m_batch_size == 0)
size_t batch_size = arg_shape[0];
if (batch_size == 0)
{
throw ngraph_error("Average-pool image batch size is zero.");
throw ngraph_error("Average-pool data batch size is zero.");
}
m_channel_count = arg_shape[1];
if (m_channel_count == 0)
size_t channel_count = arg_shape[1];
if (channel_count == 0)
{
throw ngraph_error("Average-pool requires at least one image depth channel.");
throw ngraph_error("Average-pool requires at least one feature channel.");
}
m_image_dimension_count = arg_shape.size() - 2;
size_t spatial_dimension_count = arg_shape.size() - 2;
//
// Make sure window shape, window movement strides, and have same rank as Di.
//
if (m_window_shape.size() != m_image_dimension_count)
if (window_shape.size() != spatial_dimension_count)
{
throw ngraph_error(
"Average-pool window shape rank does not match number of image dimensions.");
"Average-pool window shape rank does not match number of spatial dimensions.");
}
if (m_window_movement_strides.size() != m_image_dimension_count)
if (window_movement_strides.size() != spatial_dimension_count)
{
throw ngraph_error(
"Average-pool window movement stride rank does not match number of image dimensions.");
"Average-pool window movement stride rank does not match number of spatial "
"dimensions.");
}
if (m_padding_below.size() != m_image_dimension_count)
if (padding_below.size() != spatial_dimension_count)
{
throw ngraph_error(
"Average-pool below-padding rank does not match number of image dimensions.");
"Average-pool below-padding rank does not match number of spatial dimensions.");
}
if (m_padding_above.size() != m_image_dimension_count)
if (padding_above.size() != spatial_dimension_count)
{
throw ngraph_error(
"Average-pool above-padding rank does not match number of image dimensions.");
"Average-pool above-padding rank does not match number of spatial dimensions.");
}
//
// Extract input image shape Di and make sure all dimensions are larger than 0.
// Extract input item shape Di and make sure all dimensions are larger than 0.
//
for (size_t i = 0; i < m_image_dimension_count; i++)
Shape input_item_virtual_shape;
for (size_t i = 0; i < spatial_dimension_count; i++)
{
size_t dim_size = arg_shape[1 + 1 + i];
m_input_image_physical_shape.push_back(dim_size);
m_input_image_virtual_shape.push_back(padding_below[i] + dim_size + padding_above[i]);
size_t virtual_dim_size = padding_below[i] + dim_size + padding_above[i];
input_item_virtual_shape.push_back(virtual_dim_size);
if (m_input_image_virtual_shape[i] == 0)
if (virtual_dim_size == 0)
{
throw ngraph_error("Average-pool input image dimension is zero even after padding.");
throw ngraph_error("Average-pool input spatial dimension is zero even after padding.");
}
}
//
// Make sure window shape dimensions are all larger than 0.
//
for (size_t i = 0; i < m_image_dimension_count; i++)
for (size_t i = 0; i < spatial_dimension_count; i++)
{
if (m_window_shape[i] == 0)
if (window_shape[i] == 0)
{
throw ngraph_error("Average-pool window shape has a zero-length axis.");
}
}
//
// Make the max pooling window fits within the image dimensions.
// Make the max pooling window fits within the spatial dimensions.
//
for (size_t i = 0; i < m_image_dimension_count; i++)
for (size_t i = 0; i < spatial_dimension_count; i++)
{
if (m_window_shape[i] > m_input_image_virtual_shape[i])
if (window_shape[i] > input_item_virtual_shape[i])
{
throw ngraph_error(
"Average-pool window shape is larger than the image even after padding.");
"Average-pool window shape is larger than the spatial dimensions even after "
"padding.");
}
}
//
// Compute image output shape Do, checking at the same time that all window movement strides are larger than 0.
// Compute output item shape Do, checking at the same time that all window movement strides are larger than 0.
//
for (size_t i = 0; i < m_image_dimension_count; i++)
Shape output_item_shape;
for (size_t i = 0; i < spatial_dimension_count; i++)
{
if (m_window_movement_strides[i] == 0)
if (window_movement_strides[i] == 0)
{
throw ngraph_error("Average-pool window axis movement stride is zero.");
}
m_output_image_shape.push_back(ceil_div(
m_input_image_virtual_shape[i] - m_window_shape[i] + 1, m_window_movement_strides[i]));
output_item_shape.push_back(ceil_div(input_item_virtual_shape[i] - window_shape[i] + 1,
window_movement_strides[i]));
}
//
// Construct result shape: NCDo.
//
Shape result_shape(1 + 1 + m_image_dimension_count);
result_shape[0] = m_batch_size;
result_shape[1] = m_channel_count;
std::copy(m_output_image_shape.begin(), m_output_image_shape.end(), result_shape.begin() + 2);
Shape result_shape(1 + 1 + spatial_dimension_count);
result_shape[0] = batch_size;
result_shape[1] = channel_count;
std::copy(output_item_shape.begin(), output_item_shape.end(), result_shape.begin() + 2);
set_value_type_checked(get_input_element_type(0), result_shape);
}
......@@ -148,7 +154,7 @@ static Shape default_padding(const std::shared_ptr<Node>& arg)
{
if (arg->get_outputs().size() != 1)
{
throw ngraph_error("Average-pool image batch argument must have exactly one output");
throw ngraph_error("Average-pool data batch argument must have exactly one output");
}
auto& arg_shape = arg->get_outputs().at(0).get_shape();
......@@ -156,8 +162,8 @@ static Shape default_padding(const std::shared_ptr<Node>& arg)
{
// For consistency we should throw the same error message here that we throw in the constructor.
throw ngraph_error(
"Average-pool image batch input must have rank of at least 3 (one batch axis, one "
"channel axis, at least one image dimension).");
"Average-pool data batch input must have rank of at least 3 (one batch axis, one "
"channel axis, at least one spatial dimension).");
}
return Shape(arg_shape.size() - 2, 0);
}
......@@ -174,7 +180,7 @@ static Strides default_strides(const std::shared_ptr<Node>& arg)
{
if (arg->get_outputs().size() != 1)
{
throw ngraph_error("Average-pool image batch argument must have exactly one output");
throw ngraph_error("Average-pool data batch argument must have exactly one output");
}
auto& arg_shape = arg->get_outputs().at(0).get_shape();
......@@ -182,8 +188,8 @@ static Strides default_strides(const std::shared_ptr<Node>& arg)
{
// For consistency we should throw the same error message here that we throw in the constructor.
throw ngraph_error(
"Average-pool image batch input must have rank of at least 3 (one batch axis, one "
"channel axis, at least one image dimension).");
"Average-pool data batch input must have rank of at least 3 (one batch axis, one "
"channel axis, at least one spatial dimension).");
}
return Strides(arg_shape.size() - 2, 1);
}
......@@ -203,13 +209,6 @@ bool op::AvgPool::is_functionally_identical(const Node& other) const
rc &= m_window_movement_strides == rhs.m_window_movement_strides;
rc &= m_padding_below == rhs.m_padding_below;
rc &= m_padding_above == rhs.m_padding_above;
rc &= m_window_movement_strides == rhs.m_window_movement_strides;
rc &= m_channel_count == rhs.m_channel_count;
rc &= m_input_image_physical_shape == rhs.m_input_image_physical_shape;
rc &= m_input_image_virtual_shape == rhs.m_input_image_virtual_shape;
rc &= m_output_image_shape == rhs.m_output_image_shape;
rc &= m_batch_size == rhs.m_batch_size;
rc &= m_image_dimension_count == rhs.m_image_dimension_count;
}
else
{
......
......@@ -22,8 +22,9 @@ namespace ngraph
{
/// \brief Batched average pooling operation, with optional padding and window stride.
///
/// Average pooling takes as its input an image batch tensor of shape \f$(N,C,d_1,\dots,d_n)\f$ where \f$n > 0\f$, every \f$d_i > 0\f$, and where \f$N\f$ is
/// the batch size, and \f$C > 0\f$ is the number of channels (sometimes called features). It also takes four parameters:
/// Average pooling takes as its input an data batch tensor of shape \f$(N,C,d_1,\dots,d_n)\f$ where \f$n > 0\f$, every \f$d_i > 0\f$, and where \f$N\f$ is
/// the batch size, and \f$C > 0\f$ is the number of channels (sometimes called features). The dimensions \f$(d_1,\dots,d_n)\f$ correspond to the shape of
/// an \f$n\f$-dimensional data item in a batch. For example, where \f$n=2\f$, the data may represent a two-dimensional image. It also takes four parameters:
///
/// 1. <i>(the window shape)</i> a size vector \f$(w_1,\dots,w_n)\f$ where every \f$w_i \le d_i\f$; and
/// 2. <i>(the window movement strides, optional)</i> a vector of positive integers \f$(s_1,\dots,s_n)\f$.
......@@ -32,7 +33,7 @@ namespace ngraph
///
/// The output has the shape \f$(N,C,d'_1,\dots,d'_n)\f$, where \f$d'_n = \lceil \frac{p_i + d_i + q_i - w_i + 1}{s_i} \rceil\f$.
///
/// *In the absence of padding*, given an input image batch tensor \f$T_\textit{in}\f$, the output tensor is defined by the equation
/// *In the absence of padding*, given an input data batch tensor \f$T_\textit{in}\f$, the output tensor is defined by the equation
///
/// \f[
/// T_\textit{out}[a,c,i_1,\dots,i_n] = \frac{\sum_{j_1 = s_1 i_1, \dots, j_n = s_n i_n}^{j_1 = s_1 i_1 + w_1 - 1, \dots, j_n = s_n i_n + w_n - 1} T_\textit{in}[a,c,j_1,\dots,j_n]}{\prod_{i=1}^n{w_n}}
......@@ -65,7 +66,7 @@ namespace ngraph
public:
/// \brief Constructs a batched average pooling operation.
///
/// \param arg The node producing the input image batch tensor.
/// \param arg The node producing the input data batch tensor.
/// \param window_shape The window shape.
/// \param window_movement_strides The window movement strides.
/// \param padding_below The below-padding shape.
......@@ -78,7 +79,7 @@ namespace ngraph
/// \brief Constructs a batched, unpadded average pooling operation (i.e., all padding shapes are set to 0).
///
/// \param arg The node producing the input image batch tensor.
/// \param arg The node producing the input data batch tensor.
/// \param window_shape The window shape.
/// \param window_movement_strides The window movement strides.
AvgPool(const std::shared_ptr<Node>& arg,
......@@ -87,7 +88,7 @@ namespace ngraph
/// \brief Constructs an unstrided batched convolution operation (i.e., all window movement strides are 1 and all padding shapes are set to 0).
///
/// \param arg The node producing the input image batch tensor.
/// \param arg The node producing the input data batch tensor.
/// \param window_shape The window shape.
AvgPool(const std::shared_ptr<Node>& arg, const Shape& window_shape);
......@@ -102,6 +103,7 @@ namespace ngraph
m_padding_below,
m_padding_above);
}
bool is_functionally_identical(const Node&) const override;
/// \return The window shape.
const Shape& get_window_shape() const { return m_window_shape; }
......@@ -111,38 +113,11 @@ namespace ngraph
const Shape& get_padding_below() const { return m_padding_below; }
/// \return The above-padding shape.
const Shape& get_padding_above() const { return m_padding_above; }
/// \return The number of image channels.
size_t get_channel_count() const { return m_channel_count; }
/// \return The input image physical shape, not including padding.
const Shape& get_input_image_physical_shape() const
{
return m_input_image_physical_shape;
}
/// \return The input image virtual shape, including padding.
const Shape& get_input_image_virtual_shape() const
{
return m_input_image_virtual_shape;
}
/// \return The output image shape.
const Shape& get_output_image_shape() const { return m_output_image_shape; }
/// \return The batch size.
size_t get_batch_size() const { return m_batch_size; }
/// \return The number of image dimensions.
size_t get_image_dimension_count() const { return m_image_dimension_count; }
bool is_functionally_identical(const Node&) const override;
protected:
Shape m_window_shape;
Strides m_window_movement_strides;
Shape m_padding_below;
Shape m_padding_above;
size_t m_channel_count;
Shape m_input_image_physical_shape;
Shape m_input_image_virtual_shape;
Shape m_output_image_shape;
size_t m_batch_size;
size_t m_image_dimension_count;
};
}
}
This diff is collapsed.
This diff is collapsed.
......@@ -38,93 +38,98 @@ op::MaxPool::MaxPool(const std::shared_ptr<Node>& arg,
if (arg_shape.size() < 3)
{
throw ngraph_error(
"Max pool image batch input must have rank of at least 3 (one batch axis, one "
"channel axis, at least one image dimension).");
"Max pool data batch input must have rank of at least 3 (one batch axis, one "
"channel axis, at least one spatial dimension).");
}
m_batch_size = arg_shape[0];
if (m_batch_size == 0)
size_t batch_size = arg_shape[0];
if (batch_size == 0)
{
throw ngraph_error("Max pool image batch size is zero.");
throw ngraph_error("Max pool data batch size is zero.");
}
m_channel_count = arg_shape[1];
if (m_channel_count == 0)
size_t channel_count = arg_shape[1];
if (channel_count == 0)
{
throw ngraph_error("Max pool requires at least one image depth channel.");
throw ngraph_error("Max pool requires at least one feature channel.");
}
m_image_dimension_count = arg_shape.size() - 2;
size_t spatial_dimension_count = arg_shape.size() - 2;
//
// Make sure window shape and movement strides have same rank as Di.
//
if (m_window_shape.size() != m_image_dimension_count)
if (window_shape.size() != spatial_dimension_count)
{
throw ngraph_error("Max pool window shape rank does not match number of image dimensions.");
throw ngraph_error(
"Max pool window shape rank does not match number of spatial dimensions.");
}
if (m_window_movement_strides.size() != m_image_dimension_count)
if (window_movement_strides.size() != spatial_dimension_count)
{
throw ngraph_error(
"Max pool window movement stride rank does not match number of image dimensions.");
"Max pool window movement stride rank does not match number of spatial dimensions.");
}
//
// Extract input image shape Di and make sure all dimensions are larger than 0.
// Extract input item shape Di and make sure all dimensions are larger than 0.
//
for (size_t i = 0; i < m_image_dimension_count; i++)
Shape input_spatial_shape;
for (size_t i = 0; i < spatial_dimension_count; i++)
{
m_input_image_shape.push_back(arg_shape[1 + 1 + i]);
input_spatial_shape.push_back(arg_shape[1 + 1 + i]);
if (m_input_image_shape[i] == 0)
if (input_spatial_shape[i] == 0)
{
throw ngraph_error("Max pool input image dimension is zero.");
throw ngraph_error("Max pool input spatial dimension is zero.");
}
}
//
// Make sure window shape dimensions are all larger than 0.
//
for (size_t i = 0; i < m_image_dimension_count; i++)
for (size_t i = 0; i < spatial_dimension_count; i++)
{
if (m_window_shape[i] == 0)
if (window_shape[i] == 0)
{
throw ngraph_error("Max pool window shape has a zero-length axis.");
}
}
//
// Make the max pooling window fits within the image dimensions.
// Make the max pooling window fits within the spatial dimensions.
//
for (size_t i = 0; i < m_image_dimension_count; i++)
for (size_t i = 0; i < spatial_dimension_count; i++)
{
if (m_window_shape[i] > m_input_image_shape[i])
if (window_shape[i] > input_spatial_shape[i])
{
throw ngraph_error("Max pool window shape is larger than the image.");
throw ngraph_error("Max pool window shape is larger than the spatial dimensions.");
}
}
//
// Compute image output shape Do, checking at the same time that all window movement strides are larger than 0.
// Compute output item shape Do, checking at the same time that all window movement strides are larger than 0.
//
for (size_t i = 0; i < m_image_dimension_count; i++)
Shape output_spatial_shape;
for (size_t i = 0; i < spatial_dimension_count; i++)
{
if (m_window_movement_strides[i] == 0)
if (window_movement_strides[i] == 0)
{
throw ngraph_error("Max pool window axis movement stride is zero.");
}
m_output_image_shape.push_back(
ceil_div(m_input_image_shape[i] - m_window_shape[i] + 1, m_window_movement_strides[i]));
output_spatial_shape.push_back(
ceil_div(input_spatial_shape[i] - window_shape[i] + 1, window_movement_strides[i]));
}
//
// Construct result shape: NCDo.
//
Shape result_shape(1 + 1 + m_image_dimension_count);
result_shape[0] = m_batch_size;
result_shape[1] = m_channel_count;
std::copy(m_output_image_shape.begin(), m_output_image_shape.end(), result_shape.begin() + 2);
Shape result_shape(1 + 1 + spatial_dimension_count);
result_shape[0] = batch_size;
result_shape[1] = channel_count;
std::copy(output_spatial_shape.begin(), output_spatial_shape.end(), result_shape.begin() + 2);
set_value_type_checked(get_inputs().at(0).get_element_type(), result_shape);
}
......@@ -133,7 +138,7 @@ static Strides default_strides(const std::shared_ptr<Node>& arg)
{
if (arg->get_outputs().size() != 1)
{
throw ngraph_error("Max pool image batch argument must have exactly one output");
throw ngraph_error("Max pool data batch argument must have exactly one output");
}
auto& arg_shape = arg->get_outputs().at(0).get_shape();
......@@ -141,8 +146,8 @@ static Strides default_strides(const std::shared_ptr<Node>& arg)
{
// For consistency we should throw the same error message here that we throw in the constructor.
throw ngraph_error(
"Max pool image batch input must have rank of at least 3 (one batch axis, one "
"channel axis, at least one image dimension).");
"Max pool data batch input must have rank of at least 3 (one batch axis, one "
"channel axis, at least one spatial dimension).");
}
return Strides(arg_shape.size() - 2, 1);
}
......@@ -160,11 +165,6 @@ bool op::MaxPool::is_functionally_identical(const Node& other) const
const MaxPool& rhs = dynamic_cast<const MaxPool&>(other);
rc &= m_window_shape == rhs.m_window_shape;
rc &= m_window_movement_strides == rhs.m_window_movement_strides;
rc &= m_channel_count == rhs.m_channel_count;
rc &= m_input_image_shape == rhs.m_input_image_shape;
rc &= m_output_image_shape == rhs.m_output_image_shape;
rc &= m_batch_size == rhs.m_batch_size;
rc &= m_image_dimension_count == rhs.m_image_dimension_count;
}
else
{
......
......@@ -22,15 +22,16 @@ namespace ngraph
{
/// \brief Batched max pooling operation, with optional window stride.
///
/// Max pooling takes as its input an image batch tensor of shape \f$(N,C,d_1,\dots,d_n)\f$ where \f$n > 0\f$, every \f$d_i > 0\f$, and where \f$N\f$ is
/// the batch size, and \f$C > 0\f$ is the number of channels (sometimes called features). It also takes two parameters:
/// Max pooling takes as its input a data batch tensor of shape \f$(N,C,d_1,\dots,d_n)\f$ where \f$n > 0\f$, every \f$d_i > 0\f$, and where \f$N\f$ is
/// the batch size, and \f$C > 0\f$ is the number of channels (sometimes called features). The dimensions \f$(d_1,\dots,d_n)\f$ correspond to the shape of
/// an \f$n\f$-dimensional data item in a batch. For example, where \f$n=2\f$, the data may represent a two-dimensional image. It also takes two parameters:
///
/// 1. <i>(the window shape)</i> a size vector \f$(w_1,\dots,w_n)\f$ where every \f$w_i \le d_i\f$; and
/// 2. <i>(the window movement strides, optional)</i> a vector of positive integers \f$(s_1,\dots,s_n)\f$.
///
/// The output has the shape \f$(N,C,d'_1,\dots,d'_n)\f$, where \f$d'_n = \lceil \frac{d_i - w_i + 1}{s_i} \rceil\f$.
///
/// Given an input image batch tensor \f$T_\textit{in}\f$, the output tensor is defined by the equation
/// Given an input data batch tensor \f$T_\textit{in}\f$, the output tensor is defined by the equation
///
/// \f[
/// T_\textit{out}[a,c,i_1,\dots,i_n] = \max_{j_1 = s_1 i_1, \dots, j_n = s_n i_n}^{j_1 = s_1 i_1 + w_1 - 1, \dots, j_n = s_n i_n + w_n - 1} (T_\textit{in}[a,c,j_1,\dots,j_n])
......@@ -41,7 +42,7 @@ namespace ngraph
public:
/// \brief Constructs a batched max pooling operation.
///
/// \param arg The node producing the input image batch tensor.
/// \param arg The node producing the input data batch tensor.
/// \param window_shape The window shape.
/// \param window_movement_strides The window movement strides.
MaxPool(const std::shared_ptr<Node>& arg,
......@@ -50,7 +51,7 @@ namespace ngraph
/// \brief Constructs an unstrided batched convolution operation (i.e., all window movement strides are 1).
///
/// \param arg The node producing the input image batch tensor.
/// \param arg The node producing the input data batch tensor.
/// \param window_shape The window shape.
MaxPool(const std::shared_ptr<Node>& arg, const Shape& window_shape);
......@@ -62,35 +63,18 @@ namespace ngraph
return std::make_shared<MaxPool>(
new_args.at(0), m_window_shape, m_window_movement_strides);
}
bool is_functionally_identical(const Node&) const override;
/// \return The window shape.
const Shape& get_window_shape() const { return m_window_shape; }
/// \return The window movement strides.
const Strides& get_window_movement_strides() const { return m_window_movement_strides; }
/// \return The number of image channels.
size_t get_channel_count() const { return m_channel_count; }
/// \return The input image shape.
const Shape& get_input_image_shape() const { return m_input_image_shape; }
/// \return The output image shape.
const Shape& get_output_image_shape() const { return m_output_image_shape; }
/// \return The batch size.
size_t get_batch_size() const { return m_batch_size; }
/// \return The number of image dimensions.
size_t get_image_dimension_count() const { return m_image_dimension_count; }
bool is_functionally_identical(const Node&) const override;
protected:
virtual void generate_adjoints(autodiff::Adjoints& adjoints,
const std::shared_ptr<Node>& delta) override;
Shape m_window_shape;
Strides m_window_movement_strides;
size_t m_channel_count;
Shape m_input_image_shape;
Shape m_output_image_shape;
size_t m_batch_size;
size_t m_image_dimension_count;
};
}
}
......@@ -1847,17 +1847,17 @@ void runtime::cpu::CPU_Emitter::EmitConvolution(codegen::CodeWriter& writer,
filter_dilated = filter_dilated || (s != 1);
}
bool images_dilated = false;
for (size_t s : convolution->get_image_dilation_strides())
bool data_dilated = false;
for (size_t s : convolution->get_data_dilation_strides())
{
images_dilated = images_dilated || (s != 1);
data_dilated = data_dilated || (s != 1);
}
// TODO(jmenon): MKLDNN streams should be static so we need to either implement
// codegen for statics or move primitive and stream construction out
// of the generated function and only generate code to run/rerun the stream
if (!filter_dilated && !images_dilated && arg0_rank == 4 && arg1_rank == 4 &&
if (!filter_dilated && !data_dilated && arg0_rank == 4 && arg1_rank == 4 &&
args[0].get_element_type() == element::f32)
{
const string& et = get_mkldnn_data_type(args[0].get_element_type().c_type_string());
......@@ -1890,7 +1890,7 @@ void runtime::cpu::CPU_Emitter::EmitConvolution(codegen::CodeWriter& writer,
writer.indent--;
writer << "}\n";
}
else if (filter_dilated && !images_dilated && arg0_rank == 4 && arg1_rank == 4 &&
else if (filter_dilated && !data_dilated && arg0_rank == 4 && arg1_rank == 4 &&
args[0].get_element_type() == element::f32)
{
// For dilation, MKLDNN wants to know how many elements to insert between, not how far
......@@ -1948,11 +1948,75 @@ void runtime::cpu::CPU_Emitter::EmitConvolution(codegen::CodeWriter& writer,
<< "},\n";
writer << " {" << join(convolution->get_padding_below()) << "},\n";
writer << " {" << join(convolution->get_padding_above()) << "},\n";
writer << " {" << join(convolution->get_image_dilation_strides())
<< "});\n";
writer << " {" << join(convolution->get_data_dilation_strides())
<< "},\n";
writer << " 0, 1, 1, 0, 0, 1, false);\n";
}
}
void runtime::cpu::CPU_Emitter::EmitConvolutionBackpropFilters(
codegen::CodeWriter& writer,
const ngraph::Node* n,
const vector<runtime::cpu::TensorViewWrapper>& args,
const vector<runtime::cpu::TensorViewWrapper>& out)
{
auto convolution = static_cast<const op::ConvolutionBackpropFilters*>(n);
auto arg0_shape = args[0].get_shape();
auto arg1_shape = args[1].get_shape();
auto result_shape = out[0].get_shape();
writer << "kernel::convolution<" << out[0].get_type() << ">(" << args[0].get_name() << ",\n";
writer << " " << args[1].get_name() << ",\n";
writer << " " << out[0].get_name() << ",\n";
writer << " {" << join(arg0_shape) << "},\n";
writer << " {" << join(arg1_shape) << "},\n";
writer << " {" << join(result_shape) << "},\n";
writer << " {"
<< join(convolution->get_window_movement_strides_backward()) << "},\n";
writer << " {"
<< join(convolution->get_window_dilation_strides_backward()) << "},\n";
writer << " {" << join(convolution->get_padding_below_backward())
<< "},\n";
writer << " {" << join(convolution->get_padding_above_backward())
<< "},\n";
writer << " {"
<< join(convolution->get_data_dilation_strides_backward()) << "},\n";
writer << " 1, 0, 0, 1, 1, 0, false);\n";
}
void runtime::cpu::CPU_Emitter::EmitConvolutionBackpropData(
codegen::CodeWriter& writer,
const ngraph::Node* n,
const vector<runtime::cpu::TensorViewWrapper>& args,
const vector<runtime::cpu::TensorViewWrapper>& out)
{
auto convolution = static_cast<const op::ConvolutionBackpropData*>(n);
auto arg0_shape = args[0].get_shape();
auto arg1_shape = args[1].get_shape();
auto result_shape = out[0].get_shape();
// Note that args[1] and args[0] are switched here from the usual order.
writer << "kernel::convolution<" << out[0].get_type() << ">(" << args[1].get_name() << ",\n";
writer << " " << args[0].get_name() << ",\n";
writer << " " << out[0].get_name() << ",\n";
writer << " {" << join(arg1_shape) << "},\n";
writer << " {" << join(arg0_shape) << "},\n";
writer << " {" << join(result_shape) << "},\n";
writer << " {"
<< join(convolution->get_window_movement_strides_backward()) << "},\n";
writer << " {"
<< join(convolution->get_window_dilation_strides_backward()) << "},\n";
writer << " {" << join(convolution->get_padding_below_backward())
<< "},\n";
writer << " {" << join(convolution->get_padding_above_backward())
<< "},\n";
writer << " {"
<< join(convolution->get_data_dilation_strides_backward()) << "},\n";
writer << " 0, 1, 0, 1, 0, 1, true);\n";
}
void runtime::cpu::CPU_Emitter::EmitNot(codegen::CodeWriter& writer,
const ngraph::Node* n,
const vector<runtime::cpu::TensorViewWrapper>& args,
......
......@@ -85,6 +85,8 @@ namespace ngraph
static void EMITTER_DECL(EmitCeiling);
static void EMITTER_DECL(EmitSqrt);
static void EMITTER_DECL(EmitConvolution);
static void EMITTER_DECL(EmitConvolutionBackpropFilters);
static void EMITTER_DECL(EmitConvolutionBackpropData);
static void EMITTER_DECL(EmitNot);
static void EMITTER_DECL(EmitMaxPool);
static void EMITTER_DECL(EmitReverse);
......
......@@ -187,6 +187,10 @@ static const runtime::cpu::OpMap dispatcher{
{TI(ngraph::op::Ceiling), &runtime::cpu::CPU_Emitter::EmitCeiling},
{TI(ngraph::op::Sqrt), &runtime::cpu::CPU_Emitter::EmitSqrt},
{TI(ngraph::op::Convolution), &runtime::cpu::CPU_Emitter::EmitConvolution},
{TI(ngraph::op::ConvolutionBackpropFilters),
&runtime::cpu::CPU_Emitter::EmitConvolutionBackpropFilters},
{TI(ngraph::op::ConvolutionBackpropData),
&runtime::cpu::CPU_Emitter::EmitConvolutionBackpropData},
{TI(ngraph::op::Not), &runtime::cpu::CPU_Emitter::EmitNot},
{TI(ngraph::op::MaxPool), &runtime::cpu::CPU_Emitter::EmitMaxPool},
{TI(ngraph::op::Reverse), &runtime::cpu::CPU_Emitter::EmitReverse},
......
......@@ -322,7 +322,59 @@ private:
c->get_window_dilation_strides(),
c->get_padding_below(),
c->get_padding_above(),
c->get_image_dilation_strides());
c->get_data_dilation_strides(),
0,
1,
1,
0,
0,
1,
false);
}
else if (node_op == "ConvolutionBackpropFilters")
{
auto c = static_cast<const op::ConvolutionBackpropFilters*>(&node);
kernel::convolution<T>(reinterpret_cast<T*>(args[0]->get_data_ptr()),
reinterpret_cast<T*>(args[1]->get_data_ptr()),
reinterpret_cast<T*>(out[0]->get_data_ptr()),
args[0]->get_shape(),
args[1]->get_shape(),
out[0]->get_shape(),
c->get_window_movement_strides_backward(),
c->get_window_dilation_strides_backward(),
c->get_padding_below_backward(),
c->get_padding_above_backward(),
c->get_data_dilation_strides_backward(),
1,
0,
0,
1,
1,
0,
false);
}
else if (node_op == "ConvolutionBackpropData")
{
// Note that args[1] and args[0] are switched here from the usual order.
auto c = static_cast<const op::ConvolutionBackpropData*>(&node);
kernel::convolution<T>(reinterpret_cast<T*>(args[1]->get_data_ptr()),
reinterpret_cast<T*>(args[0]->get_data_ptr()),
reinterpret_cast<T*>(out[0]->get_data_ptr()),
args[1]->get_shape(),
args[0]->get_shape(),
out[0]->get_shape(),
c->get_window_movement_strides_backward(),
c->get_window_dilation_strides_backward(),
c->get_padding_below_backward(),
c->get_padding_above_backward(),
c->get_data_dilation_strides_backward(),
0,
1,
0,
1,
0,
1,
true);
}
else if (node_op == "Cos")
{
......
......@@ -42,36 +42,36 @@ namespace ngraph
{
// Our output coordinate O will have the form:
//
// (img,chan,i_1,...,i_n)
// (N,chan,i_1,...,i_n)
size_t img_index = out_coord[0];
size_t batch_index = out_coord[0];
size_t channel = out_coord[1];
// For the input images we need to iterate the coordinate:
// For the input data we need to iterate the coordinate:
//
// I:
//
// over the range (noninclusive on the right):
//
// (img,chan,s_1*i_1,s_2*i_2,...,s_n*i_n) ->
// (N,chan,s_1*i_1,s_2*i_2,...,s_n*i_n) ->
//
// (img+1,chan+1,s_1*i_1 + window_shape_1,...,s_n*i_n + window_shape_n)
// (N+1,chan+1,s_1*i_1 + window_shape_1,...,s_n*i_n + window_shape_n)
//
// with unit stride.
//
// We iterate this over the *padded* image, so below we will need to check for coordinates that fall in the padding area.
// We iterate this over the *padded* data, so below we will need to check for coordinates that fall in the padding area.
size_t n_image_dimensions = arg_shape.size() - 2;
size_t n_spatial_dimensions = arg_shape.size() - 2;
Coordinate input_batch_transform_start(2 + n_image_dimensions);
Coordinate input_batch_transform_end(2 + n_image_dimensions);
Strides input_batch_transform_source_strides(2 + n_image_dimensions, 1);
AxisVector input_batch_transform_source_axis_order(2 + n_image_dimensions);
CoordinateDiff input_batch_transform_padding_below(2 + n_image_dimensions);
CoordinateDiff input_batch_transform_padding_above(2 + n_image_dimensions);
Coordinate input_batch_transform_start(2 + n_spatial_dimensions);
Coordinate input_batch_transform_end(2 + n_spatial_dimensions);
Strides input_batch_transform_source_strides(2 + n_spatial_dimensions, 1);
AxisVector input_batch_transform_source_axis_order(2 + n_spatial_dimensions);
CoordinateDiff input_batch_transform_padding_below(2 + n_spatial_dimensions);
CoordinateDiff input_batch_transform_padding_above(2 + n_spatial_dimensions);
input_batch_transform_start[0] = img_index;
input_batch_transform_end[0] = img_index + 1;
input_batch_transform_start[0] = batch_index;
input_batch_transform_end[0] = batch_index + 1;
input_batch_transform_start[1] = channel;
input_batch_transform_end[1] = channel + 1;
input_batch_transform_padding_below[0] = 0;
......@@ -79,7 +79,7 @@ namespace ngraph
input_batch_transform_padding_above[0] = 0;
input_batch_transform_padding_above[1] = 0;
for (size_t i = 2; i < n_image_dimensions + 2; i++)
for (size_t i = 2; i < n_spatial_dimensions + 2; i++)
{
size_t window_shape_this_dim = window_shape[i - 2];
size_t movement_stride = window_movement_strides[i - 2];
......
......@@ -37,8 +37,23 @@ namespace ngraph
const Strides& window_dilation_strides,
const CoordinateDiff& padding_below,
const CoordinateDiff& padding_above,
const Strides& image_dilation_strides)
const Strides& data_dilation_strides,
size_t batch_axis_data,
size_t input_channel_axis_data,
size_t input_channel_axis_filters,
size_t output_channel_axis_filters,
size_t batch_axis_result,
size_t output_channel_axis_result,
bool rotate_filter)
{
// Comments throughout assume without loss of generality that:
//
// * batch axes for both input data and output data are 0
// * input channel axes for both input data and filters are 1
// * output channel axes for filters is 0
// * output channel axis for output data is 1
// * rotate_filter is false
// At the outermost level we will walk over every output coordinate O.
CoordinateTransform output_transform(out_shape);
......@@ -46,50 +61,50 @@ namespace ngraph
{
// Our output coordinate O will have the form:
//
// (img,chan_out,i_1,...,i_n)
// (N,chan_out,i_1,...,i_n)
size_t img_index = out_coord[0];
size_t output_channel = out_coord[1];
size_t batch_index = out_coord[batch_axis_result];
size_t output_channel = out_coord[output_channel_axis_result];
// For the input images we need to iterate the coordinate:
// For the input data we need to iterate the coordinate:
//
// I:
//
// over the range (noninclusive on the right):
//
// (img,0,s_1*i_1,s_2*i_2,...,s_n*i_n) ->
// (N,0,s_1*i_1,s_2*i_2,...,s_n*i_n) ->
//
// (img+1,chans_in_count,s_1*i_1 + l_1*filter_dims_1,...,s_n*i_n + l_n*filter_dims_n)
// (N+1,chans_in_count,s_1*i_1 + l_1*filter_dims_1,...,s_n*i_n + l_n*filter_dims_n)
//
// with strides:
//
// (1,l_1,...,l_n).
//
// Note that we are iterating within the *padded* and *dilated* image batch, so further
// Note that we are iterating within the *padded* and *dilated* data batch, so further
// down we must check the current coordinate is in the padding or dilation gap.
size_t n_image_dimensions = arg0_shape.size() - 2;
size_t n_input_channels = arg0_shape[1];
size_t n_spatial_dimensions = arg0_shape.size() - 2;
size_t n_input_channels = arg0_shape[input_channel_axis_data];
Coordinate input_batch_transform_start(2 + n_image_dimensions);
Coordinate input_batch_transform_end(2 + n_image_dimensions);
Strides input_batch_transform_movement_strides(2 + n_image_dimensions, 1);
CoordinateDiff input_batch_transform_padding_below(2 + n_image_dimensions, 0);
CoordinateDiff input_batch_transform_padding_above(2 + n_image_dimensions, 0);
Strides input_batch_transform_dilation_strides(2 + n_image_dimensions, 1);
Coordinate input_batch_transform_start(2 + n_spatial_dimensions);
Coordinate input_batch_transform_end(2 + n_spatial_dimensions);
Strides input_batch_transform_movement_strides(2 + n_spatial_dimensions, 1);
CoordinateDiff input_batch_transform_padding_below(2 + n_spatial_dimensions, 0);
CoordinateDiff input_batch_transform_padding_above(2 + n_spatial_dimensions, 0);
Strides input_batch_transform_dilation_strides(2 + n_spatial_dimensions, 1);
input_batch_transform_start[0] = img_index;
input_batch_transform_end[0] = img_index + 1;
input_batch_transform_start[1] = 0;
input_batch_transform_end[1] = n_input_channels;
input_batch_transform_start[batch_axis_data] = batch_index;
input_batch_transform_end[batch_axis_data] = batch_index + 1;
input_batch_transform_start[input_channel_axis_data] = 0;
input_batch_transform_end[input_channel_axis_data] = n_input_channels;
for (size_t i = 2; i < n_image_dimensions + 2; i++)
for (size_t i = 2; i < n_spatial_dimensions + 2; i++)
{
size_t window_dilation_stride = window_dilation_strides[i - 2];
size_t window_movement_stride = window_movement_strides[i - 2];
std::ptrdiff_t below_pad = padding_below[i - 2];
std::ptrdiff_t above_pad = padding_above[i - 2];
size_t image_dilation_stride = image_dilation_strides[i - 2];
size_t data_dilation_stride = data_dilation_strides[i - 2];
input_batch_transform_start[i] = window_movement_stride * out_coord[i];
input_batch_transform_end[i] =
......@@ -98,10 +113,10 @@ namespace ngraph
input_batch_transform_movement_strides[i] = window_dilation_stride;
input_batch_transform_padding_below[i] = below_pad;
input_batch_transform_padding_above[i] = above_pad;
input_batch_transform_dilation_strides[i] = image_dilation_stride;
input_batch_transform_dilation_strides[i] = data_dilation_stride;
}
AxisVector input_batch_transform_axis_order(2 + n_image_dimensions);
AxisVector input_batch_transform_axis_order(2 + n_spatial_dimensions);
size_t n = 0;
std::generate(input_batch_transform_axis_order.begin(),
input_batch_transform_axis_order.end(),
......@@ -127,15 +142,15 @@ namespace ngraph
//
// with unit stride.
Shape filter_transform_start(2 + n_image_dimensions);
Shape filter_transform_end(2 + n_image_dimensions);
Shape filter_transform_start(2 + n_spatial_dimensions);
Shape filter_transform_end(2 + n_spatial_dimensions);
filter_transform_start[0] = output_channel;
filter_transform_end[0] = output_channel + 1;
filter_transform_start[1] = 0;
filter_transform_end[1] = n_input_channels;
filter_transform_start[output_channel_axis_filters] = output_channel;
filter_transform_end[output_channel_axis_filters] = output_channel + 1;
filter_transform_start[input_channel_axis_filters] = 0;
filter_transform_end[input_channel_axis_filters] = n_input_channels;
for (size_t i = 2; i < n_image_dimensions + 2; i++)
for (size_t i = 2; i < n_spatial_dimensions + 2; i++)
{
filter_transform_start[i] = 0;
filter_transform_end[i] = arg1_shape[i];
......@@ -157,7 +172,19 @@ namespace ngraph
filter_it != filter_transform.end())
{
const Coordinate& input_batch_coord = *input_it;
const Coordinate& filter_coord = *filter_it;
Coordinate filter_coord = *filter_it;
if (rotate_filter)
{
Shape target_shape = filter_transform.get_target_shape();
// Note that we only reverse the spatial dimensions here (loop
// starts at 2)
for (size_t i = 2; i < filter_coord.size(); i++)
{
filter_coord[i] = target_shape[i] - filter_coord[i] - 1;
}
}
T v = input_batch_transform.has_source_coordinate(input_batch_coord)
? arg0[input_batch_transform.index(input_batch_coord)]
......
......@@ -40,34 +40,34 @@ namespace ngraph
{
// Our output coordinate O will have the form:
//
// (img,chan,i_1,...,i_n)
// (N,chan,i_1,...,i_n)
size_t img_index = out_coord[0];
size_t batch_index = out_coord[0];
size_t channel = out_coord[1];
// For the input images we need to iterate the coordinate:
// For the input data we need to iterate the coordinate:
//
// I:
//
// over the range (noninclusive on the right):
//
// (img,chan,s_1*i_1,s_2*i_2,...,s_n*i_n) ->
// (N,chan,s_1*i_1,s_2*i_2,...,s_n*i_n) ->
//
// (img+1,chan+1,s_1*i_1 + window_shape_1,...,s_n*i_n + window_shape_n)
// (N+1,chan+1,s_1*i_1 + window_shape_1,...,s_n*i_n + window_shape_n)
//
// with unit stride.
size_t n_image_dimensions = arg_shape.size() - 2;
size_t n_spatial_dimensions = arg_shape.size() - 2;
Coordinate input_batch_transform_start(2 + n_image_dimensions);
Coordinate input_batch_transform_end(2 + n_image_dimensions);
Coordinate input_batch_transform_start(2 + n_spatial_dimensions);
Coordinate input_batch_transform_end(2 + n_spatial_dimensions);
input_batch_transform_start[0] = img_index;
input_batch_transform_end[0] = img_index + 1;
input_batch_transform_start[0] = batch_index;
input_batch_transform_end[0] = batch_index + 1;
input_batch_transform_start[1] = channel;
input_batch_transform_end[1] = channel + 1;
for (size_t i = 2; i < n_image_dimensions + 2; i++)
for (size_t i = 2; i < n_spatial_dimensions + 2; i++)
{
size_t window_shape_this_dim = window_shape[i - 2];
size_t movement_stride = window_movement_strides[i - 2];
......
......@@ -379,15 +379,79 @@ static shared_ptr<ngraph::Function>
node_js.at("window_dilation_strides").get<vector<size_t>>();
auto padding_below = node_js.at("padding_below").get<vector<std::ptrdiff_t>>();
auto padding_above = node_js.at("padding_above").get<vector<std::ptrdiff_t>>();
auto image_dilation_strides =
node_js.at("image_dilation_strides").get<vector<size_t>>();
// For backwards compatibility, we accept "image_dilation_strides" in place of
// "data_dilation_strides", and we also allow it to be omitted altogether.
auto data_dilation_strides_maybe = node_js["data_dilation_strides"];
if (data_dilation_strides_maybe.empty())
{
data_dilation_strides_maybe = node_js["image_dilation_strides"];
}
if (data_dilation_strides_maybe.empty())
{
node = make_shared<op::Convolution>(args[0],
args[1],
window_movement_strides,
window_dilation_strides,
padding_below,
padding_above);
}
else
{
node = make_shared<op::Convolution>(
args[0],
args[1],
window_movement_strides,
window_dilation_strides,
padding_below,
padding_above,
image_dilation_strides);
data_dilation_strides_maybe.get<std::vector<size_t>>());
}
}
else if (node_op == "ConvolutionBackpropData")
{
auto data_batch_shape = node_js.at("data_batch_shape").get<vector<size_t>>();
auto window_movement_strides_forward =
node_js.at("window_movement_strides_forward").get<vector<size_t>>();
auto window_dilation_strides_forward =
node_js.at("window_dilation_strides_forward").get<vector<size_t>>();
auto padding_below_forward =
node_js.at("padding_below_forward").get<vector<std::ptrdiff_t>>();
auto padding_above_forward =
node_js.at("padding_above_forward").get<vector<std::ptrdiff_t>>();
auto data_dilation_strides_forward =
node_js.at("data_dilation_strides_forward").get<vector<size_t>>();
node = make_shared<op::ConvolutionBackpropData>(data_batch_shape,
args[0],
args[1],
window_movement_strides_forward,
window_dilation_strides_forward,
padding_below_forward,
padding_above_forward,
data_dilation_strides_forward);
}
else if (node_op == "ConvolutionBackpropFilters")
{
auto filters_shape = node_js.at("filters_shape").get<vector<size_t>>();
auto window_movement_strides_forward =
node_js.at("window_movement_strides_forward").get<vector<size_t>>();
auto window_dilation_strides_forward =
node_js.at("window_dilation_strides_forward").get<vector<size_t>>();
auto padding_below_forward =
node_js.at("padding_below_forward").get<vector<std::ptrdiff_t>>();
auto padding_above_forward =
node_js.at("padding_above_forward").get<vector<std::ptrdiff_t>>();
auto data_dilation_strides_forward =
node_js.at("data_dilation_strides_forward").get<vector<size_t>>();
node = make_shared<op::ConvolutionBackpropFilters>(args[0],
filters_shape,
args[1],
window_movement_strides_forward,
window_dilation_strides_forward,
padding_below_forward,
padding_above_forward,
data_dilation_strides_forward);
}
else if (node_op == "Cos")
{
......@@ -718,7 +782,27 @@ static json write(const Node& n)
node["window_dilation_strides"] = tmp->get_window_dilation_strides();
node["padding_below"] = tmp->get_padding_below();
node["padding_above"] = tmp->get_padding_above();
node["image_dilation_strides"] = tmp->get_image_dilation_strides();
node["data_dilation_strides"] = tmp->get_data_dilation_strides();
}
else if (node_op == "ConvolutionBackpropData")
{
auto tmp = dynamic_cast<const op::ConvolutionBackpropData*>(&n);
node["data_batch_shape"] = tmp->get_data_batch_shape();
node["window_movement_strides_forward"] = tmp->get_window_movement_strides_forward();
node["window_dilation_strides_forward"] = tmp->get_window_dilation_strides_forward();
node["padding_below_forward"] = tmp->get_padding_below_forward();
node["padding_above_forward"] = tmp->get_padding_above_forward();
node["data_dilation_strides_forward"] = tmp->get_data_dilation_strides_forward();
}
else if (node_op == "ConvolutionBackpropFilters")
{
auto tmp = dynamic_cast<const op::ConvolutionBackpropFilters*>(&n);
node["filters_shape"] = tmp->get_filters_shape();
node["window_movement_strides_forward"] = tmp->get_window_movement_strides_forward();
node["window_dilation_strides_forward"] = tmp->get_window_dilation_strides_forward();
node["padding_below_forward"] = tmp->get_padding_below_forward();
node["padding_above_forward"] = tmp->get_padding_above_forward();
node["data_dilation_strides_forward"] = tmp->get_data_dilation_strides_forward();
}
else if (node_op == "Cos")
{
......
This source diff could not be displayed because it is too large. You can view the blob instead.
This diff is collapsed.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment