Unverified Commit d933d531 authored by Adam Procter's avatar Adam Procter Committed by GitHub

Convolution backprop ops (#416)

parent a87675fe
# API Changes # API Changes
## Changes to convolution and pooling ops
* Backprop ops have been added for convolution ops.
* The convolution and pooling ops have had several methods/fields renamed, to reflect a shift
in terminology from "images" to "data". Generally this just means that you will have to
`s/image_batch/data_batch/` and `s/image_dilation_strides/data_dilation_strides/`.
* The following functions have been removed:
+ `AvgPool`: `get_channel_count get_input_image_physical_shape get_input_image_virtual_shape get_output_image_shape get_batch_size get_image_dimension_count`
+ `MaxPool`: `get_channel_count get_input_image_shape get_output_image_shape get_batch_size get_image_dimension_count`
+ `Convolution`: `get_input_channel_count get_output_channel_count get_input_image_physical_shape get_input_image_virtual_shape get_output_image_shape get_window_physical_shape get_window_virtual_shape get_batch_size get_image_dimension_count`
All of the above information can be inferred from the shapes and parameters of the op.
## Negative convolution padding ## Negative convolution padding
`Convolution` now allows negative padding. This means that the `padding_below` and `padding_above` `Convolution` now allows negative padding. This means that the `padding_below` and `padding_above`
......
...@@ -37,109 +37,115 @@ op::AvgPool::AvgPool(const std::shared_ptr<Node>& arg, ...@@ -37,109 +37,115 @@ op::AvgPool::AvgPool(const std::shared_ptr<Node>& arg,
if (arg_shape.size() < 3) if (arg_shape.size() < 3)
{ {
throw ngraph_error( throw ngraph_error(
"Average-pool image batch input must have rank of at least 3 (one batch axis, one " "Average-pool data batch input must have rank of at least 3 (one batch axis, one "
"channel axis, at least one image dimension)."); "channel axis, at least one spatial dimension).");
} }
m_batch_size = arg_shape[0]; size_t batch_size = arg_shape[0];
if (m_batch_size == 0) if (batch_size == 0)
{ {
throw ngraph_error("Average-pool image batch size is zero."); throw ngraph_error("Average-pool data batch size is zero.");
} }
m_channel_count = arg_shape[1]; size_t channel_count = arg_shape[1];
if (m_channel_count == 0) if (channel_count == 0)
{ {
throw ngraph_error("Average-pool requires at least one image depth channel."); throw ngraph_error("Average-pool requires at least one feature channel.");
} }
m_image_dimension_count = arg_shape.size() - 2; size_t spatial_dimension_count = arg_shape.size() - 2;
// //
// Make sure window shape, window movement strides, and have same rank as Di. // Make sure window shape, window movement strides, and have same rank as Di.
// //
if (m_window_shape.size() != m_image_dimension_count) if (window_shape.size() != spatial_dimension_count)
{ {
throw ngraph_error( throw ngraph_error(
"Average-pool window shape rank does not match number of image dimensions."); "Average-pool window shape rank does not match number of spatial dimensions.");
} }
if (m_window_movement_strides.size() != m_image_dimension_count) if (window_movement_strides.size() != spatial_dimension_count)
{ {
throw ngraph_error( throw ngraph_error(
"Average-pool window movement stride rank does not match number of image dimensions."); "Average-pool window movement stride rank does not match number of spatial "
"dimensions.");
} }
if (m_padding_below.size() != m_image_dimension_count) if (padding_below.size() != spatial_dimension_count)
{ {
throw ngraph_error( throw ngraph_error(
"Average-pool below-padding rank does not match number of image dimensions."); "Average-pool below-padding rank does not match number of spatial dimensions.");
} }
if (m_padding_above.size() != m_image_dimension_count) if (padding_above.size() != spatial_dimension_count)
{ {
throw ngraph_error( throw ngraph_error(
"Average-pool above-padding rank does not match number of image dimensions."); "Average-pool above-padding rank does not match number of spatial dimensions.");
} }
// //
// Extract input image shape Di and make sure all dimensions are larger than 0. // Extract input item shape Di and make sure all dimensions are larger than 0.
// //
for (size_t i = 0; i < m_image_dimension_count; i++) Shape input_item_virtual_shape;
for (size_t i = 0; i < spatial_dimension_count; i++)
{ {
size_t dim_size = arg_shape[1 + 1 + i]; size_t dim_size = arg_shape[1 + 1 + i];
m_input_image_physical_shape.push_back(dim_size); size_t virtual_dim_size = padding_below[i] + dim_size + padding_above[i];
m_input_image_virtual_shape.push_back(padding_below[i] + dim_size + padding_above[i]); input_item_virtual_shape.push_back(virtual_dim_size);
if (m_input_image_virtual_shape[i] == 0) if (virtual_dim_size == 0)
{ {
throw ngraph_error("Average-pool input image dimension is zero even after padding."); throw ngraph_error("Average-pool input spatial dimension is zero even after padding.");
} }
} }
// //
// Make sure window shape dimensions are all larger than 0. // Make sure window shape dimensions are all larger than 0.
// //
for (size_t i = 0; i < m_image_dimension_count; i++) for (size_t i = 0; i < spatial_dimension_count; i++)
{ {
if (m_window_shape[i] == 0) if (window_shape[i] == 0)
{ {
throw ngraph_error("Average-pool window shape has a zero-length axis."); throw ngraph_error("Average-pool window shape has a zero-length axis.");
} }
} }
// //
// Make the max pooling window fits within the image dimensions. // Make the max pooling window fits within the spatial dimensions.
// //
for (size_t i = 0; i < m_image_dimension_count; i++) for (size_t i = 0; i < spatial_dimension_count; i++)
{ {
if (m_window_shape[i] > m_input_image_virtual_shape[i]) if (window_shape[i] > input_item_virtual_shape[i])
{ {
throw ngraph_error( throw ngraph_error(
"Average-pool window shape is larger than the image even after padding."); "Average-pool window shape is larger than the spatial dimensions even after "
"padding.");
} }
} }
// //
// Compute image output shape Do, checking at the same time that all window movement strides are larger than 0. // Compute output item shape Do, checking at the same time that all window movement strides are larger than 0.
// //
for (size_t i = 0; i < m_image_dimension_count; i++) Shape output_item_shape;
for (size_t i = 0; i < spatial_dimension_count; i++)
{ {
if (m_window_movement_strides[i] == 0) if (window_movement_strides[i] == 0)
{ {
throw ngraph_error("Average-pool window axis movement stride is zero."); throw ngraph_error("Average-pool window axis movement stride is zero.");
} }
m_output_image_shape.push_back(ceil_div( output_item_shape.push_back(ceil_div(input_item_virtual_shape[i] - window_shape[i] + 1,
m_input_image_virtual_shape[i] - m_window_shape[i] + 1, m_window_movement_strides[i])); window_movement_strides[i]));
} }
// //
// Construct result shape: NCDo. // Construct result shape: NCDo.
// //
Shape result_shape(1 + 1 + m_image_dimension_count); Shape result_shape(1 + 1 + spatial_dimension_count);
result_shape[0] = m_batch_size; result_shape[0] = batch_size;
result_shape[1] = m_channel_count; result_shape[1] = channel_count;
std::copy(m_output_image_shape.begin(), m_output_image_shape.end(), result_shape.begin() + 2); std::copy(output_item_shape.begin(), output_item_shape.end(), result_shape.begin() + 2);
set_value_type_checked(get_input_element_type(0), result_shape); set_value_type_checked(get_input_element_type(0), result_shape);
} }
...@@ -148,7 +154,7 @@ static Shape default_padding(const std::shared_ptr<Node>& arg) ...@@ -148,7 +154,7 @@ static Shape default_padding(const std::shared_ptr<Node>& arg)
{ {
if (arg->get_outputs().size() != 1) if (arg->get_outputs().size() != 1)
{ {
throw ngraph_error("Average-pool image batch argument must have exactly one output"); throw ngraph_error("Average-pool data batch argument must have exactly one output");
} }
auto& arg_shape = arg->get_outputs().at(0).get_shape(); auto& arg_shape = arg->get_outputs().at(0).get_shape();
...@@ -156,8 +162,8 @@ static Shape default_padding(const std::shared_ptr<Node>& arg) ...@@ -156,8 +162,8 @@ static Shape default_padding(const std::shared_ptr<Node>& arg)
{ {
// For consistency we should throw the same error message here that we throw in the constructor. // For consistency we should throw the same error message here that we throw in the constructor.
throw ngraph_error( throw ngraph_error(
"Average-pool image batch input must have rank of at least 3 (one batch axis, one " "Average-pool data batch input must have rank of at least 3 (one batch axis, one "
"channel axis, at least one image dimension)."); "channel axis, at least one spatial dimension).");
} }
return Shape(arg_shape.size() - 2, 0); return Shape(arg_shape.size() - 2, 0);
} }
...@@ -174,7 +180,7 @@ static Strides default_strides(const std::shared_ptr<Node>& arg) ...@@ -174,7 +180,7 @@ static Strides default_strides(const std::shared_ptr<Node>& arg)
{ {
if (arg->get_outputs().size() != 1) if (arg->get_outputs().size() != 1)
{ {
throw ngraph_error("Average-pool image batch argument must have exactly one output"); throw ngraph_error("Average-pool data batch argument must have exactly one output");
} }
auto& arg_shape = arg->get_outputs().at(0).get_shape(); auto& arg_shape = arg->get_outputs().at(0).get_shape();
...@@ -182,8 +188,8 @@ static Strides default_strides(const std::shared_ptr<Node>& arg) ...@@ -182,8 +188,8 @@ static Strides default_strides(const std::shared_ptr<Node>& arg)
{ {
// For consistency we should throw the same error message here that we throw in the constructor. // For consistency we should throw the same error message here that we throw in the constructor.
throw ngraph_error( throw ngraph_error(
"Average-pool image batch input must have rank of at least 3 (one batch axis, one " "Average-pool data batch input must have rank of at least 3 (one batch axis, one "
"channel axis, at least one image dimension)."); "channel axis, at least one spatial dimension).");
} }
return Strides(arg_shape.size() - 2, 1); return Strides(arg_shape.size() - 2, 1);
} }
...@@ -203,13 +209,6 @@ bool op::AvgPool::is_functionally_identical(const Node& other) const ...@@ -203,13 +209,6 @@ bool op::AvgPool::is_functionally_identical(const Node& other) const
rc &= m_window_movement_strides == rhs.m_window_movement_strides; rc &= m_window_movement_strides == rhs.m_window_movement_strides;
rc &= m_padding_below == rhs.m_padding_below; rc &= m_padding_below == rhs.m_padding_below;
rc &= m_padding_above == rhs.m_padding_above; rc &= m_padding_above == rhs.m_padding_above;
rc &= m_window_movement_strides == rhs.m_window_movement_strides;
rc &= m_channel_count == rhs.m_channel_count;
rc &= m_input_image_physical_shape == rhs.m_input_image_physical_shape;
rc &= m_input_image_virtual_shape == rhs.m_input_image_virtual_shape;
rc &= m_output_image_shape == rhs.m_output_image_shape;
rc &= m_batch_size == rhs.m_batch_size;
rc &= m_image_dimension_count == rhs.m_image_dimension_count;
} }
else else
{ {
......
...@@ -22,8 +22,9 @@ namespace ngraph ...@@ -22,8 +22,9 @@ namespace ngraph
{ {
/// \brief Batched average pooling operation, with optional padding and window stride. /// \brief Batched average pooling operation, with optional padding and window stride.
/// ///
/// Average pooling takes as its input an image batch tensor of shape \f$(N,C,d_1,\dots,d_n)\f$ where \f$n > 0\f$, every \f$d_i > 0\f$, and where \f$N\f$ is /// Average pooling takes as its input an data batch tensor of shape \f$(N,C,d_1,\dots,d_n)\f$ where \f$n > 0\f$, every \f$d_i > 0\f$, and where \f$N\f$ is
/// the batch size, and \f$C > 0\f$ is the number of channels (sometimes called features). It also takes four parameters: /// the batch size, and \f$C > 0\f$ is the number of channels (sometimes called features). The dimensions \f$(d_1,\dots,d_n)\f$ correspond to the shape of
/// an \f$n\f$-dimensional data item in a batch. For example, where \f$n=2\f$, the data may represent a two-dimensional image. It also takes four parameters:
/// ///
/// 1. <i>(the window shape)</i> a size vector \f$(w_1,\dots,w_n)\f$ where every \f$w_i \le d_i\f$; and /// 1. <i>(the window shape)</i> a size vector \f$(w_1,\dots,w_n)\f$ where every \f$w_i \le d_i\f$; and
/// 2. <i>(the window movement strides, optional)</i> a vector of positive integers \f$(s_1,\dots,s_n)\f$. /// 2. <i>(the window movement strides, optional)</i> a vector of positive integers \f$(s_1,\dots,s_n)\f$.
...@@ -32,7 +33,7 @@ namespace ngraph ...@@ -32,7 +33,7 @@ namespace ngraph
/// ///
/// The output has the shape \f$(N,C,d'_1,\dots,d'_n)\f$, where \f$d'_n = \lceil \frac{p_i + d_i + q_i - w_i + 1}{s_i} \rceil\f$. /// The output has the shape \f$(N,C,d'_1,\dots,d'_n)\f$, where \f$d'_n = \lceil \frac{p_i + d_i + q_i - w_i + 1}{s_i} \rceil\f$.
/// ///
/// *In the absence of padding*, given an input image batch tensor \f$T_\textit{in}\f$, the output tensor is defined by the equation /// *In the absence of padding*, given an input data batch tensor \f$T_\textit{in}\f$, the output tensor is defined by the equation
/// ///
/// \f[ /// \f[
/// T_\textit{out}[a,c,i_1,\dots,i_n] = \frac{\sum_{j_1 = s_1 i_1, \dots, j_n = s_n i_n}^{j_1 = s_1 i_1 + w_1 - 1, \dots, j_n = s_n i_n + w_n - 1} T_\textit{in}[a,c,j_1,\dots,j_n]}{\prod_{i=1}^n{w_n}} /// T_\textit{out}[a,c,i_1,\dots,i_n] = \frac{\sum_{j_1 = s_1 i_1, \dots, j_n = s_n i_n}^{j_1 = s_1 i_1 + w_1 - 1, \dots, j_n = s_n i_n + w_n - 1} T_\textit{in}[a,c,j_1,\dots,j_n]}{\prod_{i=1}^n{w_n}}
...@@ -65,7 +66,7 @@ namespace ngraph ...@@ -65,7 +66,7 @@ namespace ngraph
public: public:
/// \brief Constructs a batched average pooling operation. /// \brief Constructs a batched average pooling operation.
/// ///
/// \param arg The node producing the input image batch tensor. /// \param arg The node producing the input data batch tensor.
/// \param window_shape The window shape. /// \param window_shape The window shape.
/// \param window_movement_strides The window movement strides. /// \param window_movement_strides The window movement strides.
/// \param padding_below The below-padding shape. /// \param padding_below The below-padding shape.
...@@ -78,7 +79,7 @@ namespace ngraph ...@@ -78,7 +79,7 @@ namespace ngraph
/// \brief Constructs a batched, unpadded average pooling operation (i.e., all padding shapes are set to 0). /// \brief Constructs a batched, unpadded average pooling operation (i.e., all padding shapes are set to 0).
/// ///
/// \param arg The node producing the input image batch tensor. /// \param arg The node producing the input data batch tensor.
/// \param window_shape The window shape. /// \param window_shape The window shape.
/// \param window_movement_strides The window movement strides. /// \param window_movement_strides The window movement strides.
AvgPool(const std::shared_ptr<Node>& arg, AvgPool(const std::shared_ptr<Node>& arg,
...@@ -87,7 +88,7 @@ namespace ngraph ...@@ -87,7 +88,7 @@ namespace ngraph
/// \brief Constructs an unstrided batched convolution operation (i.e., all window movement strides are 1 and all padding shapes are set to 0). /// \brief Constructs an unstrided batched convolution operation (i.e., all window movement strides are 1 and all padding shapes are set to 0).
/// ///
/// \param arg The node producing the input image batch tensor. /// \param arg The node producing the input data batch tensor.
/// \param window_shape The window shape. /// \param window_shape The window shape.
AvgPool(const std::shared_ptr<Node>& arg, const Shape& window_shape); AvgPool(const std::shared_ptr<Node>& arg, const Shape& window_shape);
...@@ -102,6 +103,7 @@ namespace ngraph ...@@ -102,6 +103,7 @@ namespace ngraph
m_padding_below, m_padding_below,
m_padding_above); m_padding_above);
} }
bool is_functionally_identical(const Node&) const override;
/// \return The window shape. /// \return The window shape.
const Shape& get_window_shape() const { return m_window_shape; } const Shape& get_window_shape() const { return m_window_shape; }
...@@ -111,38 +113,11 @@ namespace ngraph ...@@ -111,38 +113,11 @@ namespace ngraph
const Shape& get_padding_below() const { return m_padding_below; } const Shape& get_padding_below() const { return m_padding_below; }
/// \return The above-padding shape. /// \return The above-padding shape.
const Shape& get_padding_above() const { return m_padding_above; } const Shape& get_padding_above() const { return m_padding_above; }
/// \return The number of image channels.
size_t get_channel_count() const { return m_channel_count; }
/// \return The input image physical shape, not including padding.
const Shape& get_input_image_physical_shape() const
{
return m_input_image_physical_shape;
}
/// \return The input image virtual shape, including padding.
const Shape& get_input_image_virtual_shape() const
{
return m_input_image_virtual_shape;
}
/// \return The output image shape.
const Shape& get_output_image_shape() const { return m_output_image_shape; }
/// \return The batch size.
size_t get_batch_size() const { return m_batch_size; }
/// \return The number of image dimensions.
size_t get_image_dimension_count() const { return m_image_dimension_count; }
bool is_functionally_identical(const Node&) const override;
protected: protected:
Shape m_window_shape; Shape m_window_shape;
Strides m_window_movement_strides; Strides m_window_movement_strides;
Shape m_padding_below; Shape m_padding_below;
Shape m_padding_above; Shape m_padding_above;
size_t m_channel_count;
Shape m_input_image_physical_shape;
Shape m_input_image_virtual_shape;
Shape m_output_image_shape;
size_t m_batch_size;
size_t m_image_dimension_count;
}; };
} }
} }
This diff is collapsed.
This diff is collapsed.
...@@ -38,93 +38,98 @@ op::MaxPool::MaxPool(const std::shared_ptr<Node>& arg, ...@@ -38,93 +38,98 @@ op::MaxPool::MaxPool(const std::shared_ptr<Node>& arg,
if (arg_shape.size() < 3) if (arg_shape.size() < 3)
{ {
throw ngraph_error( throw ngraph_error(
"Max pool image batch input must have rank of at least 3 (one batch axis, one " "Max pool data batch input must have rank of at least 3 (one batch axis, one "
"channel axis, at least one image dimension)."); "channel axis, at least one spatial dimension).");
} }
m_batch_size = arg_shape[0]; size_t batch_size = arg_shape[0];
if (m_batch_size == 0) if (batch_size == 0)
{ {
throw ngraph_error("Max pool image batch size is zero."); throw ngraph_error("Max pool data batch size is zero.");
} }
m_channel_count = arg_shape[1]; size_t channel_count = arg_shape[1];
if (m_channel_count == 0) if (channel_count == 0)
{ {
throw ngraph_error("Max pool requires at least one image depth channel."); throw ngraph_error("Max pool requires at least one feature channel.");
} }
m_image_dimension_count = arg_shape.size() - 2; size_t spatial_dimension_count = arg_shape.size() - 2;
// //
// Make sure window shape and movement strides have same rank as Di. // Make sure window shape and movement strides have same rank as Di.
// //
if (m_window_shape.size() != m_image_dimension_count) if (window_shape.size() != spatial_dimension_count)
{ {
throw ngraph_error("Max pool window shape rank does not match number of image dimensions."); throw ngraph_error(
"Max pool window shape rank does not match number of spatial dimensions.");
} }
if (m_window_movement_strides.size() != m_image_dimension_count) if (window_movement_strides.size() != spatial_dimension_count)
{ {
throw ngraph_error( throw ngraph_error(
"Max pool window movement stride rank does not match number of image dimensions."); "Max pool window movement stride rank does not match number of spatial dimensions.");
} }
// //
// Extract input image shape Di and make sure all dimensions are larger than 0. // Extract input item shape Di and make sure all dimensions are larger than 0.
// //
for (size_t i = 0; i < m_image_dimension_count; i++) Shape input_spatial_shape;
for (size_t i = 0; i < spatial_dimension_count; i++)
{ {
m_input_image_shape.push_back(arg_shape[1 + 1 + i]); input_spatial_shape.push_back(arg_shape[1 + 1 + i]);
if (m_input_image_shape[i] == 0) if (input_spatial_shape[i] == 0)
{ {
throw ngraph_error("Max pool input image dimension is zero."); throw ngraph_error("Max pool input spatial dimension is zero.");
} }
} }
// //
// Make sure window shape dimensions are all larger than 0. // Make sure window shape dimensions are all larger than 0.
// //
for (size_t i = 0; i < m_image_dimension_count; i++) for (size_t i = 0; i < spatial_dimension_count; i++)
{ {
if (m_window_shape[i] == 0) if (window_shape[i] == 0)
{ {
throw ngraph_error("Max pool window shape has a zero-length axis."); throw ngraph_error("Max pool window shape has a zero-length axis.");
} }
} }
// //
// Make the max pooling window fits within the image dimensions. // Make the max pooling window fits within the spatial dimensions.
// //
for (size_t i = 0; i < m_image_dimension_count; i++) for (size_t i = 0; i < spatial_dimension_count; i++)
{ {
if (m_window_shape[i] > m_input_image_shape[i]) if (window_shape[i] > input_spatial_shape[i])
{ {
throw ngraph_error("Max pool window shape is larger than the image."); throw ngraph_error("Max pool window shape is larger than the spatial dimensions.");
} }
} }
// //
// Compute image output shape Do, checking at the same time that all window movement strides are larger than 0. // Compute output item shape Do, checking at the same time that all window movement strides are larger than 0.
// //
for (size_t i = 0; i < m_image_dimension_count; i++) Shape output_spatial_shape;
for (size_t i = 0; i < spatial_dimension_count; i++)
{ {
if (m_window_movement_strides[i] == 0) if (window_movement_strides[i] == 0)
{ {
throw ngraph_error("Max pool window axis movement stride is zero."); throw ngraph_error("Max pool window axis movement stride is zero.");
} }
m_output_image_shape.push_back( output_spatial_shape.push_back(
ceil_div(m_input_image_shape[i] - m_window_shape[i] + 1, m_window_movement_strides[i])); ceil_div(input_spatial_shape[i] - window_shape[i] + 1, window_movement_strides[i]));
} }
// //
// Construct result shape: NCDo. // Construct result shape: NCDo.
// //
Shape result_shape(1 + 1 + m_image_dimension_count); Shape result_shape(1 + 1 + spatial_dimension_count);
result_shape[0] = m_batch_size; result_shape[0] = batch_size;
result_shape[1] = m_channel_count; result_shape[1] = channel_count;
std::copy(m_output_image_shape.begin(), m_output_image_shape.end(), result_shape.begin() + 2); std::copy(output_spatial_shape.begin(), output_spatial_shape.end(), result_shape.begin() + 2);
set_value_type_checked(get_inputs().at(0).get_element_type(), result_shape); set_value_type_checked(get_inputs().at(0).get_element_type(), result_shape);
} }
...@@ -133,7 +138,7 @@ static Strides default_strides(const std::shared_ptr<Node>& arg) ...@@ -133,7 +138,7 @@ static Strides default_strides(const std::shared_ptr<Node>& arg)
{ {
if (arg->get_outputs().size() != 1) if (arg->get_outputs().size() != 1)
{ {
throw ngraph_error("Max pool image batch argument must have exactly one output"); throw ngraph_error("Max pool data batch argument must have exactly one output");
} }
auto& arg_shape = arg->get_outputs().at(0).get_shape(); auto& arg_shape = arg->get_outputs().at(0).get_shape();
...@@ -141,8 +146,8 @@ static Strides default_strides(const std::shared_ptr<Node>& arg) ...@@ -141,8 +146,8 @@ static Strides default_strides(const std::shared_ptr<Node>& arg)
{ {
// For consistency we should throw the same error message here that we throw in the constructor. // For consistency we should throw the same error message here that we throw in the constructor.
throw ngraph_error( throw ngraph_error(
"Max pool image batch input must have rank of at least 3 (one batch axis, one " "Max pool data batch input must have rank of at least 3 (one batch axis, one "
"channel axis, at least one image dimension)."); "channel axis, at least one spatial dimension).");
} }
return Strides(arg_shape.size() - 2, 1); return Strides(arg_shape.size() - 2, 1);
} }
...@@ -160,11 +165,6 @@ bool op::MaxPool::is_functionally_identical(const Node& other) const ...@@ -160,11 +165,6 @@ bool op::MaxPool::is_functionally_identical(const Node& other) const
const MaxPool& rhs = dynamic_cast<const MaxPool&>(other); const MaxPool& rhs = dynamic_cast<const MaxPool&>(other);
rc &= m_window_shape == rhs.m_window_shape; rc &= m_window_shape == rhs.m_window_shape;
rc &= m_window_movement_strides == rhs.m_window_movement_strides; rc &= m_window_movement_strides == rhs.m_window_movement_strides;
rc &= m_channel_count == rhs.m_channel_count;
rc &= m_input_image_shape == rhs.m_input_image_shape;
rc &= m_output_image_shape == rhs.m_output_image_shape;
rc &= m_batch_size == rhs.m_batch_size;
rc &= m_image_dimension_count == rhs.m_image_dimension_count;
} }
else else
{ {
......
...@@ -22,15 +22,16 @@ namespace ngraph ...@@ -22,15 +22,16 @@ namespace ngraph
{ {
/// \brief Batched max pooling operation, with optional window stride. /// \brief Batched max pooling operation, with optional window stride.
/// ///
/// Max pooling takes as its input an image batch tensor of shape \f$(N,C,d_1,\dots,d_n)\f$ where \f$n > 0\f$, every \f$d_i > 0\f$, and where \f$N\f$ is /// Max pooling takes as its input a data batch tensor of shape \f$(N,C,d_1,\dots,d_n)\f$ where \f$n > 0\f$, every \f$d_i > 0\f$, and where \f$N\f$ is
/// the batch size, and \f$C > 0\f$ is the number of channels (sometimes called features). It also takes two parameters: /// the batch size, and \f$C > 0\f$ is the number of channels (sometimes called features). The dimensions \f$(d_1,\dots,d_n)\f$ correspond to the shape of
/// an \f$n\f$-dimensional data item in a batch. For example, where \f$n=2\f$, the data may represent a two-dimensional image. It also takes two parameters:
/// ///
/// 1. <i>(the window shape)</i> a size vector \f$(w_1,\dots,w_n)\f$ where every \f$w_i \le d_i\f$; and /// 1. <i>(the window shape)</i> a size vector \f$(w_1,\dots,w_n)\f$ where every \f$w_i \le d_i\f$; and
/// 2. <i>(the window movement strides, optional)</i> a vector of positive integers \f$(s_1,\dots,s_n)\f$. /// 2. <i>(the window movement strides, optional)</i> a vector of positive integers \f$(s_1,\dots,s_n)\f$.
/// ///
/// The output has the shape \f$(N,C,d'_1,\dots,d'_n)\f$, where \f$d'_n = \lceil \frac{d_i - w_i + 1}{s_i} \rceil\f$. /// The output has the shape \f$(N,C,d'_1,\dots,d'_n)\f$, where \f$d'_n = \lceil \frac{d_i - w_i + 1}{s_i} \rceil\f$.
/// ///
/// Given an input image batch tensor \f$T_\textit{in}\f$, the output tensor is defined by the equation /// Given an input data batch tensor \f$T_\textit{in}\f$, the output tensor is defined by the equation
/// ///
/// \f[ /// \f[
/// T_\textit{out}[a,c,i_1,\dots,i_n] = \max_{j_1 = s_1 i_1, \dots, j_n = s_n i_n}^{j_1 = s_1 i_1 + w_1 - 1, \dots, j_n = s_n i_n + w_n - 1} (T_\textit{in}[a,c,j_1,\dots,j_n]) /// T_\textit{out}[a,c,i_1,\dots,i_n] = \max_{j_1 = s_1 i_1, \dots, j_n = s_n i_n}^{j_1 = s_1 i_1 + w_1 - 1, \dots, j_n = s_n i_n + w_n - 1} (T_\textit{in}[a,c,j_1,\dots,j_n])
...@@ -41,7 +42,7 @@ namespace ngraph ...@@ -41,7 +42,7 @@ namespace ngraph
public: public:
/// \brief Constructs a batched max pooling operation. /// \brief Constructs a batched max pooling operation.
/// ///
/// \param arg The node producing the input image batch tensor. /// \param arg The node producing the input data batch tensor.
/// \param window_shape The window shape. /// \param window_shape The window shape.
/// \param window_movement_strides The window movement strides. /// \param window_movement_strides The window movement strides.
MaxPool(const std::shared_ptr<Node>& arg, MaxPool(const std::shared_ptr<Node>& arg,
...@@ -50,7 +51,7 @@ namespace ngraph ...@@ -50,7 +51,7 @@ namespace ngraph
/// \brief Constructs an unstrided batched convolution operation (i.e., all window movement strides are 1). /// \brief Constructs an unstrided batched convolution operation (i.e., all window movement strides are 1).
/// ///
/// \param arg The node producing the input image batch tensor. /// \param arg The node producing the input data batch tensor.
/// \param window_shape The window shape. /// \param window_shape The window shape.
MaxPool(const std::shared_ptr<Node>& arg, const Shape& window_shape); MaxPool(const std::shared_ptr<Node>& arg, const Shape& window_shape);
...@@ -62,35 +63,18 @@ namespace ngraph ...@@ -62,35 +63,18 @@ namespace ngraph
return std::make_shared<MaxPool>( return std::make_shared<MaxPool>(
new_args.at(0), m_window_shape, m_window_movement_strides); new_args.at(0), m_window_shape, m_window_movement_strides);
} }
bool is_functionally_identical(const Node&) const override;
/// \return The window shape. /// \return The window shape.
const Shape& get_window_shape() const { return m_window_shape; } const Shape& get_window_shape() const { return m_window_shape; }
/// \return The window movement strides. /// \return The window movement strides.
const Strides& get_window_movement_strides() const { return m_window_movement_strides; } const Strides& get_window_movement_strides() const { return m_window_movement_strides; }
/// \return The number of image channels.
size_t get_channel_count() const { return m_channel_count; }
/// \return The input image shape.
const Shape& get_input_image_shape() const { return m_input_image_shape; }
/// \return The output image shape.
const Shape& get_output_image_shape() const { return m_output_image_shape; }
/// \return The batch size.
size_t get_batch_size() const { return m_batch_size; }
/// \return The number of image dimensions.
size_t get_image_dimension_count() const { return m_image_dimension_count; }
bool is_functionally_identical(const Node&) const override;
protected: protected:
virtual void generate_adjoints(autodiff::Adjoints& adjoints, virtual void generate_adjoints(autodiff::Adjoints& adjoints,
const std::shared_ptr<Node>& delta) override; const std::shared_ptr<Node>& delta) override;
Shape m_window_shape; Shape m_window_shape;
Strides m_window_movement_strides; Strides m_window_movement_strides;
size_t m_channel_count;
Shape m_input_image_shape;
Shape m_output_image_shape;
size_t m_batch_size;
size_t m_image_dimension_count;
}; };
} }
} }
...@@ -1847,17 +1847,17 @@ void runtime::cpu::CPU_Emitter::EmitConvolution(codegen::CodeWriter& writer, ...@@ -1847,17 +1847,17 @@ void runtime::cpu::CPU_Emitter::EmitConvolution(codegen::CodeWriter& writer,
filter_dilated = filter_dilated || (s != 1); filter_dilated = filter_dilated || (s != 1);
} }
bool images_dilated = false; bool data_dilated = false;
for (size_t s : convolution->get_image_dilation_strides()) for (size_t s : convolution->get_data_dilation_strides())
{ {
images_dilated = images_dilated || (s != 1); data_dilated = data_dilated || (s != 1);
} }
// TODO(jmenon): MKLDNN streams should be static so we need to either implement // TODO(jmenon): MKLDNN streams should be static so we need to either implement
// codegen for statics or move primitive and stream construction out // codegen for statics or move primitive and stream construction out
// of the generated function and only generate code to run/rerun the stream // of the generated function and only generate code to run/rerun the stream
if (!filter_dilated && !images_dilated && arg0_rank == 4 && arg1_rank == 4 && if (!filter_dilated && !data_dilated && arg0_rank == 4 && arg1_rank == 4 &&
args[0].get_element_type() == element::f32) args[0].get_element_type() == element::f32)
{ {
const string& et = get_mkldnn_data_type(args[0].get_element_type().c_type_string()); const string& et = get_mkldnn_data_type(args[0].get_element_type().c_type_string());
...@@ -1890,7 +1890,7 @@ void runtime::cpu::CPU_Emitter::EmitConvolution(codegen::CodeWriter& writer, ...@@ -1890,7 +1890,7 @@ void runtime::cpu::CPU_Emitter::EmitConvolution(codegen::CodeWriter& writer,
writer.indent--; writer.indent--;
writer << "}\n"; writer << "}\n";
} }
else if (filter_dilated && !images_dilated && arg0_rank == 4 && arg1_rank == 4 && else if (filter_dilated && !data_dilated && arg0_rank == 4 && arg1_rank == 4 &&
args[0].get_element_type() == element::f32) args[0].get_element_type() == element::f32)
{ {
// For dilation, MKLDNN wants to know how many elements to insert between, not how far // For dilation, MKLDNN wants to know how many elements to insert between, not how far
...@@ -1948,11 +1948,75 @@ void runtime::cpu::CPU_Emitter::EmitConvolution(codegen::CodeWriter& writer, ...@@ -1948,11 +1948,75 @@ void runtime::cpu::CPU_Emitter::EmitConvolution(codegen::CodeWriter& writer,
<< "},\n"; << "},\n";
writer << " {" << join(convolution->get_padding_below()) << "},\n"; writer << " {" << join(convolution->get_padding_below()) << "},\n";
writer << " {" << join(convolution->get_padding_above()) << "},\n"; writer << " {" << join(convolution->get_padding_above()) << "},\n";
writer << " {" << join(convolution->get_image_dilation_strides()) writer << " {" << join(convolution->get_data_dilation_strides())
<< "});\n"; << "},\n";
writer << " 0, 1, 1, 0, 0, 1, false);\n";
} }
} }
void runtime::cpu::CPU_Emitter::EmitConvolutionBackpropFilters(
codegen::CodeWriter& writer,
const ngraph::Node* n,
const vector<runtime::cpu::TensorViewWrapper>& args,
const vector<runtime::cpu::TensorViewWrapper>& out)
{
auto convolution = static_cast<const op::ConvolutionBackpropFilters*>(n);
auto arg0_shape = args[0].get_shape();
auto arg1_shape = args[1].get_shape();
auto result_shape = out[0].get_shape();
writer << "kernel::convolution<" << out[0].get_type() << ">(" << args[0].get_name() << ",\n";
writer << " " << args[1].get_name() << ",\n";
writer << " " << out[0].get_name() << ",\n";
writer << " {" << join(arg0_shape) << "},\n";
writer << " {" << join(arg1_shape) << "},\n";
writer << " {" << join(result_shape) << "},\n";
writer << " {"
<< join(convolution->get_window_movement_strides_backward()) << "},\n";
writer << " {"
<< join(convolution->get_window_dilation_strides_backward()) << "},\n";
writer << " {" << join(convolution->get_padding_below_backward())
<< "},\n";
writer << " {" << join(convolution->get_padding_above_backward())
<< "},\n";
writer << " {"
<< join(convolution->get_data_dilation_strides_backward()) << "},\n";
writer << " 1, 0, 0, 1, 1, 0, false);\n";
}
void runtime::cpu::CPU_Emitter::EmitConvolutionBackpropData(
codegen::CodeWriter& writer,
const ngraph::Node* n,
const vector<runtime::cpu::TensorViewWrapper>& args,
const vector<runtime::cpu::TensorViewWrapper>& out)
{
auto convolution = static_cast<const op::ConvolutionBackpropData*>(n);
auto arg0_shape = args[0].get_shape();
auto arg1_shape = args[1].get_shape();
auto result_shape = out[0].get_shape();
// Note that args[1] and args[0] are switched here from the usual order.
writer << "kernel::convolution<" << out[0].get_type() << ">(" << args[1].get_name() << ",\n";
writer << " " << args[0].get_name() << ",\n";
writer << " " << out[0].get_name() << ",\n";
writer << " {" << join(arg1_shape) << "},\n";
writer << " {" << join(arg0_shape) << "},\n";
writer << " {" << join(result_shape) << "},\n";
writer << " {"
<< join(convolution->get_window_movement_strides_backward()) << "},\n";
writer << " {"
<< join(convolution->get_window_dilation_strides_backward()) << "},\n";
writer << " {" << join(convolution->get_padding_below_backward())
<< "},\n";
writer << " {" << join(convolution->get_padding_above_backward())
<< "},\n";
writer << " {"
<< join(convolution->get_data_dilation_strides_backward()) << "},\n";
writer << " 0, 1, 0, 1, 0, 1, true);\n";
}
void runtime::cpu::CPU_Emitter::EmitNot(codegen::CodeWriter& writer, void runtime::cpu::CPU_Emitter::EmitNot(codegen::CodeWriter& writer,
const ngraph::Node* n, const ngraph::Node* n,
const vector<runtime::cpu::TensorViewWrapper>& args, const vector<runtime::cpu::TensorViewWrapper>& args,
......
...@@ -85,6 +85,8 @@ namespace ngraph ...@@ -85,6 +85,8 @@ namespace ngraph
static void EMITTER_DECL(EmitCeiling); static void EMITTER_DECL(EmitCeiling);
static void EMITTER_DECL(EmitSqrt); static void EMITTER_DECL(EmitSqrt);
static void EMITTER_DECL(EmitConvolution); static void EMITTER_DECL(EmitConvolution);
static void EMITTER_DECL(EmitConvolutionBackpropFilters);
static void EMITTER_DECL(EmitConvolutionBackpropData);
static void EMITTER_DECL(EmitNot); static void EMITTER_DECL(EmitNot);
static void EMITTER_DECL(EmitMaxPool); static void EMITTER_DECL(EmitMaxPool);
static void EMITTER_DECL(EmitReverse); static void EMITTER_DECL(EmitReverse);
......
...@@ -187,6 +187,10 @@ static const runtime::cpu::OpMap dispatcher{ ...@@ -187,6 +187,10 @@ static const runtime::cpu::OpMap dispatcher{
{TI(ngraph::op::Ceiling), &runtime::cpu::CPU_Emitter::EmitCeiling}, {TI(ngraph::op::Ceiling), &runtime::cpu::CPU_Emitter::EmitCeiling},
{TI(ngraph::op::Sqrt), &runtime::cpu::CPU_Emitter::EmitSqrt}, {TI(ngraph::op::Sqrt), &runtime::cpu::CPU_Emitter::EmitSqrt},
{TI(ngraph::op::Convolution), &runtime::cpu::CPU_Emitter::EmitConvolution}, {TI(ngraph::op::Convolution), &runtime::cpu::CPU_Emitter::EmitConvolution},
{TI(ngraph::op::ConvolutionBackpropFilters),
&runtime::cpu::CPU_Emitter::EmitConvolutionBackpropFilters},
{TI(ngraph::op::ConvolutionBackpropData),
&runtime::cpu::CPU_Emitter::EmitConvolutionBackpropData},
{TI(ngraph::op::Not), &runtime::cpu::CPU_Emitter::EmitNot}, {TI(ngraph::op::Not), &runtime::cpu::CPU_Emitter::EmitNot},
{TI(ngraph::op::MaxPool), &runtime::cpu::CPU_Emitter::EmitMaxPool}, {TI(ngraph::op::MaxPool), &runtime::cpu::CPU_Emitter::EmitMaxPool},
{TI(ngraph::op::Reverse), &runtime::cpu::CPU_Emitter::EmitReverse}, {TI(ngraph::op::Reverse), &runtime::cpu::CPU_Emitter::EmitReverse},
......
...@@ -322,7 +322,59 @@ private: ...@@ -322,7 +322,59 @@ private:
c->get_window_dilation_strides(), c->get_window_dilation_strides(),
c->get_padding_below(), c->get_padding_below(),
c->get_padding_above(), c->get_padding_above(),
c->get_image_dilation_strides()); c->get_data_dilation_strides(),
0,
1,
1,
0,
0,
1,
false);
}
else if (node_op == "ConvolutionBackpropFilters")
{
auto c = static_cast<const op::ConvolutionBackpropFilters*>(&node);
kernel::convolution<T>(reinterpret_cast<T*>(args[0]->get_data_ptr()),
reinterpret_cast<T*>(args[1]->get_data_ptr()),
reinterpret_cast<T*>(out[0]->get_data_ptr()),
args[0]->get_shape(),
args[1]->get_shape(),
out[0]->get_shape(),
c->get_window_movement_strides_backward(),
c->get_window_dilation_strides_backward(),
c->get_padding_below_backward(),
c->get_padding_above_backward(),
c->get_data_dilation_strides_backward(),
1,
0,
0,
1,
1,
0,
false);
}
else if (node_op == "ConvolutionBackpropData")
{
// Note that args[1] and args[0] are switched here from the usual order.
auto c = static_cast<const op::ConvolutionBackpropData*>(&node);
kernel::convolution<T>(reinterpret_cast<T*>(args[1]->get_data_ptr()),
reinterpret_cast<T*>(args[0]->get_data_ptr()),
reinterpret_cast<T*>(out[0]->get_data_ptr()),
args[1]->get_shape(),
args[0]->get_shape(),
out[0]->get_shape(),
c->get_window_movement_strides_backward(),
c->get_window_dilation_strides_backward(),
c->get_padding_below_backward(),
c->get_padding_above_backward(),
c->get_data_dilation_strides_backward(),
0,
1,
0,
1,
0,
1,
true);
} }
else if (node_op == "Cos") else if (node_op == "Cos")
{ {
......
...@@ -42,36 +42,36 @@ namespace ngraph ...@@ -42,36 +42,36 @@ namespace ngraph
{ {
// Our output coordinate O will have the form: // Our output coordinate O will have the form:
// //
// (img,chan,i_1,...,i_n) // (N,chan,i_1,...,i_n)
size_t img_index = out_coord[0]; size_t batch_index = out_coord[0];
size_t channel = out_coord[1]; size_t channel = out_coord[1];
// For the input images we need to iterate the coordinate: // For the input data we need to iterate the coordinate:
// //
// I: // I:
// //
// over the range (noninclusive on the right): // over the range (noninclusive on the right):
// //
// (img,chan,s_1*i_1,s_2*i_2,...,s_n*i_n) -> // (N,chan,s_1*i_1,s_2*i_2,...,s_n*i_n) ->
// //
// (img+1,chan+1,s_1*i_1 + window_shape_1,...,s_n*i_n + window_shape_n) // (N+1,chan+1,s_1*i_1 + window_shape_1,...,s_n*i_n + window_shape_n)
// //
// with unit stride. // with unit stride.
// //
// We iterate this over the *padded* image, so below we will need to check for coordinates that fall in the padding area. // We iterate this over the *padded* data, so below we will need to check for coordinates that fall in the padding area.
size_t n_image_dimensions = arg_shape.size() - 2; size_t n_spatial_dimensions = arg_shape.size() - 2;
Coordinate input_batch_transform_start(2 + n_image_dimensions); Coordinate input_batch_transform_start(2 + n_spatial_dimensions);
Coordinate input_batch_transform_end(2 + n_image_dimensions); Coordinate input_batch_transform_end(2 + n_spatial_dimensions);
Strides input_batch_transform_source_strides(2 + n_image_dimensions, 1); Strides input_batch_transform_source_strides(2 + n_spatial_dimensions, 1);
AxisVector input_batch_transform_source_axis_order(2 + n_image_dimensions); AxisVector input_batch_transform_source_axis_order(2 + n_spatial_dimensions);
CoordinateDiff input_batch_transform_padding_below(2 + n_image_dimensions); CoordinateDiff input_batch_transform_padding_below(2 + n_spatial_dimensions);
CoordinateDiff input_batch_transform_padding_above(2 + n_image_dimensions); CoordinateDiff input_batch_transform_padding_above(2 + n_spatial_dimensions);
input_batch_transform_start[0] = img_index; input_batch_transform_start[0] = batch_index;
input_batch_transform_end[0] = img_index + 1; input_batch_transform_end[0] = batch_index + 1;
input_batch_transform_start[1] = channel; input_batch_transform_start[1] = channel;
input_batch_transform_end[1] = channel + 1; input_batch_transform_end[1] = channel + 1;
input_batch_transform_padding_below[0] = 0; input_batch_transform_padding_below[0] = 0;
...@@ -79,7 +79,7 @@ namespace ngraph ...@@ -79,7 +79,7 @@ namespace ngraph
input_batch_transform_padding_above[0] = 0; input_batch_transform_padding_above[0] = 0;
input_batch_transform_padding_above[1] = 0; input_batch_transform_padding_above[1] = 0;
for (size_t i = 2; i < n_image_dimensions + 2; i++) for (size_t i = 2; i < n_spatial_dimensions + 2; i++)
{ {
size_t window_shape_this_dim = window_shape[i - 2]; size_t window_shape_this_dim = window_shape[i - 2];
size_t movement_stride = window_movement_strides[i - 2]; size_t movement_stride = window_movement_strides[i - 2];
......
...@@ -37,8 +37,23 @@ namespace ngraph ...@@ -37,8 +37,23 @@ namespace ngraph
const Strides& window_dilation_strides, const Strides& window_dilation_strides,
const CoordinateDiff& padding_below, const CoordinateDiff& padding_below,
const CoordinateDiff& padding_above, const CoordinateDiff& padding_above,
const Strides& image_dilation_strides) const Strides& data_dilation_strides,
size_t batch_axis_data,
size_t input_channel_axis_data,
size_t input_channel_axis_filters,
size_t output_channel_axis_filters,
size_t batch_axis_result,
size_t output_channel_axis_result,
bool rotate_filter)
{ {
// Comments throughout assume without loss of generality that:
//
// * batch axes for both input data and output data are 0
// * input channel axes for both input data and filters are 1
// * output channel axes for filters is 0
// * output channel axis for output data is 1
// * rotate_filter is false
// At the outermost level we will walk over every output coordinate O. // At the outermost level we will walk over every output coordinate O.
CoordinateTransform output_transform(out_shape); CoordinateTransform output_transform(out_shape);
...@@ -46,50 +61,50 @@ namespace ngraph ...@@ -46,50 +61,50 @@ namespace ngraph
{ {
// Our output coordinate O will have the form: // Our output coordinate O will have the form:
// //
// (img,chan_out,i_1,...,i_n) // (N,chan_out,i_1,...,i_n)
size_t img_index = out_coord[0]; size_t batch_index = out_coord[batch_axis_result];
size_t output_channel = out_coord[1]; size_t output_channel = out_coord[output_channel_axis_result];
// For the input images we need to iterate the coordinate: // For the input data we need to iterate the coordinate:
// //
// I: // I:
// //
// over the range (noninclusive on the right): // over the range (noninclusive on the right):
// //
// (img,0,s_1*i_1,s_2*i_2,...,s_n*i_n) -> // (N,0,s_1*i_1,s_2*i_2,...,s_n*i_n) ->
// //
// (img+1,chans_in_count,s_1*i_1 + l_1*filter_dims_1,...,s_n*i_n + l_n*filter_dims_n) // (N+1,chans_in_count,s_1*i_1 + l_1*filter_dims_1,...,s_n*i_n + l_n*filter_dims_n)
// //
// with strides: // with strides:
// //
// (1,l_1,...,l_n). // (1,l_1,...,l_n).
// //
// Note that we are iterating within the *padded* and *dilated* image batch, so further // Note that we are iterating within the *padded* and *dilated* data batch, so further
// down we must check the current coordinate is in the padding or dilation gap. // down we must check the current coordinate is in the padding or dilation gap.
size_t n_image_dimensions = arg0_shape.size() - 2; size_t n_spatial_dimensions = arg0_shape.size() - 2;
size_t n_input_channels = arg0_shape[1]; size_t n_input_channels = arg0_shape[input_channel_axis_data];
Coordinate input_batch_transform_start(2 + n_image_dimensions); Coordinate input_batch_transform_start(2 + n_spatial_dimensions);
Coordinate input_batch_transform_end(2 + n_image_dimensions); Coordinate input_batch_transform_end(2 + n_spatial_dimensions);
Strides input_batch_transform_movement_strides(2 + n_image_dimensions, 1); Strides input_batch_transform_movement_strides(2 + n_spatial_dimensions, 1);
CoordinateDiff input_batch_transform_padding_below(2 + n_image_dimensions, 0); CoordinateDiff input_batch_transform_padding_below(2 + n_spatial_dimensions, 0);
CoordinateDiff input_batch_transform_padding_above(2 + n_image_dimensions, 0); CoordinateDiff input_batch_transform_padding_above(2 + n_spatial_dimensions, 0);
Strides input_batch_transform_dilation_strides(2 + n_image_dimensions, 1); Strides input_batch_transform_dilation_strides(2 + n_spatial_dimensions, 1);
input_batch_transform_start[0] = img_index; input_batch_transform_start[batch_axis_data] = batch_index;
input_batch_transform_end[0] = img_index + 1; input_batch_transform_end[batch_axis_data] = batch_index + 1;
input_batch_transform_start[1] = 0; input_batch_transform_start[input_channel_axis_data] = 0;
input_batch_transform_end[1] = n_input_channels; input_batch_transform_end[input_channel_axis_data] = n_input_channels;
for (size_t i = 2; i < n_image_dimensions + 2; i++) for (size_t i = 2; i < n_spatial_dimensions + 2; i++)
{ {
size_t window_dilation_stride = window_dilation_strides[i - 2]; size_t window_dilation_stride = window_dilation_strides[i - 2];
size_t window_movement_stride = window_movement_strides[i - 2]; size_t window_movement_stride = window_movement_strides[i - 2];
std::ptrdiff_t below_pad = padding_below[i - 2]; std::ptrdiff_t below_pad = padding_below[i - 2];
std::ptrdiff_t above_pad = padding_above[i - 2]; std::ptrdiff_t above_pad = padding_above[i - 2];
size_t image_dilation_stride = image_dilation_strides[i - 2]; size_t data_dilation_stride = data_dilation_strides[i - 2];
input_batch_transform_start[i] = window_movement_stride * out_coord[i]; input_batch_transform_start[i] = window_movement_stride * out_coord[i];
input_batch_transform_end[i] = input_batch_transform_end[i] =
...@@ -98,10 +113,10 @@ namespace ngraph ...@@ -98,10 +113,10 @@ namespace ngraph
input_batch_transform_movement_strides[i] = window_dilation_stride; input_batch_transform_movement_strides[i] = window_dilation_stride;
input_batch_transform_padding_below[i] = below_pad; input_batch_transform_padding_below[i] = below_pad;
input_batch_transform_padding_above[i] = above_pad; input_batch_transform_padding_above[i] = above_pad;
input_batch_transform_dilation_strides[i] = image_dilation_stride; input_batch_transform_dilation_strides[i] = data_dilation_stride;
} }
AxisVector input_batch_transform_axis_order(2 + n_image_dimensions); AxisVector input_batch_transform_axis_order(2 + n_spatial_dimensions);
size_t n = 0; size_t n = 0;
std::generate(input_batch_transform_axis_order.begin(), std::generate(input_batch_transform_axis_order.begin(),
input_batch_transform_axis_order.end(), input_batch_transform_axis_order.end(),
...@@ -127,15 +142,15 @@ namespace ngraph ...@@ -127,15 +142,15 @@ namespace ngraph
// //
// with unit stride. // with unit stride.
Shape filter_transform_start(2 + n_image_dimensions); Shape filter_transform_start(2 + n_spatial_dimensions);
Shape filter_transform_end(2 + n_image_dimensions); Shape filter_transform_end(2 + n_spatial_dimensions);
filter_transform_start[0] = output_channel; filter_transform_start[output_channel_axis_filters] = output_channel;
filter_transform_end[0] = output_channel + 1; filter_transform_end[output_channel_axis_filters] = output_channel + 1;
filter_transform_start[1] = 0; filter_transform_start[input_channel_axis_filters] = 0;
filter_transform_end[1] = n_input_channels; filter_transform_end[input_channel_axis_filters] = n_input_channels;
for (size_t i = 2; i < n_image_dimensions + 2; i++) for (size_t i = 2; i < n_spatial_dimensions + 2; i++)
{ {
filter_transform_start[i] = 0; filter_transform_start[i] = 0;
filter_transform_end[i] = arg1_shape[i]; filter_transform_end[i] = arg1_shape[i];
...@@ -157,7 +172,19 @@ namespace ngraph ...@@ -157,7 +172,19 @@ namespace ngraph
filter_it != filter_transform.end()) filter_it != filter_transform.end())
{ {
const Coordinate& input_batch_coord = *input_it; const Coordinate& input_batch_coord = *input_it;
const Coordinate& filter_coord = *filter_it; Coordinate filter_coord = *filter_it;
if (rotate_filter)
{
Shape target_shape = filter_transform.get_target_shape();
// Note that we only reverse the spatial dimensions here (loop
// starts at 2)
for (size_t i = 2; i < filter_coord.size(); i++)
{
filter_coord[i] = target_shape[i] - filter_coord[i] - 1;
}
}
T v = input_batch_transform.has_source_coordinate(input_batch_coord) T v = input_batch_transform.has_source_coordinate(input_batch_coord)
? arg0[input_batch_transform.index(input_batch_coord)] ? arg0[input_batch_transform.index(input_batch_coord)]
......
...@@ -40,34 +40,34 @@ namespace ngraph ...@@ -40,34 +40,34 @@ namespace ngraph
{ {
// Our output coordinate O will have the form: // Our output coordinate O will have the form:
// //
// (img,chan,i_1,...,i_n) // (N,chan,i_1,...,i_n)
size_t img_index = out_coord[0]; size_t batch_index = out_coord[0];
size_t channel = out_coord[1]; size_t channel = out_coord[1];
// For the input images we need to iterate the coordinate: // For the input data we need to iterate the coordinate:
// //
// I: // I:
// //
// over the range (noninclusive on the right): // over the range (noninclusive on the right):
// //
// (img,chan,s_1*i_1,s_2*i_2,...,s_n*i_n) -> // (N,chan,s_1*i_1,s_2*i_2,...,s_n*i_n) ->
// //
// (img+1,chan+1,s_1*i_1 + window_shape_1,...,s_n*i_n + window_shape_n) // (N+1,chan+1,s_1*i_1 + window_shape_1,...,s_n*i_n + window_shape_n)
// //
// with unit stride. // with unit stride.
size_t n_image_dimensions = arg_shape.size() - 2; size_t n_spatial_dimensions = arg_shape.size() - 2;
Coordinate input_batch_transform_start(2 + n_image_dimensions); Coordinate input_batch_transform_start(2 + n_spatial_dimensions);
Coordinate input_batch_transform_end(2 + n_image_dimensions); Coordinate input_batch_transform_end(2 + n_spatial_dimensions);
input_batch_transform_start[0] = img_index; input_batch_transform_start[0] = batch_index;
input_batch_transform_end[0] = img_index + 1; input_batch_transform_end[0] = batch_index + 1;
input_batch_transform_start[1] = channel; input_batch_transform_start[1] = channel;
input_batch_transform_end[1] = channel + 1; input_batch_transform_end[1] = channel + 1;
for (size_t i = 2; i < n_image_dimensions + 2; i++) for (size_t i = 2; i < n_spatial_dimensions + 2; i++)
{ {
size_t window_shape_this_dim = window_shape[i - 2]; size_t window_shape_this_dim = window_shape[i - 2];
size_t movement_stride = window_movement_strides[i - 2]; size_t movement_stride = window_movement_strides[i - 2];
......
...@@ -379,15 +379,79 @@ static shared_ptr<ngraph::Function> ...@@ -379,15 +379,79 @@ static shared_ptr<ngraph::Function>
node_js.at("window_dilation_strides").get<vector<size_t>>(); node_js.at("window_dilation_strides").get<vector<size_t>>();
auto padding_below = node_js.at("padding_below").get<vector<std::ptrdiff_t>>(); auto padding_below = node_js.at("padding_below").get<vector<std::ptrdiff_t>>();
auto padding_above = node_js.at("padding_above").get<vector<std::ptrdiff_t>>(); auto padding_above = node_js.at("padding_above").get<vector<std::ptrdiff_t>>();
auto image_dilation_strides =
node_js.at("image_dilation_strides").get<vector<size_t>>(); // For backwards compatibility, we accept "image_dilation_strides" in place of
node = make_shared<op::Convolution>(args[0], // "data_dilation_strides", and we also allow it to be omitted altogether.
args[1], auto data_dilation_strides_maybe = node_js["data_dilation_strides"];
window_movement_strides, if (data_dilation_strides_maybe.empty())
window_dilation_strides, {
padding_below, data_dilation_strides_maybe = node_js["image_dilation_strides"];
padding_above, }
image_dilation_strides);
if (data_dilation_strides_maybe.empty())
{
node = make_shared<op::Convolution>(args[0],
args[1],
window_movement_strides,
window_dilation_strides,
padding_below,
padding_above);
}
else
{
node = make_shared<op::Convolution>(
args[0],
args[1],
window_movement_strides,
window_dilation_strides,
padding_below,
padding_above,
data_dilation_strides_maybe.get<std::vector<size_t>>());
}
}
else if (node_op == "ConvolutionBackpropData")
{
auto data_batch_shape = node_js.at("data_batch_shape").get<vector<size_t>>();
auto window_movement_strides_forward =
node_js.at("window_movement_strides_forward").get<vector<size_t>>();
auto window_dilation_strides_forward =
node_js.at("window_dilation_strides_forward").get<vector<size_t>>();
auto padding_below_forward =
node_js.at("padding_below_forward").get<vector<std::ptrdiff_t>>();
auto padding_above_forward =
node_js.at("padding_above_forward").get<vector<std::ptrdiff_t>>();
auto data_dilation_strides_forward =
node_js.at("data_dilation_strides_forward").get<vector<size_t>>();
node = make_shared<op::ConvolutionBackpropData>(data_batch_shape,
args[0],
args[1],
window_movement_strides_forward,
window_dilation_strides_forward,
padding_below_forward,
padding_above_forward,
data_dilation_strides_forward);
}
else if (node_op == "ConvolutionBackpropFilters")
{
auto filters_shape = node_js.at("filters_shape").get<vector<size_t>>();
auto window_movement_strides_forward =
node_js.at("window_movement_strides_forward").get<vector<size_t>>();
auto window_dilation_strides_forward =
node_js.at("window_dilation_strides_forward").get<vector<size_t>>();
auto padding_below_forward =
node_js.at("padding_below_forward").get<vector<std::ptrdiff_t>>();
auto padding_above_forward =
node_js.at("padding_above_forward").get<vector<std::ptrdiff_t>>();
auto data_dilation_strides_forward =
node_js.at("data_dilation_strides_forward").get<vector<size_t>>();
node = make_shared<op::ConvolutionBackpropFilters>(args[0],
filters_shape,
args[1],
window_movement_strides_forward,
window_dilation_strides_forward,
padding_below_forward,
padding_above_forward,
data_dilation_strides_forward);
} }
else if (node_op == "Cos") else if (node_op == "Cos")
{ {
...@@ -718,7 +782,27 @@ static json write(const Node& n) ...@@ -718,7 +782,27 @@ static json write(const Node& n)
node["window_dilation_strides"] = tmp->get_window_dilation_strides(); node["window_dilation_strides"] = tmp->get_window_dilation_strides();
node["padding_below"] = tmp->get_padding_below(); node["padding_below"] = tmp->get_padding_below();
node["padding_above"] = tmp->get_padding_above(); node["padding_above"] = tmp->get_padding_above();
node["image_dilation_strides"] = tmp->get_image_dilation_strides(); node["data_dilation_strides"] = tmp->get_data_dilation_strides();
}
else if (node_op == "ConvolutionBackpropData")
{
auto tmp = dynamic_cast<const op::ConvolutionBackpropData*>(&n);
node["data_batch_shape"] = tmp->get_data_batch_shape();
node["window_movement_strides_forward"] = tmp->get_window_movement_strides_forward();
node["window_dilation_strides_forward"] = tmp->get_window_dilation_strides_forward();
node["padding_below_forward"] = tmp->get_padding_below_forward();
node["padding_above_forward"] = tmp->get_padding_above_forward();
node["data_dilation_strides_forward"] = tmp->get_data_dilation_strides_forward();
}
else if (node_op == "ConvolutionBackpropFilters")
{
auto tmp = dynamic_cast<const op::ConvolutionBackpropFilters*>(&n);
node["filters_shape"] = tmp->get_filters_shape();
node["window_movement_strides_forward"] = tmp->get_window_movement_strides_forward();
node["window_dilation_strides_forward"] = tmp->get_window_dilation_strides_forward();
node["padding_below_forward"] = tmp->get_padding_below_forward();
node["padding_above_forward"] = tmp->get_padding_above_forward();
node["data_dilation_strides_forward"] = tmp->get_data_dilation_strides_forward();
} }
else if (node_op == "Cos") else if (node_op == "Cos")
{ {
......
This source diff could not be displayed because it is too large. You can view the blob instead.
This diff is collapsed.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment