Commit d36c180f authored by Ayan Moitra's avatar Ayan Moitra Committed by Scott Cyphers

Use cuda_reduce for int32 & int8 input_type instead of cudnn_reduce (#2070)

* add cuda reduce for product and max and added tests

* a quick fix for empty reduce axis and 0 axis

* adding min cuda reduce

* add for min

* fix bug and format

* add another min test

* adding sum to the mix and adding tests to intelGPU manifest

* Incorporate Chris's first comment + clang

* Some mods to the last commit

* Addressed Bob's comments + added more tests int8

* Added more int8 tests + added tests to IntelGPU manifest

* CI test failure debug attempt

* clang

* edit

* Adding the CPU failing test to manifest

* pulled changes from master to address travis ci build failure
parent 16ac55e3
......@@ -16,3 +16,6 @@ quantize_clamp_int32
# this one just started failing
batchnorm_bprop_n4c3h2w2
# failing in CI build but passing on local machine
max_3d_to_scalar_int32
......@@ -1910,8 +1910,8 @@ size_t runtime::gpu::CUDAEmitter::build_reduce_to_scalar_acc(const std::vector<s
size_t runtime::gpu::CUDAEmitter::build_reduce(const std::vector<std::string>& dtypes,
const size_t data_bytes,
NVShape input_shape,
NVShape reduce_axis,
const NVShape& input_shape,
const NVShape& reduce_axis,
const char* op,
const char* kernel)
{
......
......@@ -127,8 +127,8 @@ namespace ngraph
template <typename T>
size_t build_reduce(const std::vector<std::string>& dtypes,
const size_t data_bytes,
NVShape input_shape,
NVShape reduce_axis)
const NVShape& input_shape,
const NVShape& reduce_axis)
{
return build_reduce(dtypes,
data_bytes,
......@@ -213,8 +213,8 @@ namespace ngraph
bool save_elementwise);
size_t build_reduce(const std::vector<std::string>& dtypes,
const size_t data_bytes,
NVShape input_shape,
NVShape reduce_axis,
const NVShape& input_shape,
const NVShape& reduce_axis,
const char* op,
const char* kernel);
size_t build_reduce_to_nd(const std::vector<std::string>& dtypes,
......
......@@ -732,8 +732,44 @@ void runtime::gpu::GPU_Emitter::emit_Max(EMIT_ARGS)
}
const ngraph::op::Max* max = static_cast<const ngraph::op::Max*>(node);
size_t index;
if ((args[0].get_element_type() == element::i32) || (args[0].get_element_type() == element::i8))
{
// one of args0 axes has zero size, zero output, use args1 value
if (args[0].get_size() == 0)
{
writer << out[0].get_type()
<< " init_value = " << TypeInfo::Get(args[0].get_type())->min() << ";\n";
writer << "vector<" << out[0].get_type() << "> temp(" << out[0].get_size()
<< ", init_value);\n";
writer << "runtime::gpu::cuda_memcpyHtD(" << out[0].get_name()
<< ", (void*)temp.data(), " << out[0].get_size() << " * "
<< out[0].get_element_type().size() << ");\n";
return;
}
else if (args[0].get_size() == out[0].get_size())
{
kernel::emit_memcpyDtD(writer, out[0], args[0]);
return;
}
else
{
vector<string> dtypes;
dtypes.push_back(args[0].get_type());
dtypes.push_back(out[0].get_type());
auto& cuda_emitter = external_function->get_primitive_emitter()->get_cuda_emitter();
index = cuda_emitter->build_reduce<ngraph::op::Max>(dtypes,
out[0].get_element_type().size(),
args[0].get_shape(),
max->get_reduction_axes());
}
}
else
{
auto& cudnn_emitter = external_function->get_primitive_emitter()->get_cudnn_emitter();
auto index = cudnn_emitter->build_primitive(max);
index = cudnn_emitter->build_primitive(max);
}
writer.block_begin();
writer << "void* input[] = {" << node_names(args) << "};\n";
......@@ -829,8 +865,44 @@ void runtime::gpu::GPU_Emitter::emit_Min(EMIT_ARGS)
}
const ngraph::op::Min* min = static_cast<const ngraph::op::Min*>(node);
size_t index;
if ((args[0].get_element_type() == element::i32) || (args[0].get_element_type() == element::i8))
{
// one of args0 axes has zero size, zero output, use args1 value
if (args[0].get_size() == 0)
{
writer << out[0].get_type()
<< " init_value = " << TypeInfo::Get(args[0].get_type())->max() << ";\n";
writer << "vector<" << out[0].get_type() << "> temp(" << out[0].get_size()
<< ", init_value);\n";
writer << "runtime::gpu::cuda_memcpyHtD(" << out[0].get_name()
<< ", (void*)temp.data(), " << out[0].get_size() << " * "
<< out[0].get_element_type().size() << ");\n";
return;
}
else if (args[0].get_size() == out[0].get_size())
{
kernel::emit_memcpyDtD(writer, out[0], args[0]);
return;
}
else
{
vector<string> dtypes;
dtypes.push_back(args[0].get_type());
dtypes.push_back(out[0].get_type());
auto& cuda_emitter = external_function->get_primitive_emitter()->get_cuda_emitter();
index = cuda_emitter->build_reduce<ngraph::op::Min>(dtypes,
out[0].get_element_type().size(),
args[0].get_shape(),
min->get_reduction_axes());
}
}
else
{
auto& cudnn_emitter = external_function->get_primitive_emitter()->get_cudnn_emitter();
auto index = cudnn_emitter->build_primitive(min);
index = cudnn_emitter->build_primitive(min);
}
writer.block_begin();
writer << "void* input[] = {" << node_names(args) << "};\n";
......@@ -936,7 +1008,7 @@ void runtime::gpu::GPU_Emitter::emit_Power(EMIT_ARGS)
void runtime::gpu::GPU_Emitter::emit_Product(EMIT_ARGS)
{
const ngraph::op::Product* product = static_cast<const ngraph::op::Product*>(node);
const ngraph::op::Product* prod = static_cast<const ngraph::op::Product*>(node);
writer.block_begin();
{
......@@ -958,21 +1030,39 @@ void runtime::gpu::GPU_Emitter::emit_Product(EMIT_ARGS)
}
// descriptors for tensors with <= 4 dimensions
else
{
size_t prod_index;
if ((args[0].get_element_type() == element::i32) ||
(args[0].get_element_type() == element::i8))
{
vector<string> dtypes;
dtypes.push_back(args[0].get_type());
dtypes.push_back(out[0].get_type());
auto& cuda_emitter =
external_function->get_primitive_emitter()->get_cuda_emitter();
prod_index = cuda_emitter->build_reduce<ngraph::op::Multiply>(
dtypes,
out[0].get_element_type().size(),
args[0].get_shape(),
prod->get_reduction_axes());
}
else
{
std::vector<element::Type> dtypes{args[0].get_element_type(),
out[0].get_element_type()};
auto& cudnn_emitter =
external_function->get_primitive_emitter()->get_cudnn_emitter();
auto index =
prod_index =
cudnn_emitter->build_reduce_forward(CUDNN_REDUCE_TENSOR_MUL,
dtypes,
args[0].get_shape(),
product->get_reduction_axes(),
prod->get_reduction_axes(),
CUDNNEmitter::ReductionMode::Reduce);
}
writer << "void* input[] = {" << node_names(args) << "};\n";
writer << "void* output[] = {" << node_names(out) << "};\n";
writer << "gpu::invoke_primitive(ctx, " << index << ", input, output);\n";
writer << "gpu::invoke_primitive(ctx, " << prod_index << ", input, output);\n";
}
}
}
......@@ -1566,7 +1656,14 @@ void runtime::gpu::GPU_Emitter::emit_Subtract(EMIT_ARGS)
void runtime::gpu::GPU_Emitter::emit_Sum(EMIT_ARGS)
{
if ((args[0].get_element_type() == element::i32) || (args[0].get_element_type() == element::i8))
{
runtime::gpu::GPU_Emitter::emit_Sum_0(external_function, writer, node, args, out);
}
else
{
runtime::gpu::GPU_Emitter::emit_Sum_1(external_function, writer, node, args, out);
}
}
void runtime::gpu::GPU_Emitter::emit_Sum_0(EMIT_ARGS)
......@@ -1591,18 +1688,15 @@ to fail */
}
else
{
auto axes_set = sum->get_reduction_axes();
ngraph::AxisVector axes_vec;
for (auto a : axes_set)
{
axes_vec.push_back(a);
}
vector<string> dtypes;
dtypes.push_back(args[0].get_type());
dtypes.push_back(out[0].get_type());
auto& cuda_emitter = external_function->get_primitive_emitter()->get_cuda_emitter();
auto sum_index = cuda_emitter->build_reduce<ngraph::op::Add>(
dtypes, out[0].get_element_type().size(), args[0].get_shape(), axes_vec);
auto sum_index =
cuda_emitter->build_reduce<ngraph::op::Add>(dtypes,
out[0].get_element_type().size(),
args[0].get_shape(),
sum->get_reduction_axes());
writer << "void* input[] = {" << node_names(args) << "};\n";
writer << "void* output[] = {" << node_names(out) << "};\n";
......
......@@ -141,5 +141,19 @@ namespace ngraph
this->push_back(static_cast<uint32_t>(size));
}
}
NVShape(const AxisSet& axes_set)
{
for (auto const& size : axes_set)
{
if (size >> 32 != 0)
{
throw std::runtime_error(
"Request for axis set which exceed the bitwidth available for NVShapes "
"(32)");
}
this->push_back(static_cast<uint32_t>(size));
}
}
};
}
} // namespace ngraph
......@@ -131,4 +131,10 @@ shape_of_vector
shape_of_matrix
shape_of_5d
sum_stable_acc
product_2d_to_scalar_int32
product_to_scalar_int32
product_to_scalar_int8
max_matrix_rows_zero_int32
max_to_scalar_int8
min_to_scalar_int8
max_3d_to_scalar_double
......@@ -408,6 +408,27 @@ NGRAPH_TEST(${BACKEND_NAME}, sum_3d_eliminate_zero_dim)
EXPECT_EQ((vector<float>{0, 0, 0, 0, 0, 0}), read_vector<float>(result));
}
NGRAPH_TEST(${BACKEND_NAME}, sum_3d_eliminate_zero_dim_int32)
{
Shape shape_a{3, 0, 2};
auto A = make_shared<op::Parameter>(element::i32, shape_a);
Shape shape_rt{3, 2};
auto f = make_shared<Function>(make_shared<op::Sum>(A, AxisSet{1}), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::i32, shape_a);
copy_data(a, vector<int32_t>{});
auto result = backend->create_tensor(element::i32, shape_rt);
// Overwrite the initial result vector to make sure we're not just coincidentally getting the right value.
copy_data(result, vector<int32_t>{2112, 2112, 2112, 2112, 2112, 2112});
backend->call_with_validate(f, {result}, {a});
EXPECT_EQ((vector<int32_t>{0, 0, 0, 0, 0, 0}), read_vector<int32_t>(result));
}
NGRAPH_TEST(${BACKEND_NAME}, sum_5d_to_scalar)
{
Shape shape_a{3, 3, 3, 3, 3};
......@@ -427,6 +448,43 @@ NGRAPH_TEST(${BACKEND_NAME}, sum_5d_to_scalar)
EXPECT_EQ(std::vector<float>{243.}, read_vector<float>(result));
}
NGRAPH_TEST(${BACKEND_NAME}, sum_5d_to_scalar_int32)
{
Shape shape_a{3, 3, 3, 3, 3};
auto A = make_shared<op::Parameter>(element::i32, shape_a);
Shape shape_rt{};
auto f =
make_shared<Function>(make_shared<op::Sum>(A, AxisSet{0, 1, 2, 3, 4}), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::i32, shape_a);
copy_data(a, std::vector<int32_t>(std::pow(3, 5), 1));
auto result = backend->create_tensor(element::i32, shape_rt);
backend->call_with_validate(f, {result}, {a});
EXPECT_EQ(std::vector<int32_t>{243}, read_vector<int32_t>(result));
}
NGRAPH_TEST(${BACKEND_NAME}, sum_2d_to_scalar_int8)
{
Shape shape_a{3, 3};
auto A = make_shared<op::Parameter>(element::i8, shape_a);
Shape shape_rt{};
auto f = make_shared<Function>(make_shared<op::Sum>(A, AxisSet{0, 1}), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::i8, shape_a);
copy_data(a, std::vector<int8_t>{1, 2, 3, 4, 5, 6, 7, 8, 9});
auto result = backend->create_tensor(element::i8, shape_rt);
backend->call_with_validate(f, {result}, {a});
EXPECT_EQ(std::vector<int8_t>{45}, read_vector<int8_t>(result));
}
#if NGRAPH_INTERPRETER_ENABLE
NGRAPH_TEST(${BACKEND_NAME}, sum_stable_acc)
......
......@@ -3215,6 +3215,67 @@ NGRAPH_TEST(${BACKEND_NAME}, product_3d_eliminate_zero_dim)
EXPECT_EQ((vector<float>{1, 1, 1, 1, 1, 1}), read_vector<float>(result));
}
NGRAPH_TEST(${BACKEND_NAME}, product_2d_to_scalar_int32)
{
Shape shape_a{3, 3};
auto A = make_shared<op::Parameter>(element::i32, shape_a);
Shape shape_rt{};
auto f = make_shared<Function>(make_shared<op::Product>(A, AxisSet{0, 1}), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::i32, shape_a);
copy_data(a, vector<int32_t>{1, 2, 3, 4, 5, 6, 7, 8, 9});
auto result = backend->create_tensor(element::i32, shape_rt);
backend->call_with_validate(f, {result}, {a});
EXPECT_TRUE(test::all_close(vector<int32_t>{1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9},
read_vector<int32_t>(result)));
}
NGRAPH_TEST(${BACKEND_NAME}, product_to_scalar_int32)
{
Shape shape{2, 2};
auto A = make_shared<op::Parameter>(element::i32, shape);
auto f = make_shared<Function>(make_shared<op::Product>(A, AxisSet{0, 1}), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::i32, shape);
copy_data(a, vector<int32_t>{1, 2, 3, 4});
auto result = backend->create_tensor(element::i32, Shape{});
backend->call_with_validate(f, {result}, {a});
EXPECT_EQ((vector<int32_t>{24}), read_vector<int32_t>(result));
// For some reason I'm feeling extra paranoid about making sure reduction doesn't clobber the
// input tensors, so let's do this too.
EXPECT_EQ((vector<int32_t>{1, 2, 3, 4}), read_vector<int32_t>(a));
}
NGRAPH_TEST(${BACKEND_NAME}, product_to_scalar_int8)
{
Shape shape{2, 2};
auto A = make_shared<op::Parameter>(element::i8, shape);
auto f = make_shared<Function>(make_shared<op::Product>(A, AxisSet{0, 1}), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::i8, shape);
copy_data(a, vector<int8_t>{1, 2, 3, 4});
auto result = backend->create_tensor(element::i8, Shape{});
backend->call_with_validate(f, {result}, {a});
EXPECT_EQ((vector<int8_t>{24}), read_vector<int8_t>(result));
// For some reason I'm feeling extra paranoid about making sure reduction doesn't clobber the
// input tensors, so let's do this too.
EXPECT_EQ((vector<int8_t>{1, 2, 3, 4}), read_vector<int8_t>(a));
}
// Trivial case with no reduced axes.
NGRAPH_TEST(${BACKEND_NAME}, max_trivial)
{
......@@ -3233,6 +3294,23 @@ NGRAPH_TEST(${BACKEND_NAME}, max_trivial)
EXPECT_EQ((vector<float>{1, 2, 3, 4}), read_vector<float>(result));
}
NGRAPH_TEST(${BACKEND_NAME}, max_trivial_int8)
{
Shape shape{2, 2};
auto A = make_shared<op::Parameter>(element::i8, shape);
auto f = make_shared<Function>(make_shared<op::Max>(A, AxisSet{}), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::i8, shape);
copy_data(a, vector<int8_t>{1, 2, 3, 4});
auto result = backend->create_tensor(element::i8, shape);
backend->call_with_validate(f, {result}, {a});
EXPECT_EQ((vector<int8_t>{1, 2, 3, 4}), read_vector<int8_t>(result));
}
// Failure has been reported at 5D for some reason
NGRAPH_TEST(${BACKEND_NAME}, max_trivial_5d)
{
......@@ -3254,6 +3332,26 @@ NGRAPH_TEST(${BACKEND_NAME}, max_trivial_5d)
read_vector<float>(result));
}
NGRAPH_TEST(${BACKEND_NAME}, max_trivial_5d_int32)
{
Shape shape{2, 2, 2, 2, 2};
auto A = make_shared<op::Parameter>(element::i32, shape);
auto f = make_shared<Function>(make_shared<op::Max>(A, AxisSet{}), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::i32, shape);
copy_data(a, vector<int32_t>{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1});
auto result = backend->create_tensor(element::i32, shape);
backend->call_with_validate(f, {result}, {a});
EXPECT_EQ((vector<int32_t>{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}),
read_vector<int32_t>(result));
}
NGRAPH_TEST(${BACKEND_NAME}, max_to_scalar)
{
Shape shape{2, 2};
......@@ -3275,6 +3373,23 @@ NGRAPH_TEST(${BACKEND_NAME}, max_to_scalar)
EXPECT_EQ((vector<float>{1, 2, 3, 4}), read_vector<float>(a));
}
NGRAPH_TEST(${BACKEND_NAME}, max_to_scalar_int8)
{
Shape shape{2, 2};
auto A = make_shared<op::Parameter>(element::i8, shape);
auto f = make_shared<Function>(make_shared<op::Max>(A, AxisSet{0, 1}), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::i8, shape);
copy_data(a, vector<int8_t>{1, 2, 3, 4});
auto result = backend->create_tensor(element::i8, Shape{});
backend->call_with_validate(f, {result}, {a});
EXPECT_EQ((vector<int8_t>{4}), read_vector<int8_t>(result));
}
NGRAPH_TEST(${BACKEND_NAME}, max_matrix_columns)
{
Shape shape_a{3, 2};
......@@ -3319,6 +3434,28 @@ NGRAPH_TEST(${BACKEND_NAME}, max_matrix_rows)
EXPECT_EQ((vector<float>{1, 2, 3, 4, 5, 6}), read_vector<float>(a));
}
NGRAPH_TEST(${BACKEND_NAME}, max_matrix_rows_int32)
{
Shape shape_a{3, 2};
auto A = make_shared<op::Parameter>(element::i32, shape_a);
Shape shape_rt{3};
auto f = make_shared<Function>(make_shared<op::Max>(A, AxisSet{1}), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::i32, shape_a);
copy_data(a, vector<int32_t>{1, 2, 3, 4, 5, 6});
auto result = backend->create_tensor(element::i32, shape_rt);
backend->call_with_validate(f, {result}, {a});
EXPECT_EQ((vector<int32_t>{2, 4, 6}), read_vector<int32_t>(result));
// For some reason I'm feeling extra paranoid about making sure reduction doesn't clobber the
// input tensors, so let's do this too.
EXPECT_EQ((vector<int32_t>{1, 2, 3, 4, 5, 6}), read_vector<int32_t>(a));
}
NGRAPH_TEST(${BACKEND_NAME}, max_matrix_rows_zero)
{
Shape shape_a{3, 0};
......@@ -3345,6 +3482,30 @@ NGRAPH_TEST(${BACKEND_NAME}, max_matrix_rows_zero)
EXPECT_EQ((vector<float>{}), read_vector<float>(a));
}
NGRAPH_TEST(${BACKEND_NAME}, max_matrix_rows_zero_int32)
{
Shape shape_a{3, 0};
auto A = make_shared<op::Parameter>(element::i32, shape_a);
Shape shape_rt{3};
auto f = make_shared<Function>(make_shared<op::Max>(A, AxisSet{1}), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::i32, shape_a);
copy_data(a, vector<int32_t>{});
auto result = backend->create_tensor(element::i32, shape_rt);
copy_data(result, vector<int32_t>({3, 3, 3}));
int32_t minval = std::numeric_limits<int32_t>::has_infinity
? -std::numeric_limits<int32_t>::infinity()
: std::numeric_limits<int32_t>::min();
backend->call_with_validate(f, {result}, {a});
EXPECT_EQ((vector<int32_t>{minval, minval, minval}), read_vector<int32_t>(result));
EXPECT_EQ((vector<int32_t>{}), read_vector<int32_t>(a));
}
NGRAPH_TEST(${BACKEND_NAME}, max_matrix_cols_zero)
{
// Now the reduction (g(x:float32[2,2],y:float32[]) = reduce(x,y,f,axes={})).
......@@ -3493,6 +3654,44 @@ NGRAPH_TEST(${BACKEND_NAME}, max_3d_to_scalar)
EXPECT_EQ((vector<float>{14.0f}), read_vector<float>(result));
}
NGRAPH_TEST(${BACKEND_NAME}, max_3d_to_scalar_int32)
{
Shape shape_a{3, 3, 3};
auto A = make_shared<op::Parameter>(element::i32, shape_a);
Shape shape_rt{};
auto f = make_shared<Function>(make_shared<op::Max>(A, AxisSet{0, 1, 2}), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::i32, shape_a);
copy_data(a, vector<int32_t>{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1});
auto result = backend->create_tensor(element::i32, shape_rt);
backend->call_with_validate(f, {result}, {a});
EXPECT_EQ((vector<int32_t>{14}), read_vector<int32_t>(result));
}
NGRAPH_TEST(${BACKEND_NAME}, max_3d_to_scalar_double)
{
Shape shape_a{3, 3, 3};
auto A = make_shared<op::Parameter>(element::f64, shape_a);
Shape shape_rt{};
auto f = make_shared<Function>(make_shared<op::Max>(A, AxisSet{0, 1, 2}), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::f64, shape_a);
copy_data(a, vector<double>{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1});
auto result = backend->create_tensor(element::f64, shape_rt);
backend->call_with_validate(f, {result}, {a});
EXPECT_EQ((vector<double>{14}), read_vector<double>(result));
}
NGRAPH_TEST(${BACKEND_NAME}, max_3d_eliminate_zero_dim)
{
Shape shape_a{3, 0, 2};
......@@ -3555,6 +3754,26 @@ NGRAPH_TEST(${BACKEND_NAME}, min_trivial_5d)
read_vector<float>(result));
}
NGRAPH_TEST(${BACKEND_NAME}, min_trivial_5d_int32)
{
Shape shape{2, 2, 2, 2, 2};
auto A = make_shared<op::Parameter>(element::i32, shape);
auto f = make_shared<Function>(make_shared<op::Min>(A, AxisSet{}), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::i32, shape);
copy_data(a, vector<int32_t>{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1});
auto result = backend->create_tensor(element::i32, shape);
backend->call_with_validate(f, {result}, {a});
EXPECT_EQ((vector<int32_t>{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}),
read_vector<int32_t>(result));
}
NGRAPH_TEST(${BACKEND_NAME}, min_to_scalar)
{
Shape shape{2, 2};
......@@ -3576,6 +3795,27 @@ NGRAPH_TEST(${BACKEND_NAME}, min_to_scalar)
EXPECT_EQ((vector<float>{1, 2, 3, 4}), read_vector<float>(a));
}
NGRAPH_TEST(${BACKEND_NAME}, min_to_scalar_int8)
{
Shape shape{2, 2};
auto A = make_shared<op::Parameter>(element::i8, shape);
auto f = make_shared<Function>(make_shared<op::Min>(A, AxisSet{0, 1}), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::i8, shape);
copy_data(a, vector<int8_t>{1, 2, 3, 4});
auto result = backend->create_tensor(element::i8, Shape{});
backend->call_with_validate(f, {result}, {a});
EXPECT_EQ((vector<int8_t>{1}), read_vector<int8_t>(result));
// For some reason I'm feeling extra paranoid about making sure reduction doesn't clobber the
// input tensors, so let's do this too.
EXPECT_EQ((vector<int8_t>{1, 2, 3, 4}), read_vector<int8_t>(a));
}
NGRAPH_TEST(${BACKEND_NAME}, min_matrix_columns)
{
Shape shape_a{3, 2};
......@@ -3620,6 +3860,28 @@ NGRAPH_TEST(${BACKEND_NAME}, min_matrix_rows)
EXPECT_EQ((vector<float>{1, 2, 3, 4, 5, 6}), read_vector<float>(a));
}
NGRAPH_TEST(${BACKEND_NAME}, min_matrix_rows_int32)
{
Shape shape_a{3, 2};
auto A = make_shared<op::Parameter>(element::i32, shape_a);
Shape shape_rt{3};
auto f = make_shared<Function>(make_shared<op::Min>(A, AxisSet{1}), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::i32, shape_a);
copy_data(a, vector<int32_t>{1, 2, 3, 4, 5, 6});
auto result = backend->create_tensor(element::i32, shape_rt);
backend->call_with_validate(f, {result}, {a});
EXPECT_EQ((vector<int32_t>{1, 3, 5}), read_vector<int32_t>(result));
// For some reason I'm feeling extra paranoid about making sure reduction doesn't clobber the
// input tensors, so let's do this too.
EXPECT_EQ((vector<int32_t>{1, 2, 3, 4, 5, 6}), read_vector<int32_t>(a));
}
NGRAPH_TEST(${BACKEND_NAME}, min_matrix_rows_zero)
{
Shape shape_a{3, 0};
......@@ -3794,6 +4056,25 @@ NGRAPH_TEST(${BACKEND_NAME}, min_3d_to_scalar)
EXPECT_EQ((vector<float>{1}), read_vector<float>(result));
}
NGRAPH_TEST(${BACKEND_NAME}, min_3d_to_scalar_int32)
{
Shape shape_a{3, 3, 3};
auto A = make_shared<op::Parameter>(element::i32, shape_a);
Shape shape_rt{};
auto f = make_shared<Function>(make_shared<op::Min>(A, AxisSet{0, 1, 2}), ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::i32, shape_a);
copy_data(a, vector<int32_t>{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1});
auto result = backend->create_tensor(element::i32, shape_rt);
backend->call_with_validate(f, {result}, {a});
EXPECT_EQ((vector<int32_t>{1}), read_vector<int32_t>(result));
}
NGRAPH_TEST(${BACKEND_NAME}, min_3d_eliminate_zero_dim)
{
Shape shape_a{3, 0, 2};
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment