Commit cdfd67cd authored by Adam Procter's avatar Adam Procter Committed by omarkanawi

clang-format comments: /src/ngraph/op (#3509)

* New clang-format rules for src/ngraph/op/util

* Restore root .clang-format

* Remove redundant .clang-formats

* Revert "Remove redundant .clang-formats"

This reverts commit e158df1e507570b55348ce326fd7e8b4ae819f36.

* Remove redundant .clang-formats

* New clang-format rules for src/ngraph/op/fused

* New clang-format rules for src/ngraph/op/experimental

* New clang-format rules for src/ngraph/op/.
parent afa062d5
#
# OVERRIDE TO STYLE: Comments do *not* wrap.
#
BasedOnStyle: LLVM
IndentWidth: 4
UseTab: Never
Language: Cpp
Standard: Cpp11
AccessModifierOffset: -4
AlignConsecutiveDeclarations: false
AlignConsecutiveAssignments: false
AlignTrailingComments: true
AllowShortBlocksOnASingleLine: true
AllowShortCaseLabelsOnASingleLine: true
AllowShortFunctionsOnASingleLine: Inline
AlwaysBreakBeforeMultilineStrings: true
AlwaysBreakTemplateDeclarations: true
BinPackArguments: false
BinPackParameters: false
BreakBeforeBraces: Allman
BreakConstructorInitializersBeforeComma: true
ColumnLimit: 100
CommentPragmas: '.*'
IndentCaseLabels: false
IndentWrappedFunctionNames: true
KeepEmptyLinesAtTheStartOfBlocks: false
NamespaceIndentation: All
PointerAlignment: Left
SpaceAfterCStyleCast: false
SpaceBeforeAssignmentOperators: true
SpaceBeforeParens: ControlStatements
SpaceInEmptyParentheses: false
SpacesInAngles: false
SpacesInCStyleCastParentheses: false
SpacesInParentheses: false
SpacesInSquareBrackets: false
SortIncludes: false
ReflowComments: true
IncludeCategories:
- Regex: '^".*'
Priority: 3
- Regex: '^<.*'
Priority: 2
SortIncludes: true
......@@ -37,7 +37,8 @@ namespace ngraph
///
/// \param arg The input tensor
/// \param axis The axis along which to compute an index for maximum
/// \param index_element_type produce indices. Currently, only int64 or int32 are supported
/// \param index_element_type produce indices. Currently, only int64 or int32 are
/// supported
ArgMax(const Output<Node>& arg, size_t axis, const element::Type& index_element_type);
virtual std::shared_ptr<Node>
......
......@@ -38,7 +38,8 @@ namespace ngraph
///
/// \param arg The input tensor
/// \param axis The axis along which to compute an index for minimum
/// \param index_element_type produce indices. Currently, only int64 or int32 are supported
/// \param index_element_type produce indices. Currently, only int64 or int32 are
/// supported
ArgMin(const Output<Node>& arg, size_t axis, const element::Type& index_element_type);
virtual std::shared_ptr<Node>
......
......@@ -107,7 +107,8 @@ namespace ngraph
const Shape& padding_above,
bool include_padding_in_avg_computation = false);
/// \brief Constructs a batched, unpadded average pooling operation (i.e., all padding shapes are set to 0).
/// \brief Constructs a batched, unpadded average pooling operation (i.e., all padding
/// shapes are set to 0).
///
/// \param arg The output producing the input data batch tensor.<br>
/// `[d1, ..., dn]`
......@@ -119,7 +120,8 @@ namespace ngraph
const Shape& window_shape,
const Strides& window_movement_strides);
/// \brief Constructs an unstrided batched convolution operation (i.e., all window movement strides are 1 and all padding shapes are set to 0).
/// \brief Constructs an unstrided batched convolution operation (i.e., all window
/// movement strides are 1 and all padding shapes are set to 0).
///
/// \param arg The output producing the input data batch tensor.<br>
/// `[d1, ..., dn]`
......
......@@ -122,8 +122,8 @@ namespace ngraph
/// SHAPE DETAILS:
/// gamma: must have rank 1, with the same span as input's channel axis.
/// beta: must have rank 1, with the same span as input's channel axis.
/// input: must have rank >= 2. The second dimension represents the channel axis and
/// must have a span of at least 1.
/// input: must have rank >= 2. The second dimension represents the channel axis
/// and must have a span of at least 1.
/// mean: must have rank 1, with the same span as input's channel axis.
/// variance: must have rank 1, with the same span as input's channel axis.
/// output: shall have the same shape as 'input'.
......
......@@ -23,7 +23,8 @@ namespace ngraph
{
namespace op
{
/// \brief Operation which "adds" axes to an input tensor, replicating elements from the input as needed along the new axes.
/// \brief Operation which "adds" axes to an input tensor, replicating elements from the
/// input as needed along the new axes.
class Broadcast : public Op
{
public:
......@@ -36,8 +37,9 @@ namespace ngraph
///
/// \param arg Node that produces the input tensor to be broadcast.
/// \param shape The shape of the output tensor.
/// \param broadcast_axes The axis positions (0-based) in the result that are being broadcast. The
/// remaining axes in shape must be the same as the shape of arg.
/// \param broadcast_axes The axis positions (0-based) in the result that are being
/// broadcast. The remaining axes in shape must be the same as
/// the shape of arg.
Broadcast(const Output<Node>& arg, const Shape& shape, const AxisSet& broadcast_axes);
void validate_and_infer_types() override;
......
......@@ -251,7 +251,10 @@ void op::ConvolutionBackpropData::validate_and_infer_types()
// Window movement strides q_x p_x
// Window dilation strides p_f p_f
// Padding below a_x (S_f - 1)p_f - a_x
// Padding above b_x (S_f - 1)p_f + ((a_x + (S_x - 1)p_x + b_x - (S_f - 1)p_f) % q_x) - b_x
// Padding above b_x (S_f - 1)p_f +
// + ((a_x + (S_x - 1)p_x + b_x - (S_f - 1)p_f)
// % q_x)
// - b_x
// Data dilation strides p_x q_x
// Output shape S_o S_x
//
......@@ -737,7 +740,8 @@ Shape op::util::infer_convolution_output_shape(const Node* node,
").");
//
// Extract input item shape Di and make sure all dimensions are larger than 0 after padding and dilation.
// Extract input item shape Di and make sure all dimensions are larger than 0 after padding and
// dilation.
//
std::vector<ptrdiff_t> input_item_virtual_shape_signed;
......@@ -785,8 +789,9 @@ Shape op::util::infer_convolution_output_shape(const Node* node,
}
//
// Extract the physical shape Wp of the convolution window, *not* including dilation, from the filter dimensions.
// At the same time, make sure window shape dimensions are all larger than 0.
// Extract the physical shape Wp of the convolution window, *not* including dilation, from the
// filter dimensions. At the same time, make sure window shape dimensions are all larger than
// 0.
//
Shape window_physical_shape;
......@@ -804,8 +809,9 @@ Shape op::util::infer_convolution_output_shape(const Node* node,
}
//
// Compute virtual shape Wp of the convolution window, *including* dilation. At the same time, make sure all
// window dilation strides are larger than 0, and that the dilated filter fits within the spatial dimensions.
// Compute virtual shape Wp of the convolution window, *including* dilation. At the same time,
// make sure all window dilation strides are larger than 0, and that the dilated filter fits
// within the spatial dimensions.
//
Shape window_virtual_shape;
......
......@@ -65,7 +65,8 @@ namespace ngraph
const Strides& data_dilation_strides,
const PadType& pad_type = PadType::EXPLICIT);
/// \brief Constructs a batched convolution operation with no data dilation (i.e., all data dilation strides are 1).
/// \brief Constructs a batched convolution operation with no data dilation (i.e., all
/// data dilation strides are 1).
///
/// \param data_batch The node producing the input data batch tensor.<br>
/// `[N, C_IN, D1, ... Df]`
......@@ -89,7 +90,9 @@ namespace ngraph
const CoordinateDiff& padding_below,
const CoordinateDiff& padding_above);
/// \brief Constructs a batched convolution operation with no padding or data dilation (i.e., padding above and below are 0 everywhere, and all data dilation strides are 1).
/// \brief Constructs a batched convolution operation with no padding or data dilation
/// (i.e., padding above and below are 0 everywhere, and all data dilation
/// strides are 1).
///
/// \param data_batch The node producing the input data batch tensor.<br>
/// `[N, C_IN, D1, ... Df]`
......@@ -107,7 +110,9 @@ namespace ngraph
const Strides& window_movement_strides,
const Strides& window_dilation_strides);
/// \brief Constructs a batched convolution operation with no window dilation, padding, or data dilation (i.e., padding above and below are 0 everywhere, and all window/data dilation strides are 1).
/// \brief Constructs a batched convolution operation with no window dilation, padding,
/// or data dilation (i.e., padding above and below are 0 everywhere, and all
/// window/data dilation strides are 1).
///
/// \param data_batch The node producing the input data batch tensor.<br>
/// `[N, C_IN, D1, ... Df]`
......@@ -122,7 +127,9 @@ namespace ngraph
const Output<Node>& filters,
const Strides& window_movement_strides);
/// \brief Constructs a batched convolution operation with no window dilation or movement stride (i.e., padding above and below are 0 everywhere, and all window/data dilation strides and window movement strides are 1).
/// \brief Constructs a batched convolution operation with no window dilation or
/// movement stride (i.e., padding above and below are 0 everywhere, and all
/// window/data dilation strides and window movement strides are 1).
///
/// \param data_batch The node producing the input data batch tensor.<br>
/// `[N, C_IN, D1, ... Df]`
......@@ -201,8 +208,10 @@ namespace ngraph
/// \param data_batch_shape The shape of the data batch from forward-prop.
/// \param filters The node producing the filters from forward-prop.
/// \param output_delta The node producing output delta.
/// \param window_movement_strides_forward The window movement strides from forward-prop.
/// \param window_dilation_strides_forward The window dilation strides from forward-prop.
/// \param window_movement_strides_forward The window movement strides from
/// forward-prop.
/// \param window_dilation_strides_forward The window dilation strides from
/// forward-prop.
/// \param padding_below_forward The padding-below sizes from forward-prop.
/// \param padding_above_forward The padding-above sizes from forward-prop.
/// \param data_dilation_strides_forward The data dilation strides from forward-prop.
......@@ -300,8 +309,10 @@ namespace ngraph
/// \param data_batch The tensor producing the data batch from forward-prop.
/// \param filters_shape The shape of the filters from forward-prop.
/// \param output_delta The node producing output delta.
/// \param window_movement_strides_forward The window movement strides from forward-prop.
/// \param window_dilation_strides_forward The window dilation strides from forward-prop.
/// \param window_movement_strides_forward The window movement strides from
/// forward-prop.
/// \param window_dilation_strides_forward The window dilation strides from
/// forward-prop.
/// \param padding_below_forward The padding-below sizes from forward-prop.
/// \param padding_above_forward The padding-above sizes from forward-prop.
/// \param data_dilation_strides_forward The data dilation strides from forward-prop.
......
......@@ -24,7 +24,8 @@ namespace ngraph
{
namespace op
{
/// \brief Generalized dot product operation, including scalar-tensor product, matrix-vector product, and matrix multiplication.
/// \brief Generalized dot product operation, including scalar-tensor product, matrix-vector
/// product, and matrix multiplication.
class Dot : public Op
{
public:
......@@ -43,13 +44,15 @@ namespace ngraph
size_t reduction_axes_count,
bool has_reduction_axes_count = true);
/// \brief Constructs a dot product operation with default dot-axis selection depending on the inputs.
/// \brief Constructs a dot product operation with default dot-axis selection depending
/// on the inputs.
///
/// If `arg0` or `arg1` is a scalar, there are no dot-axes. Else, there is one dot-axis.
///
/// (Note that in particular, this results in scalar-tensor products where one or the other argument is
/// a scalar, a matrix-vector products where `arg0` is a matrix and `arg1` is a vector, and a
/// matrix multiplication where `arg0` and `arg1` are both matrices.)
/// (Note that in particular, this results in scalar-tensor products where one or the
/// other argument is a scalar, a matrix-vector products where `arg0` is a matrix and
/// `arg1` is a vector, and a matrix multiplication where `arg0` and `arg1` are both
/// matrices.)
///
/// \param arg0 The node producing the first argument.
/// \param arg1 The node producing the second argument.
......
......@@ -35,8 +35,8 @@ namespace ngraph
EmbeddingLookup() = default;
/// \brief Constructs a EmbeddingLookup operation.
///
/// EmbeddingLookup constructs an output tensor by replacing every index in a given input tensor
/// with a row (from the weights matrix) at that index
/// EmbeddingLookup constructs an output tensor by replacing every index in a given
/// input tensor with a row (from the weights matrix) at that index
///
/// \param data The input indices for tokens to be translated into embeddings
/// \param weights is a dense matrix [N,M] where each row 0..N
......
......@@ -22,6 +22,7 @@ namespace ngraph
{
namespace op
{
// clang-format off
/// \brief Elementwise is-equal operation.
///
/// ## Inputs
......@@ -37,6 +38,7 @@ namespace ngraph
/// | Type | Description |
/// | ---------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------ |
/// | \f$\texttt{bool}[d_1,\dots,d_n]\f$ | The tensor \f$T\f$, where \f$T[i_1,\dots,i_n] = 1\text{ if }\texttt{arg0}[i_1,\dots,i_n] = \texttt{arg1}[i_1,\dots,i_n]\text{, else } 0\f$ |
// clang-format on
class Equal : public util::BinaryElementwiseComparison
{
public:
......
#
# OVERRIDE TO STYLE: Comments wrap.
#
BasedOnStyle: LLVM
IndentWidth: 4
UseTab: Never
Language: Cpp
Standard: Cpp11
AccessModifierOffset: -4
AlignConsecutiveDeclarations: false
AlignConsecutiveAssignments: false
AlignTrailingComments: true
AllowShortBlocksOnASingleLine: true
AllowShortCaseLabelsOnASingleLine: true
AllowShortFunctionsOnASingleLine: Inline
AlwaysBreakBeforeMultilineStrings: true
AlwaysBreakTemplateDeclarations: true
BinPackArguments: false
BinPackParameters: false
BreakBeforeBraces: Allman
BreakConstructorInitializersBeforeComma: true
ColumnLimit: 100
#CommentPragmas: '.*'
IndentCaseLabels: false
IndentWrappedFunctionNames: true
KeepEmptyLinesAtTheStartOfBlocks: false
NamespaceIndentation: All
PointerAlignment: Left
SpaceAfterCStyleCast: false
SpaceBeforeAssignmentOperators: true
SpaceBeforeParens: ControlStatements
SpaceInEmptyParentheses: false
SpacesInAngles: false
SpacesInCStyleCastParentheses: false
SpacesInParentheses: false
SpacesInSquareBrackets: false
SortIncludes: false
ReflowComments: true
IncludeCategories:
- Regex: '^".*'
Priority: 3
- Regex: '^<.*'
Priority: 2
SortIncludes: true
#
# OVERRIDE TO STYLE: Comments wrap.
#
BasedOnStyle: LLVM
IndentWidth: 4
UseTab: Never
Language: Cpp
Standard: Cpp11
AccessModifierOffset: -4
AlignConsecutiveDeclarations: false
AlignConsecutiveAssignments: false
AlignTrailingComments: true
AllowShortBlocksOnASingleLine: true
AllowShortCaseLabelsOnASingleLine: true
AllowShortFunctionsOnASingleLine: Inline
AlwaysBreakBeforeMultilineStrings: true
AlwaysBreakTemplateDeclarations: true
BinPackArguments: false
BinPackParameters: false
BreakBeforeBraces: Allman
BreakConstructorInitializersBeforeComma: true
ColumnLimit: 100
#CommentPragmas: '.*'
IndentCaseLabels: false
IndentWrappedFunctionNames: true
KeepEmptyLinesAtTheStartOfBlocks: false
NamespaceIndentation: All
PointerAlignment: Left
SpaceAfterCStyleCast: false
SpaceBeforeAssignmentOperators: true
SpaceBeforeParens: ControlStatements
SpaceInEmptyParentheses: false
SpacesInAngles: false
SpacesInCStyleCastParentheses: false
SpacesInParentheses: false
SpacesInSquareBrackets: false
SortIncludes: false
ReflowComments: true
IncludeCategories:
- Regex: '^".*'
Priority: 3
- Regex: '^<.*'
Priority: 2
SortIncludes: true
......@@ -22,19 +22,21 @@ namespace ngraph
{
namespace op
{
// clang-format off
/// \brief Elementwise Local Response Normalization (LRN) operation.
///
/// ## Inputs
///
/// | | Type | Description |
/// | ----- | --------------------------------- | ----------------------------------------------- |
/// | | Type | Description |
/// | ----- | --------------------------------------- | ----------------------------------------------- |
/// | `arg` | \f$N[n, c, d_1,\dots,d_n]~(n \geq 0)\f$ | A tensor of any shape and numeric element type. |
///
/// ## Output
///
/// | Type | Description |
/// | ---------------------- | ------------------------------------------------------------------------------------ |
/// | Type | Description |
/// | ---------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
/// | \f$N[n, c, d_1,\dots,d_n]\f$ | The tensor \f$T\f$, where \f$T[n, c, d_1,\dots,d_n] = \frac{N[n,i,d_1,\dots,d_n]}{ (bias + alpha * (\sum_{i=max(0,(nsize-1)/2)}^{min(C, (nsize-1)/2)+1} N[n,i,d_1,\dots,d_n]^{2}) ^ {2})}\f$ |
// clang-format on
class LRN : public Op
{
public:
......
......@@ -81,7 +81,8 @@ namespace ngraph
void validate_and_infer_types() override;
/// \brief Constructs a batched, unpadded max pooling operation (i.e., all padding shapes are set to 0).
/// \brief Constructs a batched, unpadded max pooling operation (i.e., all padding
/// shapes are set to 0).
///
/// \param arg The node producing the input data batch tensor.
/// \param window_shape The window shape.
......@@ -90,7 +91,8 @@ namespace ngraph
const Shape& window_shape,
const Strides& window_movement_strides);
/// \brief Constructs an unstrided batched max pooling operation (i.e., all window movement strides are 1 and all padding shapes are set to 0).
/// \brief Constructs an unstrided batched max pooling operation (i.e., all window
/// movement strides are 1 and all padding shapes are set to 0).
///
/// \param arg The node producing the input data batch tensor.
/// \param window_shape The window shape.
......
......@@ -22,6 +22,7 @@ namespace ngraph
{
namespace op
{
// clang-format off
/// \brief One-hot operator.
///
/// ## Parameters
......@@ -42,6 +43,7 @@ namespace ngraph
/// | Type | Description |
/// | ---------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
/// | \f$E[d_1,\dots,d_n]\f$ | The tensor \f$T'\f$, where \f$T'[i_1,\dots,i_{m-1},i_m,i_{m+1},\dots,i_n] = 1\f$ if \f$T[i_1,\dots,i_{m-1},i_{m+1},\dots,i_n] = i_m\f$, else \f$0\f$. However, \f$T'\f$ is undefined if any non-integral value or any out-of-bounds value is detected in the input tensor. |
// clang-format on
class OneHot : public Op
{
public:
......
......@@ -25,9 +25,9 @@ namespace ngraph
{
/// \brief A function parameter.
///
/// Parameters are nodes that represent the arguments that will be passed to user-defined functions.
/// Function creation requires a sequence of parameters.
/// Basic graph operations do not need parameters attached to a function.
/// Parameters are nodes that represent the arguments that will be passed to user-defined
/// functions. Function creation requires a sequence of parameters. Basic graph operations
/// do not need parameters attached to a function.
class Parameter : public op::Op
{
protected:
......
......@@ -22,6 +22,7 @@ namespace ngraph
{
namespace op
{
// clang-format off
/// \brief Elementwise exponentiation operation.
///
/// ## Inputs
......@@ -36,6 +37,7 @@ namespace ngraph
/// | Type | Description |
/// | ---------------------- | -------------------------------------------------------------------------------------------------------------- |
/// | \f$N[d_1,\dots,d_n]\f$ | The tensor \f$T\f$, where \f$T[i_1,\dots,i_n] = \texttt{arg0}[i_1,\dots,i_n]^{\texttt{arg1}[i_1,\dots,i_n]}\f$ |
// clang-format on
class Power : public util::BinaryElementwiseArithmetic
{
public:
......
......@@ -25,8 +25,8 @@ namespace ngraph
namespace op
{
/// \brief Quantize operation
/// Maps real input (r) to quantized output (q) using scale (s), zero point (z) and round mode:
/// q = ROUND(r / s) + o
/// Maps real input (r) to quantized output (q) using scale (s), zero point (z) and
/// round mode: q = ROUND(r / s) + o
class Quantize : public ngraph::op::Op
{
public:
......
......@@ -24,8 +24,10 @@ namespace ngraph
{
namespace op
{
/// \brief Takes two input tensors of identical rank, with the second tensor no larger than the first in any dimension, and returns a copy of
/// the first input tensor with the specified slice overwritten by the second input tensor.
// clang-format off
/// \brief Takes two input tensors of identical rank, with the second tensor no larger than
/// the first in any dimension, and returns a copy of the first input tensor with
/// the specified slice overwritten by the second input tensor.
///
/// ## Parameters
///
......@@ -47,6 +49,7 @@ namespace ngraph
/// | Type | Description |
/// | ---------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
/// | \f$E[d_1,\dots,d_n]\f$ | The tensor \f$T\f$ where \f$T[i_1,\dots,i_n] = \texttt{arg1}[j_1,\dots,j_n]\f$ if \f$j_1,\dots,j_n\f$ is in bounds for `arg1` and for all \f$m\f$, \f$i_m = l_m + j_m s_m\f$, otherwise \f$\texttt{arg0}[i_1,\dots,i_n]\f$. |
// clang-format on
class ReplaceSlice : public Op
{
public:
......@@ -69,7 +72,8 @@ namespace ngraph
const Coordinate& upper_bounds,
const Strides& strides);
/// \brief Constructs a tensor slice replacement operation with unit strides; i.e., every element inside the bounding box will be overwritten.
/// \brief Constructs a tensor slice replacement operation with unit strides; i.e.,
/// every element inside the bounding box will be overwritten.
///
/// \param arg0 The tensor to overwrite into.
/// \param arg1 The tensor to write into `arg0`.
......
......@@ -24,18 +24,22 @@ namespace ngraph
{
namespace op
{
// clang-format off
/// \brief Tensor reshape operation.
///
/// "Converts" an input tensor into a new shape with the same number of elements.
///
/// Given that the input tensor has shape \f$[d_1,\dots,d_n]\f$, the output may have any shape \f$[d'_1,\dots,d'_m]\f$ such that
/// \f$\Pi_{0 \leq i \lt n}(d_i) = \Pi_{0 \leq i \lt m}(d'_i)\f$. For example, a \f$3\times{}4\f$ matrix can be reshaped into a
/// 3-tensor of shape \f$3\times{}2\times{}2\f$, a matrix of shape \f$6\times{}2\f$, or a vector of size \f$12\f$, but not, for
/// example, a matrix of size \f$4\times{}4\f$.
/// Given that the input tensor has shape \f$[d_1,\dots,d_n]\f$, the output may have any
/// shape \f$[d'_1,\dots,d'_m]\f$ such that
/// \f$\Pi_{0 \leq i \lt n}(d_i) = \Pi_{0 \leq i \lt m}(d'_i)\f$. For example, a
/// \f$3\times{}4\f$ matrix can be reshaped into a 3-tensor of shape
/// \f$3\times{}2\times{}2\f$, a matrix of shape \f$6\times{}2\f$, or a vector of size
/// \f$12\f$, but not, for example, a matrix of size \f$4\times{}4\f$.
///
/// The parameter `input_order` indicates the order in which to "walk" over the input axes. Given a tensor of shape \f$(d_1,\dots,d_n)\f$,
/// an input order of \f$(a_0, a_1, \dots, a_{n-1})\f$ results in the coordinate for axis \f$a_{n-1}\f$ being varied most frequently,
/// followed by axis \f$a-2\f$, and so on down to \f$a_0\f$.
/// The parameter `input_order` indicates the order in which to "walk" over the input axes.
/// Given a tensor of shape \f$(d_1,\dots,d_n)\f$, an input order of
/// \f$(a_0, a_1, \dots, a_{n-1})\f$ results in the coordinate for axis \f$a_{n-1}\f$ being
/// varied most frequently, followed by axis \f$a-2\f$, and so on down to \f$a_0\f$.
///
/// (TODO: example.)
///
......@@ -57,6 +61,7 @@ namespace ngraph
/// | Type | Description |
/// | ------------------------ | ------------------------------------------------------------------------------------------------------ |
/// | \f$E[d'_1,\dots,d'_m]\f$ | The tensor \f$T\f$, where \f$T\f$ is the input tensor with its elements rearranged as described above. |
// clang-format on
class Reshape : public Op
{
public:
......@@ -68,10 +73,13 @@ namespace ngraph
/// \brief Constructs a reshape operation.
///
/// \param arg The tensor to be reshaped.
/// \param input_order The order in which to iterate over input axes. This must be a permutation of the
/// sequence \f$(0,\dots,n-1)\f$ where \f$n\f$ is the rank of the input tensor.
/// \param output_shape The output shape. If the input shape is \f$(a_0,\dots,a_{k-1})\f$ then the output shape must
/// be of the form \f$(b_0,\dots,b_{j-1})\f$ where \f$\Pi(a_i) = \Pi(b_i)\f$.
/// \param input_order The order in which to iterate over input axes. This must be a
/// permutation of the sequence \f$(0,\dots,n-1)\f$ where \f$n\f$ is
/// the rank of the input tensor.
/// \param output_shape The output shape. If the input shape is
/// \f$(a_0,\dots,a_{k-1})\f$ then the output shape must
/// be of the form \f$(b_0,\dots,b_{j-1})\f$ where
/// \f$\Pi(a_i) = \Pi(b_i)\f$.
Reshape(const Output<Node>& arg,
const AxisVector& input_order,
const Shape& output_shape);
......
......@@ -22,9 +22,11 @@ namespace ngraph
{
namespace op
{
// clang-format off
/// \brief Axis-reverse operation.
///
/// Reverses the direction of zero or more axes in a tensor, where "reversing" an axis means that at the output tensor.
/// Reverses the direction of zero or more axes in a tensor, where "reversing" an axis means
/// that at the output tensor.
///
/// ## Parameters
///
......@@ -43,6 +45,7 @@ namespace ngraph
/// | Type | Description |
/// | ---------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
/// | \f$E[d_1,\dots,d_n]\f$ | The tensor \f$T\f$, where \f$T[i_1,\dots,i_n] = \texttt{arg}[j_1,\dots,j_n]\f$ and \f$j_k = d_k - i_k - 1\f$ if axis \f$k\f$ is in the reverse set; else \f$j_k = i_k\f$. |
// clang-format on
class Reverse : public Op
{
public:
......
......@@ -22,6 +22,7 @@ namespace ngraph
{
namespace op
{
// clang-format off
/// \brief Elementwise selection operation.
///
/// ## Inputs
......@@ -37,6 +38,7 @@ namespace ngraph
/// | Type | Description |
/// | ---------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
/// | \f$E[d_1,\dots,d_n]\f$ | The tensor \f$T\f$, where \f$T[i_1,\dots,i_n] = \texttt{arg1}[i_1,\dots,i_n]\text{ if }\texttt{arg0}[i_1,\dots,i_n] \neq 0\text{, else }\texttt{arg2}[i_1,\dots,i_n]\f$ |
// clang-format on
class Select : public Op
{
public:
......
......@@ -22,6 +22,7 @@ namespace ngraph
{
namespace op
{
// clang-format off
/// \brief Elementwise sine operation.
///
/// ## Inputs
......@@ -35,6 +36,7 @@ namespace ngraph
/// | Type | Description |
/// | ---------------------- | ------------------------------------------------------------------------------------ |
/// | \f$N[d_1,\dots,d_n]\f$ | The tensor \f$T\f$, where \f$T[i_1,\dots,i_n] = \sin(\texttt{arg}[i_1,\dots,i_n])\f$ |
// clang-format on
class Sin : public util::UnaryElementwiseArithmetic
{
public:
......
......@@ -24,7 +24,8 @@ namespace ngraph
{
namespace op
{
/// \brief Takes a slice of an input tensor, i.e., the sub-tensor that resides within a bounding box, optionally with stride.
/// \brief Takes a slice of an input tensor, i.e., the sub-tensor that resides within a
/// bounding box, optionally with stride.
class Slice : public Op
{
public:
......@@ -44,7 +45,8 @@ namespace ngraph
const Coordinate& lower_bounds,
const Coordinate& upper_bounds,
const Strides& strides);
/// \brief Constructs a tensor slice operation with unit strides; i.e., every element inside the bounding box will be copied to the output slice.
/// \brief Constructs a tensor slice operation with unit strides; i.e., every element
/// inside the bounding box will be copied to the output slice.
///
/// \param arg The tensor to be sliced.
/// \param lower_bounds The axiswise lower bounds of the slice (inclusive).
......
......@@ -22,6 +22,7 @@ namespace ngraph
{
namespace op
{
// clang-format off
/// \brief Elementwise square root operation.
///
/// ## Inputs
......@@ -35,6 +36,7 @@ namespace ngraph
/// | Type | Description |
/// | ---------------------- | ------------------------------------------------------------------------------------- |
/// | \f$N[d_1,\dots,d_n]\f$ | The tensor \f$T\f$, where \f$T[i_1,\dots,i_n] = \sqrt{\texttt{arg}[i_1,\dots,i_n]}\f$ |
// clang-format on
class Sqrt : public util::UnaryElementwiseArithmetic
{
public:
......
......@@ -25,6 +25,7 @@ namespace ngraph
{
namespace op
{
// clang-format off
/// \brief Tensor sum operation.
///
/// Element-wise sums the input tensor, eliminating the specified reduction axes.
......@@ -71,6 +72,7 @@ namespace ngraph
/// | Type | Description |
/// | ----------------------------------------- | ---------------------------------------------------------------------------------------------------------------- |
/// | \f$N[\textit{delete}(A,d_1,\dots,d_n)]\f$ | The tensor \f$T\f$, where \f$T\f$ is the input tensor with the `reduction_axes` \f$A\f$ eliminated by summation. |
// clang-format off
class Sum : public util::ArithmeticReduction
{
public:
......
......@@ -22,6 +22,7 @@ namespace ngraph
{
namespace op
{
// clang-format off
/// \brief Elementwise tangent operation.
///
/// ## Inputs
......@@ -35,6 +36,7 @@ namespace ngraph
/// | Type | Description |
/// | ---------------------- | ------------------------------------------------------------------------------------ |
/// | \f$N[d_1,\dots,d_n]\f$ | The tensor \f$T\f$, where \f$T[i_1,\dots,i_n] = \tan(\texttt{arg}[i_1,\dots,i_n])\f$ |
// clang-format on
class Tan : public util::UnaryElementwiseArithmetic
{
public:
......
......@@ -26,7 +26,8 @@ namespace ngraph
{
namespace op
{
//brief Computes indices of top k maximum/minimum index along a specified axis for a given tensor
// \brief Computes indices of top k maximum/minimum index along a specified axis for a
// given tensor
class TopK : public Op
{
public:
......@@ -49,7 +50,8 @@ namespace ngraph
///
/// \param arg The input tensor
/// \param top_k_axis The axis along which to compute top k indices
/// \param index_element_type produce indices. Currently, only int64 or int32 are supported
/// \param index_element_type produce indices. Currently, only int64 or int32 are
/// supported
/// \param k Number of top indices to compute. Compute all indices if k = 0
/// \param compute_max Compute top k max or top k min?
/// \param sort SortType for sorting results, default - NONE
......@@ -64,7 +66,8 @@ namespace ngraph
/// \param arg The input tensor
/// \param k Number of top indices to compute. Compute all indices if k = 0
/// \param top_k_axis The axis along which to compute top k indices
/// \param index_element_type produce indices. Currently, only int64 or int32 are supported
/// \param index_element_type produce indices. Currently, only int64 or int32 are
/// supported
/// \param compute_max Compute top k max or top k min?
/// \param sort SortType for sorting results, default - NONE
TopK(const Output<Node>& arg,
......
#
# OVERRIDE TO STYLE: Comments wrap.
#
BasedOnStyle: LLVM
IndentWidth: 4
UseTab: Never
Language: Cpp
Standard: Cpp11
AccessModifierOffset: -4
AlignConsecutiveDeclarations: false
AlignConsecutiveAssignments: false
AlignTrailingComments: true
AllowShortBlocksOnASingleLine: true
AllowShortCaseLabelsOnASingleLine: true
AllowShortFunctionsOnASingleLine: Inline
AlwaysBreakBeforeMultilineStrings: true
AlwaysBreakTemplateDeclarations: true
BinPackArguments: false
BinPackParameters: false
BreakBeforeBraces: Allman
BreakConstructorInitializersBeforeComma: true
ColumnLimit: 100
#CommentPragmas: '.*'
IndentCaseLabels: false
IndentWrappedFunctionNames: true
KeepEmptyLinesAtTheStartOfBlocks: false
NamespaceIndentation: All
PointerAlignment: Left
SpaceAfterCStyleCast: false
SpaceBeforeAssignmentOperators: true
SpaceBeforeParens: ControlStatements
SpaceInEmptyParentheses: false
SpacesInAngles: false
SpacesInCStyleCastParentheses: false
SpacesInParentheses: false
SpacesInSquareBrackets: false
SortIncludes: false
ReflowComments: true
IncludeCategories:
- Regex: '^".*'
Priority: 3
- Regex: '^<.*'
Priority: 2
SortIncludes: true
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment