Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
N
ngraph
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
ngraph
Commits
c5ffe8e9
Unverified
Commit
c5ffe8e9
authored
Jan 10, 2018
by
Adam Procter
Committed by
GitHub
Jan 10, 2018
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Implement reduce-window in interpreter and CPU (#359)
parent
7b1dc3e3
Show whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
426 additions
and
1 deletion
+426
-1
cpu_emitter.cpp
src/ngraph/runtime/cpu/cpu_emitter.cpp
+36
-0
cpu_emitter.hpp
src/ngraph/runtime/cpu/cpu_emitter.hpp
+1
-0
cpu_external_function.cpp
src/ngraph/runtime/cpu/cpu_external_function.cpp
+3
-0
int_call_frame.hpp
src/ngraph/runtime/interpreter/int_call_frame.hpp
+28
-1
reduce_window.hpp
src/ngraph/runtime/kernel/reduce_window.hpp
+92
-0
backend_test.in.cpp
test/backend_test.in.cpp
+266
-0
No files found.
src/ngraph/runtime/cpu/cpu_emitter.cpp
View file @
c5ffe8e9
...
...
@@ -31,6 +31,7 @@
#include "ngraph/ops/max_pool.hpp"
#include "ngraph/ops/one_hot.hpp"
#include "ngraph/ops/reduce.hpp"
#include "ngraph/ops/reduce_window.hpp"
#include "ngraph/ops/replace_slice.hpp"
#include "ngraph/ops/reshape.hpp"
#include "ngraph/ops/reverse.hpp"
...
...
@@ -1722,6 +1723,41 @@ void runtime::cpu::CPU_Emitter::EmitReverse(const ngraph::Node* n,
m_out
<<
" {"
<<
join
(
reverse
->
get_reversed_axes
())
<<
"});
\n
"
;
}
void
runtime
::
cpu
::
CPU_Emitter
::
EmitReduceWindow
(
const
ngraph
::
Node
*
n
,
const
vector
<
runtime
::
cpu
::
TensorViewWrapper
>&
args
,
const
vector
<
runtime
::
cpu
::
TensorViewWrapper
>&
out
)
{
auto
reduce_window
=
static_cast
<
const
op
::
ReduceWindow
*>
(
n
);
auto
arg_reductee_shape
=
args
[
0
].
get_shape
();
auto
result_shape
=
out
[
0
].
get_shape
();
auto
reduction_function
=
reduce_window
->
get_functions
()[
0
];
auto
&
f_result_element_type
=
out
[
0
].
get_element_type
();
string
type
=
f_result_element_type
.
c_type_string
();
m_out
<<
"auto f = []("
<<
type
<<
" x, "
<<
type
<<
" y) -> "
<<
type
<<
"
\n
{"
;
m_out
.
indent
++
;
m_out
<<
"
\n
"
;
m_out
<<
type
<<
" result;
\n
"
;
m_out
<<
"void* args[] = {&x, &y};
\n
"
;
m_out
<<
"void* out[] = {&result};
\n
"
;
m_out
<<
reduction_function
->
get_name
()
<<
"(args, out);
\n
"
;
m_out
<<
"return result;
\n
"
;
m_out
.
indent
--
;
m_out
<<
"};
\n
"
;
m_out
<<
"kernel::reduce_window<"
<<
out
[
0
].
get_type
()
<<
">("
<<
args
[
0
].
get_name
()
<<
",
\n
"
;
m_out
<<
" "
<<
args
[
1
].
get_name
()
<<
",
\n
"
;
m_out
<<
" "
<<
out
[
0
].
get_name
()
<<
",
\n
"
;
m_out
<<
" {"
<<
join
(
arg_reductee_shape
)
<<
"},
\n
"
;
m_out
<<
" {"
<<
join
(
result_shape
)
<<
"},
\n
"
;
m_out
<<
" f,
\n
"
;
m_out
<<
" {"
<<
join
(
reduce_window
->
get_window_shape
())
<<
"},
\n
"
;
m_out
<<
" {"
<<
join
(
reduce_window
->
get_window_movement_strides
())
<<
"});
\n
"
;
}
//------------------------------------------------------------------------------------------------
// Utility methods
//------------------------------------------------------------------------------------------------
...
...
src/ngraph/runtime/cpu/cpu_emitter.hpp
View file @
c5ffe8e9
...
...
@@ -98,6 +98,7 @@ namespace ngraph
void
EMITTER_DECL
(
EmitNot
);
void
EMITTER_DECL
(
EmitMaxPool
);
void
EMITTER_DECL
(
EmitReverse
);
void
EMITTER_DECL
(
EmitReduceWindow
);
private
:
void
generate_call
(
const
std
::
vector
<
TensorViewWrapper
>&
args
,
...
...
src/ngraph/runtime/cpu/cpu_external_function.cpp
View file @
c5ffe8e9
...
...
@@ -66,6 +66,7 @@
#include "ngraph/ops/one_hot.hpp"
#include "ngraph/ops/power.hpp"
#include "ngraph/ops/reduce.hpp"
#include "ngraph/ops/reduce_window.hpp"
#include "ngraph/ops/replace_slice.hpp"
#include "ngraph/ops/reshape.hpp"
#include "ngraph/ops/reverse.hpp"
...
...
@@ -185,6 +186,7 @@ static const runtime::cpu::OpMap dispatcher{
{
TI
(
ngraph
::
op
::
Not
),
&
runtime
::
cpu
::
CPU_Emitter
::
EmitNot
},
{
TI
(
ngraph
::
op
::
MaxPool
),
&
runtime
::
cpu
::
CPU_Emitter
::
EmitMaxPool
},
{
TI
(
ngraph
::
op
::
Reverse
),
&
runtime
::
cpu
::
CPU_Emitter
::
EmitReverse
},
{
TI
(
ngraph
::
op
::
ReduceWindow
),
&
runtime
::
cpu
::
CPU_Emitter
::
EmitReduceWindow
},
};
runtime
::
cpu
::
CPU_ExternalFunction
::
CPU_ExternalFunction
(
...
...
@@ -236,6 +238,7 @@ void runtime::cpu::CPU_ExternalFunction::compile()
#include "ngraph/runtime/kernel/not.hpp"
#include "ngraph/runtime/kernel/one_hot.hpp"
#include "ngraph/runtime/kernel/reduce.hpp"
#include "ngraph/runtime/kernel/reduce_window.hpp"
#include "ngraph/runtime/kernel/replace_slice.hpp"
#include "ngraph/runtime/kernel/reverse.hpp"
#include "ngraph/runtime/kernel/slice.hpp"
...
...
src/ngraph/runtime/interpreter/int_call_frame.hpp
View file @
c5ffe8e9
...
...
@@ -29,6 +29,7 @@
#include "ngraph/ops/max_pool.hpp"
#include "ngraph/ops/one_hot.hpp"
#include "ngraph/ops/reduce.hpp"
#include "ngraph/ops/reduce_window.hpp"
#include "ngraph/ops/replace_slice.hpp"
#include "ngraph/ops/reshape.hpp"
#include "ngraph/ops/reverse.hpp"
...
...
@@ -71,6 +72,7 @@
#include "ngraph/runtime/kernel/one_hot.hpp"
#include "ngraph/runtime/kernel/power.hpp"
#include "ngraph/runtime/kernel/reduce.hpp"
#include "ngraph/runtime/kernel/reduce_window.hpp"
#include "ngraph/runtime/kernel/replace_slice.hpp"
#include "ngraph/runtime/kernel/reshape.hpp"
#include "ngraph/runtime/kernel/reverse.hpp"
...
...
@@ -485,7 +487,32 @@ private:
}
else
if
(
node_op
==
"ReduceWindow"
)
{
// TODO: Implement this. Stubbed out for because XLA bridge folks need it.
ngraph
::
op
::
ReduceWindow
*
reduce_window
=
dynamic_cast
<
ngraph
::
op
::
ReduceWindow
*>
(
&
node
);
std
::
shared_ptr
<
ngraph
::
Function
>
reduction_function
=
reduce_window
->
get_functions
()[
0
];
std
::
function
<
T
(
T
,
T
)
>
f
=
[
this
,
&
node
,
reduction_function
](
T
x
,
T
y
)
->
T
{
auto
tx
=
std
::
make_shared
<
runtime
::
interpreter
::
INT_TensorView
>
(
node
.
get_inputs
().
at
(
0
).
get_element_type
(),
Shape
{},
"reduce_window_temp_x"
);
auto
ty
=
std
::
make_shared
<
runtime
::
interpreter
::
INT_TensorView
>
(
node
.
get_inputs
().
at
(
1
).
get_element_type
(),
Shape
{},
"reduce_window_temp_y"
);
auto
tr
=
std
::
make_shared
<
runtime
::
interpreter
::
INT_TensorView
>
(
node
.
get_output_element_type
(
0
),
Shape
{},
"reduce_window_temp_r"
);
*
(
reinterpret_cast
<
T
*>
(
tx
->
get_data_ptr
()))
=
x
;
*
(
reinterpret_cast
<
T
*>
(
ty
->
get_data_ptr
()))
=
y
;
call
(
reduction_function
,
{
tx
,
ty
},
{
tr
});
return
*
(
reinterpret_cast
<
T
*>
(
tr
->
get_data_ptr
()));
};
kernel
::
reduce_window
(
reinterpret_cast
<
T
*>
(
args
[
0
]
->
get_data_ptr
()),
reinterpret_cast
<
T
*>
(
args
[
1
]
->
get_data_ptr
()),
reinterpret_cast
<
T
*>
(
out
[
0
]
->
get_data_ptr
()),
node
.
get_inputs
().
at
(
0
).
get_shape
(),
node
.
get_output_shape
(
0
),
f
,
reduce_window
->
get_window_shape
(),
reduce_window
->
get_window_movement_strides
());
}
// else if (node_op == "Remainder")
// {
...
...
src/ngraph/runtime/kernel/reduce_window.hpp
0 → 100644
View file @
c5ffe8e9
// ----------------------------------------------------------------------------
// Copyright 2017 Nervana Systems Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// ----------------------------------------------------------------------------
#pragma once
#include <cmath>
#include "ngraph/common.hpp"
#include "ngraph/coordinate_transform.hpp"
namespace
ngraph
{
namespace
runtime
{
namespace
kernel
{
template
<
typename
T
>
void
reduce_window
(
T
*
arg_reductee
,
T
*
arg_init
,
T
*
out
,
const
Shape
&
arg_reductee_shape
,
const
Shape
&
out_shape
,
std
::
function
<
T
(
T
,
T
)
>
reduction_function
,
const
Shape
&
window_shape
,
const
Strides
&
window_movement_strides
)
{
// At the outermost level we will walk over every output coordinate O.
CoordinateTransform
output_transform
(
out_shape
);
for
(
const
Coordinate
&
out_coord
:
output_transform
)
{
// Our output coordinate O will have the form:
//
// (i_1,...,i_n)
//
// For the reductee we need to iterate the coordinate:
//
// I:
//
// over the range (noninclusive on the right):
//
// (s_1*i_1,s_2*i_2,...,s_n*i_n) ->
//
// (s_1*i_1 + window_shape_1,...,s_n*i_n + window_shape_n)
//
// with unit stride.
Shape
reductee_transform_start
;
Shape
reductee_transform_end
;
for
(
size_t
i
=
0
;
i
<
arg_reductee_shape
.
size
();
i
++
)
{
size_t
window_shape_this_dim
=
window_shape
[
i
];
size_t
movement_stride
=
window_movement_strides
[
i
];
reductee_transform_start
.
push_back
(
movement_stride
*
out_coord
[
i
]);
reductee_transform_end
.
push_back
(
reductee_transform_start
[
i
]
+
window_shape_this_dim
);
}
CoordinateTransform
reductee_transform
(
arg_reductee_shape
,
reductee_transform_start
,
reductee_transform_end
);
// As we go, we compute the reduced value:
//
// output[O] := reduction_function(output[O],arg[I])
T
result
=
*
arg_init
;
for
(
const
Coordinate
&
reductee_coord
:
reductee_transform
)
{
result
=
reduction_function
(
result
,
arg_reductee
[
reductee_transform
.
index
(
reductee_coord
)]);
}
out
[
output_transform
.
index
(
out_coord
)]
=
result
;
}
}
}
}
}
test/backend_test.in.cpp
View file @
c5ffe8e9
...
...
@@ -4902,3 +4902,269 @@ TEST(${BACKEND_NAME}, abc_tbb)
unsetenv
(
"NGRAPH_CPU_USE_TBB"
);
}
}
//
// The unit tests for ReduceWindow follow exactly what we test for MaxPool---but they use ReduceWindow to do it.
//
TEST
(
$
{
BACKEND_NAME
},
reduce_window_emulating_max_pool_1d_1channel_1image
)
{
auto
shape_ra
=
Shape
{};
auto
RA
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_ra
);
auto
shape_rb
=
Shape
{};
auto
RB
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_rb
);
auto
rf
=
make_shared
<
Function
>
(
make_shared
<
op
::
Maximum
>
(
RA
,
RB
),
op
::
Parameters
{
RA
,
RB
});
auto
shape_a
=
Shape
{
1
,
1
,
14
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
auto
shape_b
=
Shape
{};
auto
B
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_b
);
auto
shape_r
=
Shape
{
1
,
1
,
12
};
auto
window_shape
=
Shape
{
1
,
1
,
3
};
auto
window_movement_strides
=
Strides
{
1
,
1
,
1
};
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
ReduceWindow
>
(
A
,
B
,
rf
,
window_shape
,
window_movement_strides
),
op
::
Parameters
{
A
,
B
});
auto
manager
=
runtime
::
Manager
::
get
(
"${BACKEND_NAME}"
);
auto
external
=
manager
->
compile
(
f
);
auto
backend
=
manager
->
allocate_backend
();
auto
cf
=
backend
->
make_call_frame
(
external
);
// Create some tensors for input/output
auto
a
=
backend
->
make_primary_tensor_view
(
element
::
f32
,
shape_a
);
copy_data
(
a
,
test
::
NDArray
<
float
,
3
>
{{{
0
,
1
,
0
,
2
,
1
,
0
,
3
,
2
,
0
,
0
,
2
,
0
,
0
,
0
}}}.
get_vector
());
auto
b
=
backend
->
make_primary_tensor_view
(
element
::
f32
,
shape_a
);
copy_data
(
b
,
vector
<
float
>
{
-
1
});
// Really should use -inf but since we know the values in the test vector this should work
auto
result
=
backend
->
make_primary_tensor_view
(
element
::
f32
,
shape_r
);
cf
->
call
({
a
,
b
},
{
result
});
EXPECT_EQ
((
test
::
NDArray
<
float
,
3
>
({{{
1
,
2
,
2
,
2
,
3
,
3
,
3
,
2
,
2
,
2
,
2
,
0
}}}).
get_vector
()),
result
->
get_vector
<
float
>
());
}
TEST
(
$
{
BACKEND_NAME
},
reduce_window_emulating_max_pool_1d_1channel_2image
)
{
auto
shape_ra
=
Shape
{};
auto
RA
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_ra
);
auto
shape_rb
=
Shape
{};
auto
RB
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_rb
);
auto
rf
=
make_shared
<
Function
>
(
make_shared
<
op
::
Maximum
>
(
RA
,
RB
),
op
::
Parameters
{
RA
,
RB
});
auto
shape_a
=
Shape
{
2
,
1
,
14
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
auto
shape_b
=
Shape
{};
auto
B
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_b
);
auto
shape_r
=
Shape
{
2
,
1
,
12
};
auto
window_shape
=
Shape
{
1
,
1
,
3
};
auto
window_movement_strides
=
Strides
{
1
,
1
,
1
};
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
ReduceWindow
>
(
A
,
B
,
rf
,
window_shape
,
window_movement_strides
),
op
::
Parameters
{
A
,
B
});
auto
manager
=
runtime
::
Manager
::
get
(
"${BACKEND_NAME}"
);
auto
external
=
manager
->
compile
(
f
);
auto
backend
=
manager
->
allocate_backend
();
auto
cf
=
backend
->
make_call_frame
(
external
);
// Create some tensors for input/output
auto
a
=
backend
->
make_primary_tensor_view
(
element
::
f32
,
shape_a
);
copy_data
(
a
,
test
::
NDArray
<
float
,
3
>
({{{
0
,
1
,
0
,
2
,
1
,
0
,
3
,
2
,
0
,
0
,
2
,
0
,
0
,
0
}},
{{
0
,
2
,
1
,
1
,
0
,
0
,
0
,
2
,
0
,
1
,
0
,
0
,
1
,
2
}}})
.
get_vector
());
auto
b
=
backend
->
make_primary_tensor_view
(
element
::
f32
,
shape_a
);
copy_data
(
b
,
vector
<
float
>
{
-
1
});
// Really should use -inf but since we know the values in the test vector this should work
auto
result
=
backend
->
make_primary_tensor_view
(
element
::
f32
,
shape_r
);
cf
->
call
({
a
,
b
},
{
result
});
EXPECT_EQ
((
test
::
NDArray
<
float
,
3
>
(
{{{
1
,
2
,
2
,
2
,
3
,
3
,
3
,
2
,
2
,
2
,
2
,
0
}},
{{
2
,
2
,
1
,
1
,
0
,
2
,
2
,
2
,
1
,
1
,
1
,
2
}}})
.
get_vector
()),
result
->
get_vector
<
float
>
());
}
TEST
(
$
{
BACKEND_NAME
},
reduce_window_emulating_max_pool_1d_2channel_2image
)
{
auto
shape_ra
=
Shape
{};
auto
RA
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_ra
);
auto
shape_rb
=
Shape
{};
auto
RB
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_rb
);
auto
rf
=
make_shared
<
Function
>
(
make_shared
<
op
::
Maximum
>
(
RA
,
RB
),
op
::
Parameters
{
RA
,
RB
});
auto
shape_a
=
Shape
{
2
,
2
,
14
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
auto
shape_b
=
Shape
{};
auto
B
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_b
);
auto
shape_r
=
Shape
{
2
,
2
,
12
};
auto
window_shape
=
Shape
{
1
,
1
,
3
};
auto
window_movement_strides
=
Strides
{
1
,
1
,
1
};
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
ReduceWindow
>
(
A
,
B
,
rf
,
window_shape
,
window_movement_strides
),
op
::
Parameters
{
A
,
B
});
auto
manager
=
runtime
::
Manager
::
get
(
"${BACKEND_NAME}"
);
auto
external
=
manager
->
compile
(
f
);
auto
backend
=
manager
->
allocate_backend
();
auto
cf
=
backend
->
make_call_frame
(
external
);
// Create some tensors for input/output
auto
a
=
backend
->
make_primary_tensor_view
(
element
::
f32
,
shape_a
);
copy_data
(
a
,
test
::
NDArray
<
float
,
3
>
({{{
0
,
1
,
0
,
2
,
1
,
0
,
3
,
2
,
0
,
0
,
2
,
0
,
0
,
0
},
{
0
,
0
,
0
,
2
,
0
,
0
,
2
,
3
,
0
,
1
,
2
,
0
,
1
,
0
}},
{{
0
,
2
,
1
,
1
,
0
,
0
,
0
,
2
,
0
,
1
,
0
,
0
,
1
,
2
},
{
2
,
1
,
0
,
0
,
1
,
0
,
2
,
0
,
0
,
0
,
1
,
1
,
2
,
0
}}})
.
get_vector
());
auto
b
=
backend
->
make_primary_tensor_view
(
element
::
f32
,
shape_a
);
copy_data
(
b
,
vector
<
float
>
{
-
1
});
// Really should use -inf but since we know the values in the test vector this should work
auto
result
=
backend
->
make_primary_tensor_view
(
element
::
f32
,
shape_r
);
cf
->
call
({
a
,
b
},
{
result
});
EXPECT_EQ
((
test
::
NDArray
<
float
,
3
>
(
{{{
1
,
2
,
2
,
2
,
3
,
3
,
3
,
2
,
2
,
2
,
2
,
0
},
{
0
,
2
,
2
,
2
,
2
,
3
,
3
,
3
,
2
,
2
,
2
,
1
}},
{{
2
,
2
,
1
,
1
,
0
,
2
,
2
,
2
,
1
,
1
,
1
,
2
},
{
2
,
1
,
1
,
1
,
2
,
2
,
2
,
0
,
1
,
1
,
2
,
2
}}})
.
get_vector
()),
result
->
get_vector
<
float
>
());
}
TEST
(
$
{
BACKEND_NAME
},
reduce_window_emulating_max_pool_2d_2channel_2image
)
{
auto
shape_ra
=
Shape
{};
auto
RA
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_ra
);
auto
shape_rb
=
Shape
{};
auto
RB
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_rb
);
auto
rf
=
make_shared
<
Function
>
(
make_shared
<
op
::
Maximum
>
(
RA
,
RB
),
op
::
Parameters
{
RA
,
RB
});
auto
shape_a
=
Shape
{
2
,
2
,
5
,
5
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
auto
shape_b
=
Shape
{};
auto
B
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_b
);
auto
shape_r
=
Shape
{
2
,
2
,
4
,
3
};
auto
window_shape
=
Shape
{
1
,
1
,
2
,
3
};
auto
window_movement_strides
=
Strides
{
1
,
1
,
1
,
1
};
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
ReduceWindow
>
(
A
,
B
,
rf
,
window_shape
,
window_movement_strides
),
op
::
Parameters
{
A
,
B
});
auto
manager
=
runtime
::
Manager
::
get
(
"${BACKEND_NAME}"
);
auto
external
=
manager
->
compile
(
f
);
auto
backend
=
manager
->
allocate_backend
();
auto
cf
=
backend
->
make_call_frame
(
external
);
// Create some tensors for input/output
auto
a
=
backend
->
make_primary_tensor_view
(
element
::
f32
,
shape_a
);
copy_data
(
a
,
test
::
NDArray
<
float
,
4
>
({{{{
0
,
1
,
0
,
2
,
1
},
// img 0 chan 0
{
0
,
3
,
2
,
0
,
0
},
{
2
,
0
,
0
,
0
,
1
},
{
2
,
0
,
1
,
1
,
2
},
{
0
,
2
,
1
,
0
,
0
}},
{{
0
,
0
,
0
,
2
,
0
},
// img 0 chan 1
{
0
,
2
,
3
,
0
,
1
},
{
2
,
0
,
1
,
0
,
2
},
{
3
,
1
,
0
,
0
,
0
},
{
2
,
0
,
0
,
0
,
0
}}},
{{{
0
,
2
,
1
,
1
,
0
},
// img 1 chan 0
{
0
,
0
,
2
,
0
,
1
},
{
0
,
0
,
1
,
2
,
3
},
{
2
,
0
,
0
,
3
,
0
},
{
0
,
0
,
0
,
0
,
0
}},
{{
2
,
1
,
0
,
0
,
1
},
// img 1 chan 1
{
0
,
2
,
0
,
0
,
0
},
{
1
,
1
,
2
,
0
,
2
},
{
1
,
1
,
1
,
0
,
1
},
{
1
,
0
,
0
,
0
,
2
}}}})
.
get_vector
());
auto
b
=
backend
->
make_primary_tensor_view
(
element
::
f32
,
shape_a
);
copy_data
(
b
,
vector
<
float
>
{
-
1
});
// Really should use -inf but since we know the values in the test vector this should work
auto
result
=
backend
->
make_primary_tensor_view
(
element
::
f32
,
shape_r
);
cf
->
call
({
a
,
b
},
{
result
});
EXPECT_EQ
((
test
::
NDArray
<
float
,
4
>
({{{{
3
,
3
,
2
},
// img 0 chan 0
{
3
,
3
,
2
},
{
2
,
1
,
2
},
{
2
,
2
,
2
}},
{{
3
,
3
,
3
},
// img 0 chan 1
{
3
,
3
,
3
},
{
3
,
1
,
2
},
{
3
,
1
,
0
}}},
{{{
2
,
2
,
2
},
// img 1 chan 0
{
2
,
2
,
3
},
{
2
,
3
,
3
},
{
2
,
3
,
3
}},
{{
2
,
2
,
1
},
// img 1 chan 1
{
2
,
2
,
2
},
{
2
,
2
,
2
},
{
1
,
1
,
2
}}}})
.
get_vector
()),
result
->
get_vector
<
float
>
());
}
TEST
(
$
{
BACKEND_NAME
},
reduce_window_emulating_max_pool_2d_1channel_1image_strided
)
{
auto
shape_ra
=
Shape
{};
auto
RA
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_ra
);
auto
shape_rb
=
Shape
{};
auto
RB
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_rb
);
auto
rf
=
make_shared
<
Function
>
(
make_shared
<
op
::
Maximum
>
(
RA
,
RB
),
op
::
Parameters
{
RA
,
RB
});
auto
shape_a
=
Shape
{
1
,
1
,
8
,
8
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
auto
shape_b
=
Shape
{};
auto
B
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_b
);
auto
shape_r
=
Shape
{
1
,
1
,
3
,
3
};
auto
window_shape
=
Shape
{
1
,
1
,
2
,
3
};
auto
window_movement_strides
=
Strides
{
1
,
1
,
3
,
2
};
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
ReduceWindow
>
(
A
,
B
,
rf
,
window_shape
,
window_movement_strides
),
op
::
Parameters
{
A
,
B
});
auto
manager
=
runtime
::
Manager
::
get
(
"${BACKEND_NAME}"
);
auto
external
=
manager
->
compile
(
f
);
auto
backend
=
manager
->
allocate_backend
();
auto
cf
=
backend
->
make_call_frame
(
external
);
// Create some tensors for input/output
auto
a
=
backend
->
make_primary_tensor_view
(
element
::
f32
,
shape_a
);
copy_data
(
a
,
test
::
NDArray
<
float
,
4
>
({{{{
0
,
1
,
0
,
2
,
1
,
2
,
0
,
0
},
{
0
,
3
,
2
,
0
,
0
,
0
,
1
,
0
},
{
2
,
0
,
0
,
0
,
1
,
0
,
0
,
0
},
{
2
,
0
,
1
,
1
,
2
,
2
,
3
,
0
},
{
0
,
2
,
1
,
0
,
0
,
0
,
1
,
0
},
{
2
,
0
,
3
,
1
,
0
,
0
,
0
,
0
},
{
1
,
2
,
0
,
0
,
0
,
1
,
2
,
0
},
{
1
,
0
,
2
,
0
,
0
,
0
,
1
,
0
}}}})
.
get_vector
());
auto
b
=
backend
->
make_primary_tensor_view
(
element
::
f32
,
shape_a
);
copy_data
(
b
,
vector
<
float
>
{
-
1
});
// Really should use -inf but since we know the values in the test vector this should work
auto
result
=
backend
->
make_primary_tensor_view
(
element
::
f32
,
shape_r
);
cf
->
call
({
a
,
b
},
{
result
});
EXPECT_EQ
((
test
::
NDArray
<
float
,
4
>
({{{{
3
,
2
,
2
},
{
2
,
2
,
3
},
{
2
,
2
,
2
}}}}).
get_vector
()),
result
->
get_vector
<
float
>
());
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment