Unverified Commit c5e06cc3 authored by Scott Cyphers's avatar Scott Cyphers Committed by GitHub

Merge branch 'master' into dcaballe/mlir_bump

parents 2dbb9ed7 05195925
// ******************************************************************************
// Copyright 2018-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// ******************************************************************************
try{ if(LABEL.trim() == "") {throw new Exception();} }catch(Exception e){LABEL="onnx && ci"}; echo "${LABEL}"
NGRPAH_REPOSITORY = "https://github.com/NervanaSystems/ngraph.git"
NGRAPH_COMMIT_HASH = "${ghprbActualCommit}" // particular nGraph PR commit hash
ONNX_REPOSITORY = "https://github.com/NervanaSystems/onnxruntime.git"
ONNX_RUNTIME_BRANCH = "release"
def main(){
timeout(activity: true, time: 15) {
try{
stage("CloneRepos"){
CloneRepos()
}
stage("Apply Patch"){
ApplyPatch()
}
stage("Onnx Models"){
BuildAndTest()
}
}
catch(e) {
// Set result to ABORTED if exception contains exit code of a process interrupted by SIGTERM
if ("$e".contains("143")) {
currentBuild.result = "ABORTED"
} else {
currentBuild.result = "FAILURE"
}
}
stage("Clean"){
Clean()
}
}
}
def CloneRepos() {
dir("ngraph"){
checkout([
$class: 'GitSCM',
branches: [[name: "${NGRAPH_COMMIT_HASH}"]],
doGenerateSubmoduleConfigurations: false,
extensions: [[
$class: 'SubmoduleOption',
disableSubmodules: false,
parentCredentials: true,
recursiveSubmodules: true,
reference: '',
trackingSubmodules: false,
timeout: 15
]],
submoduleCfg: [],
userRemoteConfigs: [[
refspec: '+refs/pull/*:refs/remotes/origin/pr/*',
url: "${NGRPAH_REPOSITORY}"
]]
])
}
dir("onnxruntime") {
checkout([
$class: 'GitSCM',
branches: [[name: "${ONNX_RUNTIME_BRANCH}"]],
doGenerateSubmoduleConfigurations: false,
extensions: [[
$class: 'SubmoduleOption',
disableSubmodules: false,
parentCredentials: true,
recursiveSubmodules: true,
reference: '',
trackingSubmodules: false,
timeout: 15
]],
submoduleCfg: [],
userRemoteConfigs: [[
url: "${ONNX_REPOSITORY}"
]]
])
}
}
def ApplyPatch(){
dir("onnxruntime"){
echo "Update cmake/external/ngraph.cmake with ${NGRAPH_COMMIT_HASH}"
sh """
sed -i 's/set(ngraph_TAG ".*")/set(ngraph_TAG "${NGRAPH_COMMIT_HASH}")/g' cmake/external/ngraph.cmake
grep -q "${NGRAPH_COMMIT_HASH}" cmake/external/ngraph.cmake
"""
echo "Add proxy to tools/ci_build/github/linux/docker/Dockerfile.ubuntu"
sh """
sed -i 's|{HTTP_PROXY}|${env.http_proxy}|g' ../ngraph/.ci/onnx/onnxruntime/proxy.patch
sed -i 's|{SOCKS_PROXY}|${env.socks_proxy}|g' ../ngraph/.ci/onnx/onnxruntime/proxy.patch
grep -q "${env.http_proxy}" ../ngraph/.ci/onnx/onnxruntime/proxy.patch
git apply ../ngraph/.ci/onnx/onnxruntime/proxy.patch
"""
}
}
def BuildAndTest(){
dir("onnxruntime"){
sh "mkdir -p `pwd`/build/models && chmod 777 `pwd`/build/models"
sh """
//!/bin/bash
./tools/ci_build/github/linux/run_dockerbuild.sh \
-o ubuntu16.04 \
-d ngraph \
-r `pwd`/build -x '--use_ngraph --use_full_protobuf --test_data_url https://onnxruntimetestdata.blob.core.windows.net/models/20190327.zip --test_data_checksum 45166d81c021c8aae212b53c92101792'
"""
}
}
def Clean(){
deleteDir()
}
node(LABEL) {
main()
}
diff --git a/tools/ci_build/github/linux/docker/Dockerfile.ubuntu b/tools/ci_build/github/linux/docker/Dockerfile.ubuntu
index bdff95e1..cd9c0008 100644
--- a/tools/ci_build/github/linux/docker/Dockerfile.ubuntu
+++ b/tools/ci_build/github/linux/docker/Dockerfile.ubuntu
@@ -3,6 +3,18 @@ FROM ubuntu:${OS_VERSION}
ARG PYTHON_VERSION=3.5
+ENV http_proxy={HTTP_PROXY}
+ENV socks_proxy={SOCKS_PROXY}
+ENV https_proxy={HTTP_PROXY}
+ENV ftp_proxy={HTTP_PROXY}
+ENV rsync_proxy={HTTP_PROXY}
+ENV no_proxy=intel.com,.intel.com,localhost
+ENV HTTP_PROXY={HTTP_PROXY}
+ENV HTTPS_PROXY={HTTP_PROXY}
+ENV FTP_PROXY={HTTP_PROXY}
+ENV SOCKS_PROXY={SOCKS_PROXY}
+ENV NO_PROXY=intel.com,.intel.com,localhost
+
ADD scripts /tmp/scripts
RUN /tmp/scripts/install_ubuntu.sh -p ${PYTHON_VERSION} && /tmp/scripts/install_deps.sh && rm -rf /tmp/scripts
Contributor Guidelines
======================
https://ngraph.nervanasys.com/docs/latest/project/code-contributor-README.html
The latest version of this file can be found at:
https://ngraph.nervanasys.com/docs/latest/project/contribution-guide.html
License
......
......@@ -142,6 +142,8 @@ set (SRC
op/experimental/dyn_broadcast.hpp
op/experimental/dyn_pad.cpp
op/experimental/dyn_pad.hpp
op/experimental/dyn_replace_slice.cpp
op/experimental/dyn_replace_slice.hpp
op/experimental/dyn_reshape.cpp
op/experimental/dyn_reshape.hpp
op/experimental/dyn_slice.cpp
......
......@@ -46,6 +46,9 @@ descriptor::Tensor::Tensor(const element::Type& element_type,
void descriptor::Tensor::set_tensor_type(const element::Type& element_type,
const PartialShape& pshape)
{
NGRAPH_CHECK(pshape.all_non_negative(),
"set_tensor_type called on a PartialShape containing negative dimensions: ",
pshape);
if (pshape.is_static())
{
m_shape = pshape.to_shape();
......
......@@ -23,7 +23,7 @@
using namespace ngraph;
Dimension::Dimension(size_t dimension)
Dimension::Dimension(int64_t dimension)
: m_dimension(dimension)
{
if (dimension == s_dynamic_val)
......@@ -40,7 +40,7 @@ std::ostream& ngraph::operator<<(std::ostream& str, const Dimension& dimension)
{
if (dimension.is_static())
{
return (str << size_t(dimension));
return (str << int64_t(dimension));
}
else
{
......@@ -50,36 +50,36 @@ std::ostream& ngraph::operator<<(std::ostream& str, const Dimension& dimension)
Dimension Dimension::operator+(const Dimension& dim) const
{
return (is_static() && dim.is_static() ? m_dimension + size_t(dim) : Dimension::dynamic());
return (is_static() && dim.is_static() ? m_dimension + int64_t(dim) : Dimension::dynamic());
}
Dimension Dimension::operator-(const Dimension& dim) const
{
return (is_static() && dim.is_static() ? m_dimension - size_t(dim) : Dimension::dynamic());
return (is_static() && dim.is_static() ? m_dimension - int64_t(dim) : Dimension::dynamic());
}
Dimension Dimension::operator*(const Dimension& dim) const
{
return ((is_static() && dim.is_static())
? m_dimension * size_t(dim)
? m_dimension * int64_t(dim)
: (is_static() && m_dimension == 0)
? 0
: (dim.is_static() && size_t(dim) == 0) ? 0 : Dimension::dynamic());
: (dim.is_static() && int64_t(dim) == 0) ? 0 : Dimension::dynamic());
}
bool Dimension::compatible(const Dimension& d) const
{
return (is_dynamic() || d.is_dynamic() || m_dimension == size_t(d));
return (is_dynamic() || d.is_dynamic() || m_dimension == int64_t(d));
}
bool Dimension::relaxes(const Dimension& d) const
{
return (is_dynamic() || (d.is_static() && size_t(*this) == size_t(d)));
return (is_dynamic() || (d.is_static() && int64_t(*this) == int64_t(d)));
}
bool Dimension::refines(const Dimension& d) const
{
return (d.is_dynamic() || (is_static() && size_t(d) == size_t(*this)));
return (d.is_dynamic() || (is_static() && int64_t(d) == int64_t(*this)));
}
bool Dimension::merge(Dimension& dst, const Dimension d1, const Dimension d2)
......@@ -94,7 +94,7 @@ bool Dimension::merge(Dimension& dst, const Dimension d1, const Dimension d2)
dst = d1;
return true;
}
else if (size_t(d1) != size_t(d2))
else if (int64_t(d1) != int64_t(d2))
{
return false;
}
......@@ -115,16 +115,16 @@ bool Dimension::broadcast_merge(Dimension& dst, const Dimension d1, const Dimens
else if (d1.is_dynamic() || d2.is_dynamic())
{
// One static. Set dst to static size if >1
auto ds = d1.is_dynamic() ? size_t(d2) : size_t(d1);
auto ds = d1.is_dynamic() ? int64_t(d2) : int64_t(d1);
dst = (ds > 1) ? ds : Dimension::dynamic();
return true;
}
else
{
// Static sizes. Both match or one of them is 1.
if (size_t(d1) == size_t(d2) || size_t(d1) == 1 || size_t(d2) == 1)
if (int64_t(d1) == int64_t(d2) || int64_t(d1) == 1 || int64_t(d2) == 1)
{
dst = std::max(size_t(d1), size_t(d2));
dst = std::max(int64_t(d1), int64_t(d2));
return true;
}
else
......
......@@ -25,7 +25,7 @@ namespace ngraph
/// \brief Class representing a dimension, which may be dynamic (undetermined until runtime),
/// in a shape or shape-like object.
///
/// Static dimensions may be implicitly converted from size_t. A dynamic dimension is
/// Static dimensions may be implicitly converted from int64_t. A dynamic dimension is
/// constructed with Dimension() or Dimension::dynamic().
///
/// XXX: THIS CLASS IS NOT IN USE YET AND THE ENTIRE DESIGN IS SUBJECT TO CHANGE.
......@@ -36,7 +36,7 @@ namespace ngraph
/// \param dimension Value of the dimension. Must not be equal to
/// Dimension::s_dynamic_val.
/// \throws std::invalid_argument If `dimension` == Dimension::s_dynamic_val.
Dimension(size_t dimension);
Dimension(int64_t dimension);
/// \brief Construct a dynamic dimension.
Dimension() { m_dimension = s_dynamic_val; }
......@@ -46,25 +46,30 @@ namespace ngraph
/// \brief Check whether this dimension is dynamic.
/// \return `false` if the dimension is static, else `true`.
bool is_dynamic() const { return !is_static(); }
/// \brief Convert this dimension to `size_t`. This dimension must be static.
/// \brief Convert this dimension to `int64_t`. This dimension must be static.
/// \throws std::invalid_argument If this dimension is dynamic.
explicit operator size_t() const
explicit operator int64_t() const
{
if (is_dynamic())
{
throw std::invalid_argument("Cannot convert dynamic dimension to size_t");
throw std::invalid_argument("Cannot convert dynamic dimension to int64_t");
}
return m_dimension;
}
/// \brief Convert this dimension to `ptrdiff_t`. This dimension must be static.
/// \throws std::invalid_argument If this dimension is dynamic.
explicit operator ptrdiff_t() const
/// \brief Convert this dimension to `size_t`. This dimension must be static and
/// non-negative.
/// \throws std::invalid_argument If this dimension is dynamic or negative.
explicit operator size_t() const
{
if (is_dynamic())
{
throw std::invalid_argument("Cannot convert dynamic dimension to ptrdiff_t");
throw std::invalid_argument("Cannot convert dynamic dimension to size_t");
}
if (m_dimension < 0)
{
throw std::invalid_argument("Cannot convert negative dimension to size_t");
}
return static_cast<ptrdiff_t>(m_dimension);
return m_dimension;
}
/// \brief Check whether this dimension represents the same scheme as the argument (both
......@@ -75,7 +80,7 @@ namespace ngraph
bool same_scheme(const Dimension& dim) const
{
return (is_dynamic() && dim.is_dynamic()) ||
(is_static() && dim.is_static() && m_dimension == size_t(dim));
(is_static() && dim.is_static() && m_dimension == int64_t(dim));
}
/// \brief Try to merge two Dimension objects together.
......@@ -128,25 +133,25 @@ namespace ngraph
/// \return A dynamic dimension.
static Dimension dynamic() { return Dimension(); }
/// \brief Constant for the value used internally to represent a dynamic dimension.
static const size_t s_dynamic_val{(std::numeric_limits<size_t>::max())};
static const int64_t s_dynamic_val{(std::numeric_limits<int64_t>::max())};
/// \brief Addition operator for Dimension.
/// \param dim Right operand for addition.
/// \return Dimension::dynamic() if either of `*this` or `dim` is dynamic; else, a static
/// dimension with value `size_t(*this)+size_t(dim)`.
/// dimension with value `int64_t(*this)+in64_t(dim)`.
Dimension operator+(const Dimension& dim) const;
/// \brief Subtraction operator for Dimension.
/// \param dim Right operand for subtraction.
/// \return Dimension::dynamic() if either of `*this` or `dim` is dynamic; else, a static
/// dimension with value `size_t(*this)-size_t(dim)`.
/// dimension with value `int64_t(*this)-int64_t(dim)`.
Dimension operator-(const Dimension& dim) const;
/// \brief Multiplication operator for Dimension.
/// \param dim Right operand for multiplicaiton.
/// \return 0 if either of `*this` or `dim` is static and 0; else, Dimension::dynamic() if
/// either of `*this` or `dim` is dynamic; else, a static dimension with value
/// `size_t(*this)*size_t(dim)`.
/// `int64_t(*this)*int64_t(dim)`.
Dimension operator*(const Dimension& dim) const;
/// \brief Add-into operator for Dimension.
......@@ -160,7 +165,7 @@ namespace ngraph
private:
// The actual numerical value of the dimension. s_dynamic_val is a special case,
// representing a dynamic dimension.
size_t m_dimension;
int64_t m_dimension;
};
/// \brief Insert a human-readable representation of a dimension into an output stream.
......@@ -168,6 +173,6 @@ namespace ngraph
/// \param dimension The dimension to be inserted into `str`.
/// \return A reference to `str` after insertion.
///
/// Inserts the string `?` if `dimension` is dynamic; else inserts `size_t(dimension)`.
/// Inserts the string `?` if `dimension` is dynamic; else inserts `int64_t(dimension)`.
std::ostream& operator<<(std::ostream& str, const Dimension& dimension);
}
......@@ -89,6 +89,7 @@
#include "ngraph/op/experimental/batch_mat_mul.hpp"
#include "ngraph/op/experimental/dyn_broadcast.hpp"
#include "ngraph/op/experimental/dyn_pad.hpp"
#include "ngraph/op/experimental/dyn_replace_slice.hpp"
#include "ngraph/op/experimental/dyn_reshape.hpp"
#include "ngraph/op/experimental/dyn_slice.hpp"
#include "ngraph/op/experimental/range.hpp"
......
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include "ngraph/op/experimental/dyn_replace_slice.hpp"
#include "ngraph/op/constant.hpp"
#include "ngraph/validation_util.hpp"
#include <memory>
using namespace std;
using namespace ngraph;
op::DynReplaceSlice::DynReplaceSlice(const shared_ptr<Node>& arg,
const shared_ptr<Node>& replacement,
const shared_ptr<Node>& lower_bounds,
const shared_ptr<Node>& upper_bounds,
const shared_ptr<Node>& strides,
const AxisSet& lower_bounds_mask,
const AxisSet& upper_bounds_mask,
const AxisSet& new_axis,
const AxisSet& shrink_axis,
const AxisSet& ellipsis_mask)
: Op("DynReplaceSlice",
check_single_output_args({arg, replacement, lower_bounds, upper_bounds, strides}))
, m_lower_bounds_mask(lower_bounds_mask)
, m_upper_bounds_mask(upper_bounds_mask)
, m_new_axis(new_axis)
, m_shrink_axis(shrink_axis)
, m_ellipsis_mask(ellipsis_mask)
{
constructor_validate_and_infer_types();
}
void op::DynReplaceSlice::validate_and_infer_types()
{
auto arg_et = get_input_element_type(0);
auto replacement_et = get_input_element_type(1);
auto lower_bounds_et = get_input_element_type(2);
auto upper_bounds_et = get_input_element_type(3);
auto strides_et = get_input_element_type(4);
element::Type result_et;
// check data types
NODE_VALIDATION_CHECK(this,
element::Type::merge(result_et, arg_et, replacement_et),
"Argument element type is not compatible with replacement element type");
NODE_VALIDATION_CHECK(this,
lower_bounds_et.compatible(element::Type_t::i64),
"Lower bounds must have element type i64.");
NODE_VALIDATION_CHECK(this,
upper_bounds_et.compatible(element::Type_t::i64),
"Upper bounds must have element type i64.");
NODE_VALIDATION_CHECK(
this, strides_et.compatible(element::Type_t::i64), "Strides must have element type i64");
// check shapes
auto arg_shape = get_input_partial_shape(0);
auto replacement_shape = get_input_partial_shape(1);
auto lower_bounds_shape = get_input_partial_shape(2);
auto upper_bounds_shape = get_input_partial_shape(3);
auto strides_shape = get_input_partial_shape(4);
NODE_VALIDATION_CHECK(this,
lower_bounds_shape.rank().compatible(1),
"Lower bounds shape must have rank 1, got ",
lower_bounds_shape.rank(),
".");
NODE_VALIDATION_CHECK(this,
upper_bounds_shape.rank().compatible(1),
"Upper bounds shape must have rank 1, got ",
upper_bounds_shape.rank(),
".");
NODE_VALIDATION_CHECK(this,
strides_shape.rank().compatible(1),
"Strides shape must have rank 1, got ",
strides_shape.rank(),
".");
PartialShape attrs_shape{PartialShape::dynamic()};
NODE_VALIDATION_CHECK(this,
(lower_bounds_shape.same_scheme(PartialShape{0}) ||
PartialShape::merge_into(attrs_shape, lower_bounds_shape)) &&
(upper_bounds_shape.same_scheme(PartialShape{0}) ||
PartialShape::merge_into(attrs_shape, upper_bounds_shape)) &&
(strides_shape.same_scheme(PartialShape{0}) ||
PartialShape::merge_into(attrs_shape, strides_shape)),
"Shapes for lower bounds, upper bounds, and strides do not match");
set_input_is_relevant_to_shape(2);
set_input_is_relevant_to_shape(3);
set_input_is_relevant_to_shape(4);
auto lower_bounds = dynamic_pointer_cast<op::Constant>(get_argument(2));
auto upper_bounds = dynamic_pointer_cast<op::Constant>(get_argument(3));
auto strides = dynamic_pointer_cast<op::Constant>(get_argument(4));
// TODO(amprocte): We can get a bit more information here about the ranks of arg and
// replacement by inspecting the attributes.
auto slice_shape = PartialShape::dynamic();
if (lower_bounds && upper_bounds && strides)
{
slice_shape = infer_slice_shape(this,
get_input_partial_shape(0),
lower_bounds->get_vector<int64_t>(),
upper_bounds->get_vector<int64_t>(),
strides->get_vector<int64_t>(),
m_lower_bounds_mask,
m_upper_bounds_mask,
m_new_axis,
m_shrink_axis,
m_ellipsis_mask);
}
NODE_VALIDATION_CHECK(this,
slice_shape.compatible(replacement_shape),
"Shape of the replacement is not compatible with the shape of the "
"slice (shape of slice: ",
slice_shape,
")");
set_output_type(0, result_et, arg_shape);
}
shared_ptr<Node> op::DynReplaceSlice::copy_with_new_args(const NodeVector& new_args) const
{
check_new_args_count(this, new_args);
return make_shared<DynReplaceSlice>(new_args.at(0),
new_args.at(1),
new_args.at(2),
new_args.at(3),
new_args.at(4),
m_lower_bounds_mask,
m_upper_bounds_mask,
m_new_axis,
m_shrink_axis,
m_ellipsis_mask);
}
void op::DynReplaceSlice::generate_adjoints(autodiff::Adjoints& adjoints, const NodeVector& deltas)
{
throw ngraph_error("generate_adjoints not implemented for DynReplaceSlice");
}
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#pragma once
#include "ngraph/node.hpp"
#include "ngraph/op/op.hpp"
namespace ngraph
{
namespace op
{
/// \brief Takes a slice of an input tensor, i.e., the sub-tensor that resides within a bounding box, optionally with stride.
class DynReplaceSlice : public Op
{
public:
/// \brief Constructs a dynamic tensor replace-slice operation.
///
/// \param arg The tensor in which to replace the slice.
/// \param replacement Data to copy to the slice for replacement.
/// \param lower_bounds The axiswise lower bounds of the slice (inclusive).
/// \param upper_bounds The axiswise upper bounds of the slice (exclusive).
/// \param strides The slicing strides; for example, strides of `{n,m}` means to take
/// every nth row and every mth column of the input matrix.
/// \param lower_bounds_mask Ignores lower_bounds for axis with the mask set
/// \param upper_bounds_mask Ignores upper_bounds for axis with the mask set
/// \param new_axis Add dimension one axis at the set positions
/// \param shrink_axis Delete dimensions at the set positions
/// \param ellipsis_mask Inserts missing dimensions on the set position
DynReplaceSlice(const std::shared_ptr<Node>& arg,
const std::shared_ptr<Node>& replacement,
const std::shared_ptr<Node>& lower_bounds,
const std::shared_ptr<Node>& upper_bounds,
const std::shared_ptr<Node>& strides,
const AxisSet& lower_bounds_mask = AxisSet{},
const AxisSet& upper_bounds_mask = AxisSet{},
const AxisSet& new_axis = AxisSet{},
const AxisSet& shrink_axis = AxisSet{},
const AxisSet& ellipsis_mask = AxisSet{});
const AxisSet& get_lower_bounds_mask() const { return m_lower_bounds_mask; }
const AxisSet& get_upper_bounds_mask() const { return m_upper_bounds_mask; }
const AxisSet& get_new_axis() const { return m_new_axis; }
const AxisSet& get_shrink_axis() const { return m_shrink_axis; }
const AxisSet& get_ellipsis_mask() const { return m_ellipsis_mask; }
virtual std::shared_ptr<Node>
copy_with_new_args(const NodeVector& new_args) const override;
protected:
virtual void generate_adjoints(autodiff::Adjoints& adjoints,
const NodeVector& deltas) override;
void validate_and_infer_types() override;
private:
/// Helper method to compute output shape
Shape compute_output_shape() const;
AxisSet m_lower_bounds_mask;
AxisSet m_upper_bounds_mask;
AxisSet m_new_axis;
AxisSet m_shrink_axis;
AxisSet m_ellipsis_mask;
};
}
}
......@@ -17,6 +17,7 @@
#include "ngraph/op/experimental/dyn_slice.hpp"
#include "ngraph/op/constant.hpp"
#include "ngraph/validation_util.hpp"
#include <memory>
......@@ -42,142 +43,6 @@ op::DynSlice::DynSlice(const shared_ptr<Node>& arg,
constructor_validate_and_infer_types();
}
Shape op::DynSlice::compute_output_shape() const
{
auto input_shape = get_input_partial_shape(0).to_shape();
auto lower_bounds = dynamic_pointer_cast<op::Constant>(get_argument(1));
auto upper_bounds = dynamic_pointer_cast<op::Constant>(get_argument(2));
auto strides = dynamic_pointer_cast<op::Constant>(get_argument(3));
if (lower_bounds && upper_bounds && strides)
{
auto lb = lower_bounds->get_vector<int64_t>();
auto ub = upper_bounds->get_vector<int64_t>();
auto str = strides->get_vector<int64_t>();
int max_dims = input_shape.size() + m_new_axis.size();
if (lb.size() && ub.size())
{
NODE_VALIDATION_CHECK(
this,
lb.size() == ub.size(),
"Lower bounds and Upper bounds needs to have same number of values");
}
if (lb.size() && str.size())
{
NODE_VALIDATION_CHECK(this,
lb.size() == str.size(),
"Lower bounds and strides needs to have same number of values");
}
if (ub.size() && str.size())
{
NODE_VALIDATION_CHECK(this,
ub.size() == str.size(),
"Upper bounds and strides needs to have same number of values");
}
int bounds_size =
lb.size() ? lb.size() : (ub.size() ? ub.size() : (str.size() ? str.size() : 0));
NODE_VALIDATION_CHECK(
this, m_ellipsis_mask.size() <= 1, "Ellipsis mask cannot specify more than one axis");
int ellipsis_pos1 = m_ellipsis_mask.size() ? *m_ellipsis_mask.begin() : max_dims;
int ellipsis_pos2 = max_dims;
bounds_size -= ellipsis_pos1;
if (bounds_size > 0 && (max_dims - bounds_size) > ellipsis_pos1)
{
ellipsis_pos2 = max_dims - bounds_size;
}
std::vector<int> begin_dms(max_dims, 0);
std::vector<int> end_dms(max_dims, -1);
std::vector<int> stride_dms(max_dims, 1);
int i, j, k, bj, ej, sj;
Shape out_dims;
for (i = 0, j = 0, k = 0, bj = 0, ej = 0, sj = 0; i < max_dims; i++)
{
if (i >= ellipsis_pos1 && i < ellipsis_pos2)
{
if (m_new_axis.find(i) == m_new_axis.end())
{
end_dms[i] = end_dms[i] >= 0 ? end_dms[i] : input_shape[j++] + end_dms[i];
}
else
{
end_dms[i] = begin_dms[i];
}
out_dims.push_back(
static_cast<int>(ceil(static_cast<float>(abs(end_dms[i] - begin_dms[i]) + 1) /
static_cast<float>(abs(stride_dms[i])))));
k = ellipsis_pos1;
continue;
}
stride_dms[i] = (str.size() > sj && str[sj] != 0) ? str[sj++] : 1;
// Use lower_bounds if mask is not set
if (m_lower_bounds_mask.find(j) == m_lower_bounds_mask.end())
{
begin_dms[i] = lb.size() > bj ? lb[bj] : (stride_dms[i] > 0 ? 0 : -1);
}
else
{
begin_dms[i] = stride_dms[i] > 0 ? 0 : -1;
}
bj++;
begin_dms[i] = begin_dms[i] >= 0 ? begin_dms[i] : input_shape[j] + begin_dms[i];
// Clipping 'begin'
begin_dms[i] =
(begin_dms[i] < 0) ? 0 : (begin_dms[i] >= input_shape[j] ? input_shape[j] - 1
: begin_dms[i]);
// Use upper_bounds if mask is not set
if (m_upper_bounds_mask.find(j) == m_upper_bounds_mask.end())
{
int end_dms_tmp =
ub.size() > ej ? (stride_dms[i] > 0 ? ub[ej] - 1 : ub[ej] + 1) : end_dms[i];
end_dms[i] = ub.size() > ej ? end_dms_tmp : (stride_dms[i] > 0 ? -1 : 0);
}
else
{
end_dms[i] = stride_dms[i] > 0 ? -1 : 0;
}
ej++;
end_dms[i] = end_dms[i] >= 0 ? end_dms[i] : input_shape[j] + end_dms[i];
// Clipping 'end'
end_dms[i] = (end_dms[i] < 0) ? 0 : (end_dms[i] >= input_shape[j] ? input_shape[j] - 1
: end_dms[i]);
if (m_new_axis.find(i) == m_new_axis.end())
{
j++;
}
else
{
end_dms[i] = 0;
}
if (m_shrink_axis.find(k) != m_shrink_axis.end())
{
end_dms[i] = begin_dms[i];
}
else
{
out_dims.push_back(
static_cast<int>(ceil(static_cast<float>(abs(end_dms[i] - begin_dms[i]) + 1) /
static_cast<float>(abs(stride_dms[i])))));
}
k++;
}
return out_dims;
}
return Shape{};
}
void op::DynSlice::validate_and_infer_types()
{
auto lower_bounds_et = get_input_element_type(1);
......@@ -219,17 +84,24 @@ void op::DynSlice::validate_and_infer_types()
set_input_is_relevant_to_shape(2);
set_input_is_relevant_to_shape(3);
if (get_input_partial_shape(0).is_static())
{
auto shape = compute_output_shape();
if (shape != Shape{})
{
set_output_type(0, get_input_element_type(0), shape);
}
else
auto lower_bounds = dynamic_pointer_cast<op::Constant>(get_argument(1));
auto upper_bounds = dynamic_pointer_cast<op::Constant>(get_argument(2));
auto strides = dynamic_pointer_cast<op::Constant>(get_argument(3));
if (lower_bounds && upper_bounds && strides)
{
set_output_type(0, get_input_element_type(0), PartialShape::dynamic(arg_shape.rank()));
}
set_output_type(0,
get_input_element_type(0),
infer_slice_shape(this,
get_input_partial_shape(0),
lower_bounds->get_vector<int64_t>(),
upper_bounds->get_vector<int64_t>(),
strides->get_vector<int64_t>(),
m_lower_bounds_mask,
m_upper_bounds_mask,
m_new_axis,
m_shrink_axis,
m_ellipsis_mask));
}
else
{
......
......@@ -84,6 +84,7 @@ NGRAPH_OP(Divide, ngraph::op)
NGRAPH_OP(Dot, ngraph::op)
NGRAPH_OP(DynBroadcast, ngraph::op)
NGRAPH_OP(DynPad, ngraph::op)
NGRAPH_OP(DynReplaceSlice, ngraph::op)
NGRAPH_OP(DynReshape, ngraph::op)
NGRAPH_OP(DynSlice, ngraph::op)
NGRAPH_OP(EmbeddingLookup, ngraph::op)
......
......@@ -84,7 +84,7 @@ void op::Pad::validate_and_infer_types()
if (arg_shape[i].is_static())
{
ptrdiff_t result_dim =
m_padding_below[i] + static_cast<ptrdiff_t>(arg_shape[i]) + m_padding_above[i];
m_padding_below[i] + static_cast<int64_t>(arg_shape[i]) + m_padding_above[i];
NODE_VALIDATION_CHECK(this,
result_dim >= 0,
"Inferred result dimension at axis ",
......
......@@ -275,3 +275,16 @@ bool PartialShape::broadcast_merge_into(PartialShape& dst,
return success;
}
}
bool PartialShape::all_non_negative() const
{
for (auto& d : m_dimensions)
{
if (d.is_static() && int64_t(d) < 0)
{
return false;
}
}
return true;
}
......@@ -164,6 +164,10 @@ namespace ngraph
/// \throws std::invalid_argument If this PartialShape is dynamic.
Shape to_shape() const;
/// \brief Returns `true` if all static dimensions of the tensor are non-negative, else
/// `false`.
bool all_non_negative() const;
/// \brief Index operator for PartialShape.
/// \param i The index of the dimension being selected.
/// \return A reference to the `i`th Dimension of this shape.
......
......@@ -19,10 +19,12 @@
#include "dyn_elimination.hpp"
#include "ngraph/op/broadcast.hpp"
#include "ngraph/op/experimental/dyn_broadcast.hpp"
#include "ngraph/op/experimental/dyn_replace_slice.hpp"
#include "ngraph/op/experimental/dyn_reshape.hpp"
#include "ngraph/op/experimental/dyn_slice.hpp"
#include "ngraph/op/experimental/range.hpp"
#include "ngraph/op/experimental/transpose.hpp"
#include "ngraph/op/replace_slice.hpp"
#include "ngraph/op/reshape.hpp"
#include "ngraph/op/reverse.hpp"
#include "ngraph/op/slice.hpp"
......@@ -36,7 +38,8 @@ pass::DynElimination::DynElimination()
: GraphRewrite()
{
construct_transpose();
construct_broadcast();
construct_dyn_broadcast();
construct_dyn_replace_slice();
construct_dyn_slice();
construct_dyn_reshape();
construct_range();
......@@ -89,7 +92,7 @@ void pass::DynElimination::construct_transpose()
add_matcher(transpose_matcher, transpose_callback, all_pass_property_off);
}
void pass::DynElimination::construct_broadcast()
void pass::DynElimination::construct_dyn_broadcast()
{
auto data_arg_label = make_shared<pattern::op::Label>(element::f32, Shape{1, 2, 3});
auto shape_arg_label =
......@@ -444,6 +447,92 @@ void pass::DynElimination::construct_dyn_slice()
add_matcher(dyn_slice_matcher, dyn_slice_callback, all_pass_property_off);
}
void pass::DynElimination::construct_dyn_replace_slice()
{
auto data_arg_label = make_shared<pattern::op::Label>(element::f32, Shape{1, 2, 3});
auto replacement_arg_label = make_shared<pattern::op::Label>(element::f32, Shape{1, 2, 3});
auto begins_arg_label =
make_shared<pattern::op::Label>(element::i64, Shape{3}, pattern::has_class<op::Constant>());
auto ends_arg_label =
make_shared<pattern::op::Label>(element::i64, Shape{3}, pattern::has_class<op::Constant>());
auto strides_arg_label =
make_shared<pattern::op::Label>(element::i64, Shape{3}, pattern::has_class<op::Constant>());
auto dyn_replace_slice_pat = make_shared<op::DynReplaceSlice>(data_arg_label,
replacement_arg_label,
begins_arg_label,
ends_arg_label,
strides_arg_label,
AxisSet{},
AxisSet{},
AxisSet{},
AxisSet{},
AxisSet{});
auto dyn_replace_slice_callback = [data_arg_label,
replacement_arg_label,
begins_arg_label,
ends_arg_label,
strides_arg_label](pattern::Matcher& m) {
auto pattern_map = m.get_pattern_map();
auto data_arg = pattern_map[data_arg_label];
auto replacement_arg = pattern_map[replacement_arg_label];
auto begins_arg = static_pointer_cast<op::Constant>(pattern_map[begins_arg_label]);
auto ends_arg = static_pointer_cast<op::Constant>(pattern_map[ends_arg_label]);
auto strides_arg = static_pointer_cast<op::Constant>(pattern_map[strides_arg_label]);
auto dyn_replace_slice = static_pointer_cast<op::DynReplaceSlice>(m.get_match_root());
if (data_arg->get_output_partial_shape(0).is_dynamic() ||
replacement_arg->get_output_partial_shape(0).is_dynamic() ||
begins_arg->get_element_type() != element::i64 ||
ends_arg->get_element_type() != element::i64 ||
strides_arg->get_element_type() != element::i64)
{
return false;
}
SlicePlan p = make_plan(data_arg->get_output_shape(0),
begins_arg->get_vector<int64_t>(),
ends_arg->get_vector<int64_t>(),
strides_arg->get_vector<int64_t>(),
dyn_replace_slice->get_lower_bounds_mask(),
dyn_replace_slice->get_upper_bounds_mask(),
dyn_replace_slice->get_new_axis(),
dyn_replace_slice->get_shrink_axis(),
dyn_replace_slice->get_ellipsis_mask());
shared_ptr<Node> substitute_replacement_arg = replacement_arg;
if (!p.reverse_axes.empty())
{
substitute_replacement_arg =
make_shared<op::Reverse>(substitute_replacement_arg, p.reverse_axes);
}
if (p.reshape_in_shape != p.reshape_out_shape)
{
substitute_replacement_arg =
make_shared<op::Reshape>(substitute_replacement_arg,
ngraph::get_default_order(p.reshape_out_shape),
p.reshape_in_shape);
}
auto substitute_rsl =
make_shared<op::ReplaceSlice>(data_arg,
substitute_replacement_arg,
Coordinate(p.begins.begin(), p.begins.end()),
Coordinate(p.ends.begin(), p.ends.end()),
Strides(p.strides.begin(), p.strides.end()));
replace_node(m.get_match_root(), substitute_rsl);
return true;
};
auto dyn_replace_slice_matcher =
make_shared<pattern::Matcher>(dyn_replace_slice_pat, "DynElimination.DynReplaceShape");
add_matcher(dyn_replace_slice_matcher, dyn_replace_slice_callback, all_pass_property_off);
}
void pass::DynElimination::construct_dyn_reshape()
{
auto data_arg_label = make_shared<pattern::op::Label>(element::f32, Shape{1, 2, 3});
......
......@@ -30,7 +30,8 @@ namespace ngraph
private:
void construct_transpose();
void construct_broadcast();
void construct_dyn_broadcast();
void construct_dyn_replace_slice();
void construct_dyn_slice();
void construct_dyn_reshape();
void construct_range();
......
......@@ -216,8 +216,6 @@ void runtime::cpu::CPU_CallFrame::setup_runtime_context()
{
// single thread for codegen
NGRAPH_CHECK(m_num_ctx == 1);
ctx->mkldnn_primitives.swap(mkldnn_emitter->get_mkldnn_primitives());
ctx->mkldnn_workspaces = mkldnn_emitter->get_mkldnn_workspaces();
}
ctx->states = m_external_function->m_states.data();
......
......@@ -218,6 +218,7 @@ bool runtime::gpu::GPU_Backend::is_supported(const Node& op) const
{
set<string> unsupported_ops = {"Quantize",
"Dequantize",
"DynReplaceSlice",
"DynReshape",
"DynSlice",
"ShapeOf",
......
......@@ -173,9 +173,6 @@ void runtime::gpu::GPUCompiledFunction::compile()
pass_manager.register_pass<runtime::gpu::pass::BatchNormCache>();
pass_manager.register_pass<ngraph::pass::LikeReplacement>();
pass_manager.register_pass<ngraph::pass::FusedOpDecomposition>();
// Run this pass for the second time since, some fused operators like LSTMCell may use
// other fused operators inside.
pass_manager.register_pass<ngraph::pass::FusedOpDecomposition>();
pass_manager.register_pass<ngraph::pass::ImplicitBroadcastElimination>();
pass_manager.register_pass<runtime::gpu::pass::GPULayout>(this);
pass_manager.register_pass<ngraph::pass::AssignLayout<descriptor::layout::DenseTensorLayout>>();
......
......@@ -62,6 +62,7 @@
#include "ngraph/op/experimental/batch_mat_mul.hpp"
#include "ngraph/op/experimental/dyn_broadcast.hpp"
#include "ngraph/op/experimental/dyn_pad.hpp"
#include "ngraph/op/experimental/dyn_replace_slice.hpp"
#include "ngraph/op/experimental/dyn_reshape.hpp"
#include "ngraph/op/experimental/dyn_slice.hpp"
#include "ngraph/op/experimental/generate_mask.hpp"
......@@ -612,6 +613,11 @@ std::string runtime::gpu::GPU_Emitter::emit_Dot(EMIT_ARGS)
return compiled_function->add_to_runtime(index, function_name, args, out);
}
std::string runtime::gpu::GPU_Emitter::emit_DynReplaceSlice(EMIT_ARGS)
{
throw unsupported_op("Unsupported op '" + node->description() + "'");
}
std::string runtime::gpu::GPU_Emitter::emit_DynReshape(EMIT_ARGS)
{
throw unsupported_op("Unsupported op '" + node->description() + "'");
......
......@@ -430,10 +430,6 @@ shared_ptr<runtime::Executable>
if (m_disable_backend_optimizations < 2)
{
pass_manager.register_pass<ngraph::pass::FusedOpDecomposition>(
IntelGPUBackend::is_supported_impl);
// Run this pass for the second time since, some fused operators like LSTMCell may use
// other fused operators inside.
pass_manager.register_pass<ngraph::pass::FusedOpDecomposition>(
IntelGPUBackend::is_supported_impl);
pass_manager.register_pass<ngraph::pass::ImplicitBroadcastElimination>();
......@@ -2061,6 +2057,7 @@ shared_ptr<runtime::Executable>
case OP_TYPEID::DepthToSpace:
case OP_TYPEID::DynBroadcast:
case OP_TYPEID::DynPad:
case OP_TYPEID::DynReplaceSlice:
case OP_TYPEID::DynReshape:
case OP_TYPEID::DynSlice:
case OP_TYPEID::Elu:
......
......@@ -18,6 +18,7 @@ replace_slice_matrix
replace_slice_matrix_inplace
replace_slice_scalar
replace_slice_vector
dyn_replace_slice
shape_of_5d
shape_of_matrix
shape_of_scalar
......
......@@ -47,9 +47,6 @@ runtime::interpreter::INTExecutable::INTExecutable(const shared_ptr<Function>& f
pass::Manager pass_manager;
pass_manager.register_pass<pass::LikeReplacement>();
pass_manager.register_pass<pass::FusedOpDecomposition>();
// Run this pass for the second time since, some fused operators like LSTMCell may use
// other fused operators inside.
pass_manager.register_pass<pass::FusedOpDecomposition>();
pass_manager.register_pass<pass::ImplicitBroadcastElimination>();
pass_manager.register_pass<pass::AssignLayout<DenseTensorLayout>>();
pass_manager.register_pass<pass::Liveness>();
......
......@@ -1503,7 +1503,8 @@ private:
case OP_TYPEID::Transpose:
case OP_TYPEID::DynPad:
case OP_TYPEID::Tile:
default: throw unsupported_op("Unsupported op '" + node.description() + "'");
case OP_TYPEID::DynReplaceSlice:
throw unsupported_op("Unsupported op '" + node.description() + "'");
#if !(defined(__GNUC__) && (__GNUC__ == 4 && __GNUC_MINOR__ == 8))
#pragma GCC diagnostic pop
#endif
......
......@@ -41,6 +41,7 @@ set(SRC
plaidml_ops_one_hot.cpp
plaidml_ops_passthrough.cpp
plaidml_ops_pool.cpp
plaidml_ops_quantize.cpp
plaidml_ops_reduce.cpp
plaidml_ops_replace_slice.cpp
plaidml_ops_replicate.cpp
......
......@@ -188,7 +188,8 @@ class ngraph::runtime::plaidml::builder::Elementwise final : public Statement
{
public:
Elementwise(std::string lhs, std::string rhs);
void set_lhs(const std::string& lhs) { m_lhs = lhs; }
void set_rhs(const std::string& rhs) { m_rhs = rhs; }
private:
friend class Function;
......
......@@ -20,6 +20,7 @@
#include "ngraph/pass/algebraic_simplification.hpp"
#include "ngraph/pass/core_fusion.hpp"
#include "ngraph/pass/cse.hpp"
#include "ngraph/pass/fused_op_decomposition.hpp"
#include "ngraph/pass/get_output_element_elimination.hpp"
#include "ngraph/pass/like_replacement.hpp"
#include "ngraph/pass/liveness.hpp"
......@@ -87,6 +88,7 @@ std::shared_ptr<ngraph::runtime::plaidml::PlaidML_Executable>
ngraph::pass::Manager pass_manager;
// We apply the same general-purposes passes as the CPU backend.
pass_manager.register_pass<ngraph::pass::FusedOpDecomposition>();
pass_manager.register_pass<ngraph::pass::LikeReplacement>();
pass_manager.register_pass<ngraph::pass::NopElimination>();
pass_manager.register_pass<ngraph::pass::ZeroDimTensorElimination>();
......
This diff is collapsed.
......@@ -60,37 +60,7 @@ generate_mask
generate_mask2
avg_pool_3d
avg_pool_3d_uneven_strided_padded_include_in_computation
quantize_dynamic_offset # Quantization/Dequantization is unimplemented
dequantize_dynamic_offset # Quantization/Dequantization is unimplemented
dequantize_int8_zero_offset # Quantization/Dequantization is unimplemented
dequantize_int32 # Quantization/Dequantization is unimplemented
dequantize_int32_zero_offset # Quantization/Dequantization is unimplemented
dequantize_zero_offset # Quantization/Dequantization is unimplemented
quantize_ROUND_NEAREST_TOWARD_ZERO # Quantization/Dequantization is unimplemented
quantize_ROUND_NEAREST_UPWARD # Quantization/Dequantization is unimplemented
quantize_ROUND_NEAREST_DOWNWARD # Quantization/Dequantization is unimplemented
quantize_ROUND_NEAREST_TOWARD_EVEN # Quantization/Dequantization is unimplemented
quantize_ROUND_NEAREST_TOWARD_INFINITY # Quantization/Dequantization is unimplemented
quantize_ROUND_TOWARD_INFINITY # Quantization/Dequantization is unimplemented
quantize_ROUND_TOWARD_ZERO # Quantization/Dequantization is unimplemented
quantize_ROUND_UP # Quantization/Dequantization is unimplemented
quantize_ROUND_DOWN # Quantization/Dequantization is unimplemented
quantize # Quantization/Dequantization is unimplemented
quantize_zero_offset # Quantization/Dequantization is unimplemented
quantize_axes # Quantization/Dequantization is unimplemented
quantize_dynamic_offset # Quantization/Dequantization is unimplemented
quantize_int8 # Quantization/Dequantization is unimplemented
quantize_int8_zero_offset # Quantization/Dequantization is unimplemented
quantize_int32 # Quantization/Dequantization is unimplemented
quantize_int32_zero_offset # Quantization/Dequantization is unimplemented
quantize_clamp # Quantization/Dequantization is unimplemented
quantize_clamp_int8 # Quantization/Dequantization is unimplemented
quantize_clamp_int32 # Quantization/Dequantization is unimplemented
quantize_clamp_int32_zero_offset # Quantization/Dequantization is unimplemented
quantize_clamp_uint8 # Quantization/Dequantization is unimplemented
dequantize # Quantization/Dequantization is unimplemented
dequantize_axes # Quantization/Dequantization is unimplemented
dequantize_int8 # Quantization/Dequantization is unimplemented
quantize_clamp_int32 # Requires fp64 inputs, which won't work on GPUs
numeric_float_nan
numeric_double_nan
shape_of_scalar
......@@ -259,12 +229,6 @@ backwards_softmax_underflow
backwards_softmax_3d
batch_mat_mul_forward
dot_matrix_2x0_0x2
rnn_cell_no_bias
rnn_cell_bias_clip
rnn_cell_activation_function
gru_cell_bias_clip
gru_cell_linear_before_reset
gru_cell_activation_function
# dgkutnic ww24.5: these tests are to be triaged by the PlaidML team
# ww25.2: re-scrubbed this list of tests after fixing check_inputs
......@@ -289,3 +253,29 @@ group_conv_transpose
group_conv_transpose_output_shape
divide_python_rounding_int32
backwards_batchmatmul_tensor2_tensor2
# unsupported ops: 'QuantizedConvolution', 'QuantizedDot', 'TopK', 'Erf', 'EmbeddingLookup'
model_quant_conv_linear
model_conv_integer_no_zero_point
model_matmul_integer_no_zero_point
model_matmul_integer_4d_no_zero_point
model_top_k
model_erf
model_erf_int32
model_hardmax
# node validation error: "Argument shapes are inconsistent."
model_lstm_fwd_with_clip
model_lstm_fwd_mixed_seq
model_lstm_fwd_hardsigmoid_activation
model_reduce_log_sum
model_reduce_log_sum_exp
model_reduce_mean
# result mismatch
model_dequantize_linear_scalar_zero_scale_int8
model_softmax
avg_pool_3d_uneven_strided_padded
rnn_cell_activation_function
gru_cell_bias_clip
gru_cell_linear_before_reset
......@@ -55,6 +55,7 @@
#include "ngraph/op/experimental/compiled_kernel.hpp"
#include "ngraph/op/experimental/dyn_broadcast.hpp"
#include "ngraph/op/experimental/dyn_pad.hpp"
#include "ngraph/op/experimental/dyn_replace_slice.hpp"
#include "ngraph/op/experimental/dyn_reshape.hpp"
#include "ngraph/op/experimental/dyn_slice.hpp"
#include "ngraph/op/experimental/generate_mask.hpp"
......@@ -1130,6 +1131,25 @@ shared_ptr<Node> JSONDeserializer::deserialize_node(json node_js)
node = make_shared<op::DynPad>(args[0], args[1], args[2], args[3]);
break;
}
case OP_TYPEID::DynReplaceSlice:
{
auto lower_bounds_mask = node_js.at("lower_bounds_mask").get<set<size_t>>();
auto upper_bounds_mask = node_js.at("upper_bounds_mask").get<set<size_t>>();
auto new_axis = node_js.at("new_axis").get<set<size_t>>();
auto shrink_axis = node_js.at("shrink_axis").get<set<size_t>>();
auto ellipsis_mask = node_js.at("ellipsis_mask").get<set<size_t>>();
node = make_shared<op::DynReplaceSlice>(args[0],
args[1],
args[2],
args[3],
args[4],
lower_bounds_mask,
upper_bounds_mask,
new_axis,
shrink_axis,
ellipsis_mask);
break;
}
case OP_TYPEID::DynReshape:
{
node = make_shared<op::DynReshape>(args[0], args[1]);
......@@ -1137,7 +1157,20 @@ shared_ptr<Node> JSONDeserializer::deserialize_node(json node_js)
}
case OP_TYPEID::DynSlice:
{
node = make_shared<op::DynSlice>(args[0], args[1], args[2], args[3]);
auto lower_bounds_mask = node_js.at("lower_bounds_mask").get<set<size_t>>();
auto upper_bounds_mask = node_js.at("upper_bounds_mask").get<set<size_t>>();
auto new_axis = node_js.at("new_axis").get<set<size_t>>();
auto shrink_axis = node_js.at("shrink_axis").get<set<size_t>>();
auto ellipsis_mask = node_js.at("ellipsis_mask").get<set<size_t>>();
node = make_shared<op::DynSlice>(args[0],
args[1],
args[2],
args[3],
lower_bounds_mask,
upper_bounds_mask,
new_axis,
shrink_axis,
ellipsis_mask);
break;
}
case OP_TYPEID::Elu:
......@@ -2297,9 +2330,27 @@ json JSONSerializer::serialize_node(const Node& n)
}
case OP_TYPEID::DynPad: { break;
}
case OP_TYPEID::DynReplaceSlice:
{
auto tmp = dynamic_cast<const op::DynReplaceSlice*>(&n);
node["lower_bounds_mask"] = tmp->get_lower_bounds_mask();
node["upper_bounds_mask"] = tmp->get_upper_bounds_mask();
node["new_axis"] = tmp->get_new_axis();
node["shrink_axis"] = tmp->get_shrink_axis();
node["ellipsis_mask"] = tmp->get_ellipsis_mask();
break;
}
case OP_TYPEID::DynReshape: { break;
}
case OP_TYPEID::DynSlice: { break;
case OP_TYPEID::DynSlice:
{
auto tmp = dynamic_cast<const op::DynSlice*>(&n);
node["lower_bounds_mask"] = tmp->get_lower_bounds_mask();
node["upper_bounds_mask"] = tmp->get_upper_bounds_mask();
node["new_axis"] = tmp->get_new_axis();
node["shrink_axis"] = tmp->get_shrink_axis();
node["ellipsis_mask"] = tmp->get_ellipsis_mask();
break;
}
case OP_TYPEID::Elu: { break;
}
......
......@@ -142,8 +142,8 @@ PartialShape ngraph::infer_windowed_reduction_output_shape(const Node* node,
ptrdiff_t data_padded_dilated_dim = -1;
if (data_dim_static)
{
data_padded_dilated_dim = (static_cast<ptrdiff_t>(data_dilation[i]) *
(static_cast<ptrdiff_t>(data_shape[i]) - 1)) +
data_padded_dilated_dim = (static_cast<int64_t>(data_dilation[i]) *
(static_cast<int64_t>(data_shape[i]) - 1)) +
1 + data_padding_below[i] + data_padding_above[i];
NODE_VALIDATION_CHECK(
node,
......@@ -158,8 +158,8 @@ PartialShape ngraph::infer_windowed_reduction_output_shape(const Node* node,
ptrdiff_t window_dilated_dim = -1;
if (window_dim_static)
{
window_dilated_dim = static_cast<ptrdiff_t>(window_dilation[i]) *
(static_cast<ptrdiff_t>(window_shape[i]) - 1) +
window_dilated_dim = static_cast<int64_t>(window_dilation[i]) *
(static_cast<int64_t>(window_shape[i]) - 1) +
1;
NODE_VALIDATION_CHECK(node,
......@@ -628,3 +628,257 @@ void ngraph::infer_auto_padding(const Shape& image_shape,
padding_above.push_back(pad_type == op::PadType::SAME_UPPER ? padding_rhs : padding_lhs);
}
}
PartialShape ngraph::infer_slice_shape(const Node* node,
const PartialShape& input_shape,
const std::vector<int64_t>& lb,
const std::vector<int64_t>& ub,
const std::vector<int64_t>& str,
const AxisSet& lb_mask,
const AxisSet& ub_mask,
const AxisSet& new_axis,
const AxisSet& shrink_axis,
const AxisSet& ellipsis_mask)
{
if (lb.size() && ub.size())
{
NODE_VALIDATION_CHECK(node,
lb.size() == ub.size(),
"Lower bounds and Upper bounds needs to have same number of values");
}
if (lb.size() && str.size())
{
NODE_VALIDATION_CHECK(node,
lb.size() == str.size(),
"Lower bounds and strides needs to have same number of values");
}
if (ub.size() && str.size())
{
NODE_VALIDATION_CHECK(node,
ub.size() == str.size(),
"Upper bounds and strides needs to have same number of values");
}
if (input_shape.rank().is_dynamic())
{
return PartialShape::dynamic();
}
int max_dims = size_t(input_shape.rank()) + new_axis.size();
int bounds_size =
lb.size() ? lb.size() : (ub.size() ? ub.size() : (str.size() ? str.size() : 0));
int ellipsis_pos1 = ellipsis_mask.size() ? *ellipsis_mask.begin() : max_dims;
int ellipsis_pos2 = max_dims;
bounds_size -= ellipsis_pos1;
if (bounds_size > 0 && (max_dims - bounds_size) > ellipsis_pos1)
{
ellipsis_pos2 = max_dims - bounds_size;
}
std::vector<Dimension> begin_dms(max_dims, 0);
std::vector<Dimension> end_dms(max_dims, -1);
std::vector<Dimension> stride_dms(max_dims, 1);
std::vector<Dimension> out_dims;
int j = 0;
int k = 0;
int bj = 0;
int ej = 0;
int sj = 0;
for (int i = 0; i < max_dims; i++)
{
if (i >= ellipsis_pos1 && i < ellipsis_pos2)
{
if (new_axis.find(i) == new_axis.end())
{
if (end_dms[i].is_static() && int64_t(end_dms[i]) < 0)
{
end_dms[i] = input_shape[j++] + end_dms[i];
}
}
else
{
end_dms[i] = begin_dms[i];
}
if (end_dms[i].is_dynamic() || begin_dms[i].is_dynamic() || stride_dms[i].is_dynamic())
{
out_dims.push_back(Dimension::dynamic());
}
else
{
out_dims.push_back(static_cast<int64_t>(
ceil(static_cast<float>(abs(int64_t(end_dms[i]) - int64_t(begin_dms[i])) + 1) /
static_cast<float>(abs(int64_t(stride_dms[i]))))));
}
k = ellipsis_pos1;
continue;
}
stride_dms[i] = (str.size() > sj && str[sj] != 0) ? str[sj++] : 1;
// Use lower_bounds if mask is not set
if (lb_mask.find(j) == lb_mask.end())
{
if (lb.size() > bj)
{
begin_dms[i] = lb[bj];
}
else if (stride_dms[i].is_dynamic())
{
begin_dms[i] = Dimension::dynamic();
}
else if (int64_t(stride_dms[i]) > 0)
{
begin_dms[i] = 0;
}
else
{
begin_dms[i] = -1;
}
}
else if (stride_dms[i].is_dynamic())
{
begin_dms[i] = Dimension::dynamic();
}
else if (int64_t(stride_dms[i]) > 0)
{
begin_dms[i] = 0;
}
else
{
begin_dms[i] = -1;
}
bj++;
if (begin_dms[i].is_static() && int64_t(begin_dms[i]) < 0)
{
begin_dms[i] = input_shape[j] + begin_dms[i];
}
// Clipping 'begin'
if (begin_dms[i].is_static())
{
if (int64_t(begin_dms[i]) < 0)
{
begin_dms[i] = 0;
}
else if (input_shape[j].is_dynamic())
{
begin_dms[i] = Dimension::dynamic();
}
else if (int64_t(begin_dms[i]) >= int64_t(input_shape[j]))
{
begin_dms[i] = input_shape[j] - 1;
}
}
// Use upper_bounds if mask is not set
if (ub_mask.find(j) == ub_mask.end())
{
Dimension end_dms_tmp;
if (ub.size() <= ej)
{
end_dms_tmp = end_dms[i];
}
else if (stride_dms[i].is_dynamic())
{
end_dms_tmp = Dimension::dynamic();
}
else if (int64_t(stride_dms[i]) > 0)
{
end_dms_tmp = ub[ej] - 1;
}
else
{
end_dms_tmp = ub[ej] + 1;
}
if (ub.size() > ej)
{
end_dms[i] = end_dms_tmp;
}
else if (stride_dms[i].is_dynamic())
{
end_dms[i] = Dimension::dynamic();
}
else if (int64_t(stride_dms[i]) > 0)
{
end_dms[i] = -1;
}
else
{
end_dms[i] = 0;
}
}
else
{
if (stride_dms[i].is_dynamic())
{
end_dms[i] = Dimension::dynamic();
}
else if (int64_t(stride_dms[i]) > 0)
{
end_dms[i] = -1;
}
else
{
end_dms[i] = 0;
}
}
ej++;
if (end_dms[i].is_static() && int64_t(end_dms[i]) < 0)
{
end_dms[i] = input_shape[j] + end_dms[i];
}
// Clipping 'end'
if (end_dms[i].is_static())
{
if (int64_t(end_dms[i]) < 0)
{
end_dms[i] = 0;
}
else if (input_shape[j].is_dynamic())
{
end_dms[i] = Dimension::dynamic();
}
else if (int64_t(end_dms[i]) >= int64_t(input_shape[j]))
{
end_dms[i] = input_shape[j] - 1;
}
}
if (new_axis.find(i) == new_axis.end())
{
j++;
}
else
{
end_dms[i] = 0;
}
if (shrink_axis.find(k) != shrink_axis.end())
{
end_dms[i] = begin_dms[i];
}
else if (end_dms[i].is_dynamic() || begin_dms[i].is_dynamic() || stride_dms[i].is_dynamic())
{
out_dims.push_back(Dimension::dynamic());
}
else
{
out_dims.push_back(static_cast<int64_t>(
ceil(static_cast<float>(abs(int64_t(end_dms[i]) - int64_t(begin_dms[i])) + 1) /
static_cast<float>(abs(int64_t(stride_dms[i]))))));
}
k++;
}
return out_dims;
}
......@@ -94,4 +94,15 @@ namespace ngraph
const op::PadType pad_type,
CoordinateDiff& padding_above,
CoordinateDiff& padding_below);
PartialShape infer_slice_shape(const Node* node,
const PartialShape& input_shape,
const std::vector<int64_t>& lb,
const std::vector<int64_t>& ub,
const std::vector<int64_t>& str,
const AxisSet& lb_mask,
const AxisSet& ub_mask,
const AxisSet& new_axis,
const AxisSet& shrink_mask,
const AxisSet& ellipsis_mask);
}
......@@ -167,6 +167,7 @@ set(MULTI_TEST_SRC
backend_test.in.cpp
backend_unary_elementwise.in.cpp
convolution_test.in.cpp
dyn_replace_slice_test.in.cpp
dyn_slice_test.in.cpp
dynamic.in.cpp
)
......
......@@ -132,6 +132,56 @@ TEST(dyn_elimination, slice)
ASSERT_EQ(f->get_results().at(0)->get_shape(), (Shape{2, 4, 2, 2, 1, 2, 2}));
}
TEST(dyn_elimination, replace_slice)
{
// input has shape [2,4,6,8,2,2,2]
// slice in numpy syntax is [0:,:4,2:6:2,7:3:-2,np.newaxis,...,1]
// slice shape should be [2,4,2,2,1,2,2] (so sayeth numpy!)
Shape shape_in{2, 4, 6, 8, 2, 2, 2};
Shape shape_slice{2, 4, 2, 2, 1, 2, 2};
auto input = make_shared<op::Parameter>(element::f32, shape_in);
auto replacement = make_shared<op::Parameter>(element::f32, shape_slice);
auto constant_lb =
make_shared<op::Constant>(element::i64, Shape{7}, vector<int64_t>{0, 3, 2, 7, 0, 0, 1});
auto constant_ub =
make_shared<op::Constant>(element::i64, Shape{7}, vector<int64_t>{0, 4, 6, 3, 0, 0, 0});
auto constant_strides =
make_shared<op::Constant>(element::i64, Shape{7}, vector<int64_t>{1, 1, 2, -2, 0, 0, 0});
AxisSet lower_bounds_mask{1};
AxisSet upper_bounds_mask{0};
AxisSet new_axis_mask{4};
AxisSet shrink_mask{6};
AxisSet ellipsis_mask{5};
auto rsl = make_shared<op::DynReplaceSlice>(input,
replacement,
constant_lb,
constant_ub,
constant_strides,
lower_bounds_mask,
upper_bounds_mask,
new_axis_mask,
shrink_mask,
ellipsis_mask);
ASSERT_EQ(rsl->get_element_type(), element::f32);
ASSERT_EQ(rsl->get_shape(), (Shape{2, 4, 6, 8, 2, 2, 2}));
auto f = make_shared<Function>(rsl, ParameterVector{input, replacement});
pass::Manager pass_manager;
pass_manager.register_pass<pass::DynElimination>();
pass_manager.run_passes(f);
ASSERT_EQ(count_ops_of_type<op::DynReplaceSlice>(f), 0);
ASSERT_EQ(count_ops_of_type<op::ReplaceSlice>(f), 1);
ASSERT_EQ(count_ops_of_type<op::Reshape>(f), 1);
ASSERT_EQ(count_ops_of_type<op::Reverse>(f), 1);
ASSERT_EQ(f->get_results().at(0)->get_element_type(), element::f32);
ASSERT_EQ(f->get_results().at(0)->get_shape(), (Shape{2, 4, 6, 8, 2, 2, 2}));
}
TEST(dyn_elimination, reshape)
{
auto input_arg = make_shared<op::Parameter>(element::f32, Shape{2, 4, 6, 8});
......
This diff is collapsed.
ir_version: 4
producer_name: "nGraph ONNX Importer"
graph {
node {
input: "X"
input: "W"
input: "R"
output: ""
output: "Y_h"
op_type: "LSTM"
attribute {
name: "clip"
f: 9999.0
type: FLOAT
}
attribute {
name: "direction"
s: "forward"
type: STRING
}
attribute {
name: "hidden_size"
i: 3
type: INT
}
}
name: "compute_graph"
input {
name: "X"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 2
}
dim {
dim_value: 32
}
dim {
dim_value: 1
}
}
}
}
}
input {
name: "W"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 1
}
dim {
dim_value: 12
}
dim {
dim_value: 1
}
}
}
}
}
input {
name: "R"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 1
}
dim {
dim_value: 12
}
dim {
dim_value: 3
}
}
}
}
}
output {
name: "Y_h"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 1
}
dim {
dim_value: 32
}
dim {
dim_value: 3
}
}
}
}
}
}
opset_import {
version: 7
}
......@@ -20,6 +20,7 @@
#include <fstream>
#include <iterator>
#include <limits>
#include <numeric>
#include <sstream>
#include <stdexcept>
#include <vector>
......@@ -203,3 +204,48 @@ NGRAPH_TEST(onnx_${BACKEND_NAME}, model_lstm_fwd_hardsigmoid_activation)
test_case.set_tolerance(6);
test_case.run();
}
NGRAPH_TEST(onnx_${BACKEND_NAME}, model_lstm_fwd_large_batch_no_clip)
{
auto function = onnx_import::import_onnx_model(
file_util::path_join(SERIALIZED_ZOO, "onnx/lstm_fwd_large_batch_no_clip.prototxt"));
auto test_case = ngraph::test::NgraphTestCase(function, "${BACKEND_NAME}");
std::size_t seq_length = 2;
std::size_t batch_size = 32;
std::size_t input_size = 1;
std::size_t hidden_size = 3;
std::vector<float> in_X(seq_length * batch_size * input_size);
std::iota(std::begin(in_X), std::end(in_X), 1.f);
std::vector<float> in_R(4 * hidden_size * hidden_size, 0.1f);
// X
test_case.add_input<float>(in_X);
// W
test_case.add_input<float>(
{0.1f, 0.2f, 0.3f, 0.4f, 1.f, 2.f, 3.f, 4.f, 10.f, 11.f, 12.f, 13.f});
// R
test_case.add_input<float>(in_R);
// Y_h_data
test_case.add_expected_output<float>(
Shape{1, batch_size, hidden_size},
{0.90387899f, 0.9135572f, 0.91772245f, 0.90897038f, 0.92132433f, 0.92825467f, 0.91365823f,
0.92815113f, 0.93676105f, 0.91799162f, 0.93406357f, 0.94344562f, 0.92199681f, 0.93912057f,
0.94859476f, 0.92569357f, 0.94340185f, 0.95250664f, 0.92909964f, 0.94699686f, 0.95545127f,
0.93223207f, 0.94999634f, 0.95765468f, 0.93510761f, 0.9524867f, 0.95929726f, 0.93774272f,
0.9545467f, 0.96051891f, 0.9401536f, 0.95624603f, 0.96142619f, 0.94235605f, 0.95764499f,
0.96209939f, 0.94436539f, 0.95879495f, 0.96259862f, 0.94619635f, 0.95973921f, 0.96296872f,
0.94786299f, 0.96051397f, 0.96324302f, 0.94937864f, 0.96114929f, 0.96344629f, 0.95075587f,
0.96167006f, 0.96359692f, 0.95200645f, 0.96209679f, 0.96370852f, 0.95314133f, 0.9624464f,
0.9637912f, 0.95417069f, 0.96273278f, 0.96385246f, 0.95510395f, 0.96296733f, 0.96389785f,
0.95594975f, 0.96315942f, 0.96393147f, 0.95671607f, 0.96331673f, 0.96395638f, 0.9574102f,
0.96344554f, 0.96397483f, 0.9580388f, 0.96355102f, 0.9639885f, 0.95860795f, 0.96363739f,
0.96399863f, 0.95912322f, 0.96370811f, 0.96400613f, 0.95958963f, 0.96376601f, 0.96401169f,
0.96001179f, 0.96381342f, 0.96401581f, 0.96039386f, 0.96385224f, 0.96401886f, 0.96073964f,
0.96388402f, 0.96402112f, 0.96105254f, 0.96391004f, 0.96402279f});
test_case.run();
}
This diff is collapsed.
This diff is collapsed.
#!/bin/bash
# ******************************************************************************
# Copyright 2017-2019 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ******************************************************************************
declare THIS_SCRIPT_DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" && pwd )"
python ${THIS_SCRIPT_DIR}/ref_generators/generate_dyn_replace_slice_ref.py ${THIS_SCRIPT_DIR}/dyn_replace_slice_test.in.cpp
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment