Unverified Commit c04c0349 authored by Robert Kimball's avatar Robert Kimball Committed by GitHub

Merge pull request #3263 from NervanaSystems/nmostafa/gather

[MLIR] Enable Gather Op
parents d34fb157 e12aa4ca
This diff is collapsed.
......@@ -98,25 +98,21 @@ namespace ngraph
void build_ng_dialect();
template <typename OP>
static mlir::Value* create_op(MLIRCompiler& compiler, const ngraph::Node* ng_node)
template <typename Op>
static mlir::Operation* create_op(MLIRCompiler& compiler,
const ngraph::Node* ng_node)
{
throw std::runtime_error("Unimplemented op '" + ng_node->description() +
"' in MLIR Compiler");
}
template <typename UnaryOp>
mlir::Value* create_unary_op(const ngraph::Node* ng_node);
template <typename BinOp>
mlir::Value* create_binary_op(const ngraph::Node* ng_node);
// TODO(amprocte): Can we have a create_variadic_op that is able to handle the
// attributes?
mlir::Value* create_concat(const ngraph::Node* ng_node);
// Generic op lowerer to ng dialect.
// Simply maps ngraph tensors to values and generate an OP. No op-specific logic.
template <typename Op>
mlir::Operation* create_generic_op(const ngraph::Node* ng_node);
template <typename RedOp>
mlir::Value* create_index_reduction(const ngraph::Node* ng_node);
mlir::Operation* create_index_reduction(const ngraph::Node* ng_node);
void create_return();
......@@ -150,7 +146,7 @@ namespace ngraph
using TensorToInfo = std::pair<descriptor::Tensor*, TensorInfo>;
using TensorToInfoMap = std::unordered_map<descriptor::Tensor*, TensorInfo>;
using MLIRCompOpFunction =
std::function<mlir::Value*(MLIRCompiler& compiler, const ngraph::Node*)>;
std::function<mlir::Operation*(MLIRCompiler& compiler, const ngraph::Node*)>;
using MLIRCompOpMap = std::unordered_map<std::type_index, MLIRCompOpFunction>;
// Maps tensor to the value it represents in the IR
......
......@@ -168,6 +168,39 @@ static mlir::LogicalResult verifyCmpOp(T* op)
return mlir::success();
}
template <>
mlir::LogicalResult verifyOp(NGGatherOp* op)
{
Type ty = op->params()->getType();
NGTensorType inputType = ty.cast<NGTensorType>();
ty = op->indices()->getType();
NGTensorType indicesType = ty.cast<NGTensorType>();
// ensure axis < params rank
if (op->axis().getSExtValue() >= inputType.getRank())
return op->emitOpError("Gather axis is larger than input rank");
ty = indicesType.getElementType();
// ensure indices are I32 or I64
if (!ty.isa<NGIntegerType>())
return op->emitOpError("Indices tensor is not of Integer type");
NGIntegerType indicesEltType = ty.cast<NGIntegerType>();
if (!indicesEltType.isInt32() && !indicesEltType.isInt64())
return op->emitOpError("Indices tensor is not of I32 or I64 type");
mlir::Type r0 = op->res()->getType();
NGTensorType resType = r0.cast<NGTensorType>();
// ensure result is compatible with input
if (!resType.getRank() == inputType.getRank() + indicesType.getRank() - 1)
return op->emitOpError("Incompatible result shape and/or type");
return mlir::success();
}
namespace mlir
{
#define GET_OP_CLASSES
......
......@@ -200,7 +200,7 @@ class NG_Axis_Reduction_Op<string mnemonic, list<OpTrait> traits = []> :
{
let summary = "Base class for reduction operations that perform a reduction "
"across the axes of a single tensor.";
let description = "Axes are represented as an array of I64 attributes.";
let description = [{Axes are represented as an array of I64 attributes.}];
let parser = [{ NGRAPH_CHECK(false, "No parser support"); return mlir::failure(); }];
......@@ -257,6 +257,24 @@ def NGAnyRedOp : NG_Axis_Reduction_Op<"any.red">
let verifier = [{ return verifyLogicalReductionOp(this); }];
}
// Gather
def NGGatherOp :
NG_OneResult_Op<"gather", [NoSideEffect]>,
Arguments<(ins NG_TensorType:$params, NG_TensorType:$indices, I64Attr:$axis)>
{
let summary = "Gather slices from params along the specified axis according to indices";
let description = [{
Gather slices from axis of params according to indices
params The tensor from which slices are gathered
indices Index tensor. Data type must be `element::i32` or `element::i64`
axis Axis in params to gather
}];
let parser = [{ NGRAPH_CHECK(false, "No parser support"); return mlir::failure(); }];
let verifier = [{ return verifyOp(this); }];
}
// Terminator Ops
def NGReturnOp : NG_Terminator_Op<"return">;
......
......@@ -199,6 +199,7 @@ namespace mlir
}
Shape getShape() const { return m_shape; }
int64_t getRank() const { return m_shape.size(); }
EltType getElementType() const { return m_eltType; }
private:
NGTensorTypeStorage(EltType eltType, Shape shape)
......
......@@ -646,6 +646,123 @@ namespace
return matchSuccess();
}
REWRITER(NGGatherOp)
{
auto gatherOp = cast<NGGatherOp>(op);
auto loc = gatherOp.getLoc();
ScopedContext scope(rewriter, loc);
// Get operands
Value* result = m_pass.buildOutputDefs(op, rewriter)[0];
NGRAPH_CHECK(result, "Unexpected null result in GatherOp");
auto resultTy = result->getType().cast<MemRefType>();
Value* params = operands[0];
Value* indices = operands[1];
auto axis = gatherOp.axis().getSExtValue();
// Create view to write into result.
MemRefView vRes(result), vParams(params), vIndices(indices);
// Indexed Values
IndexedValue iRes(result), iParams(params), iIndices(indices);
// Construct outer loop for params dims. Exclude the axis dim.
SmallVector<ValueHandle, 4> paramsLbs, paramsUbs;
SmallVector<IndexHandle, 4> paramsIVs;
SmallVector<int64_t, 4> paramsSteps;
SmallVector<ValueHandle*, 4> paramsIVPtrs;
for (auto i = 0; i < vParams.rank(); i++)
{
// skip gather axis
if (i == axis)
continue;
paramsLbs.push_back(IndexHandle(vParams.lb(i)));
paramsUbs.push_back(IndexHandle(vParams.ub(i)));
paramsSteps.push_back(vParams.step(i));
}
NGRAPH_CHECK(paramsLbs.size() == vParams.rank() - 1 &&
paramsUbs.size() == paramsLbs.size() &&
paramsSteps.size() == paramsLbs.size(),
"Incorrect loop nest bounds size for gather params");
paramsIVs = IndexHandle::makeIndexHandles(vParams.rank() - 1);
paramsIVPtrs = IndexHandle::makeIndexHandlePointers(paramsIVs);
auto indicesLbs = vIndices.getLbs();
auto indicesUbs = vIndices.getUbs();
auto indicesSteps = vIndices.getSteps();
auto indicesIVs = IndexHandle::makeIndexHandles(vIndices.rank());
auto indicesIVPtrs = IndexHandle::makeIndexHandlePointers(indicesIVs);
SmallVector<IndexHandle, 8> paramsIndices, resIndices;
// Make sure we are going to create loops
NGRAPH_CHECK(vParams.rank() > 0, "Invalid size for indices steps");
// Let params rank : N
// Let indices rank : M
// Let axis be A
// Generate
// params loops
// for P_0: 0 -> params.dim[0]
// for P_1: 0 -> params.dim[1]
// for P_2: 0 -> params.dim[2]
// ...
// for P_(A-1):0 -> params.dim[A-1]
// for P_(A+1):0 -> params.dim[A+1]
// ...
// for P_(N-1):0 -> params.dim[N-1]
// indices loops
// for I_0:0 -> indices.dim[0]
// ...
// for I_(M-1):0 -> indices.dim[M-1]
// res[P_0, P_1, .. P_(A-1), I_0, .., I_(M-1), P_(A+1), ... P_(N-1)] =
// params[P_0, P_1, .. P_(A-1), indices[I_0, .., I_(M-1)], P_(A+1), ... P_(N-1)];
LoopNestBuilder(paramsIVPtrs, paramsLbs, paramsUbs, paramsSteps)([&] {
LoopNestBuilder(indicesIVPtrs, indicesLbs, indicesUbs, indicesSteps)([&] {
// Load axis value from indices array and cast it to Index Type
ValueHandle axisIdx = ValueHandle::create<IndexCastOp>(
(ValueHandle)iIndices(indicesIVs), rewriter.getIndexType());
// construct indices for param
// [P_0, P_1, .. P_axis-1, Indices[I0, I1, .. I_k-1], P_axis+1, P_axis+2, .. P_n-1]
for (auto i = 0, j = 0; i < vParams.rank(); i++)
{
if (i == axis)
{
paramsIndices.push_back(IndexHandle(axisIdx));
}
else
{
paramsIndices.push_back(paramsIVs[j++]);
}
}
// construct indices for result
// [P_0, P_1, .. P_axis-1, I0, I1, .. I_k-1, P_axis+1, P_axis+2, .. P_n-1]
for (auto i = 0, j = 0; i < vParams.rank() + vIndices.rank() - 1;)
{
if (i == axis && indicesIVs.size() > 0)
{
resIndices.append(indicesIVs.begin(), indicesIVs.end());
i += indicesIVs.size();
}
else
{
resIndices.push_back(paramsIVs[j++]);
i++;
}
}
// Store into result
iRes(resIndices) = iParams(paramsIndices);
});
});
rewriter.replaceOp(op, {result});
return matchSuccess();
}
REWRITER(NGReturnOp)
{
rewriter.replaceOpWithNewOp<ReturnOp>(op);
......@@ -653,7 +770,7 @@ namespace
}
#undef REWRITER
/// End of pattern matchers
template <typename OP>
void lower_binary_elementwise(Operation* op,
ArrayRef<Value*> operands,
......
......@@ -29,6 +29,7 @@ MLIR_OP(NGArgMinRedOp)
MLIR_OP(NGConcatOp)
MLIR_OP(NGDivOp)
MLIR_OP(NGDotOp)
MLIR_OP(NGGatherOp)
MLIR_OP(NGGreaterOp)
MLIR_OP(NGLessOp)
MLIR_OP(NGMulOp)
......
......@@ -9,6 +9,7 @@ MLIR_OP(ArgMax)
MLIR_OP(Divide)
MLIR_OP(Dot)
MLIR_OP(Concat)
MLIR_OP(Gather)
MLIR_OP(Greater)
MLIR_OP(Less)
MLIR_OP(Maximum)
......
......@@ -25,6 +25,7 @@
#include "ngraph/op/divide.hpp"
#include "ngraph/op/dot.hpp"
#include "ngraph/op/experimental/compiled_kernel.hpp"
#include "ngraph/op/gather.hpp"
#include "ngraph/op/get_output_element.hpp"
#include "ngraph/op/greater.hpp"
#include "ngraph/op/less.hpp"
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment