Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
N
ngraph
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
ngraph
Commits
c04c0349
Unverified
Commit
c04c0349
authored
Jul 24, 2019
by
Robert Kimball
Committed by
GitHub
Jul 24, 2019
Browse files
Options
Browse Files
Download
Plain Diff
Merge pull request #3263 from NervanaSystems/nmostafa/gather
[MLIR] Enable Gather Op
parents
d34fb157
e12aa4ca
Show whitespace changes
Inline
Side-by-side
Showing
9 changed files
with
258 additions
and
92 deletions
+258
-92
compiler.cpp
src/contrib/mlir/compiler.cpp
+75
-77
compiler.hpp
src/contrib/mlir/compiler.hpp
+9
-13
ops.cpp
src/contrib/mlir/dialect/ops.cpp
+33
-0
ops.td
src/contrib/mlir/dialect/ops.td
+19
-1
type.hpp
src/contrib/mlir/dialect/type.hpp
+1
-0
lowerer.cpp
src/contrib/mlir/lowerer.cpp
+118
-1
op_lowerers.inc
src/contrib/mlir/op_lowerers.inc
+1
-0
ops_supported.inc
src/contrib/mlir/ops_supported.inc
+1
-0
mlir_subgraph_extraction.cpp
src/contrib/mlir/pass/mlir_subgraph_extraction.cpp
+1
-0
No files found.
src/contrib/mlir/compiler.cpp
View file @
c04c0349
...
@@ -30,6 +30,7 @@
...
@@ -30,6 +30,7 @@
#include "ngraph/op/divide.hpp"
#include "ngraph/op/divide.hpp"
#include "ngraph/op/dot.hpp"
#include "ngraph/op/dot.hpp"
#include "ngraph/op/experimental/compiled_kernel.hpp"
#include "ngraph/op/experimental/compiled_kernel.hpp"
#include "ngraph/op/gather.hpp"
#include "ngraph/op/greater.hpp"
#include "ngraph/op/greater.hpp"
#include "ngraph/op/less.hpp"
#include "ngraph/op/less.hpp"
#include "ngraph/op/maximum.hpp"
#include "ngraph/op/maximum.hpp"
...
@@ -63,6 +64,7 @@
...
@@ -63,6 +64,7 @@
using
llvm
::
SmallVector
;
using
llvm
::
SmallVector
;
using
llvm
::
StringRef
;
using
llvm
::
StringRef
;
using
llvm
::
make_unique
;
using
llvm
::
make_unique
;
using
llvm
::
ArrayRef
;
using
namespace
ngraph
::
runtime
::
ngmlir
;
using
namespace
ngraph
::
runtime
::
ngmlir
;
...
@@ -282,11 +284,20 @@ void MLIRCompiler::build_ng_dialect()
...
@@ -282,11 +284,20 @@ void MLIRCompiler::build_ng_dialect()
throw
unsupported_op
{
std
::
string
{
"The MLIR backend doesn't currently implement the '"
}
+
throw
unsupported_op
{
std
::
string
{
"The MLIR backend doesn't currently implement the '"
}
+
np
->
description
()
+
"' operation"
};
np
->
description
()
+
"' operation"
};
}
}
mlir
::
Value
*
mlir_value
=
it
->
second
(
*
this
,
np
.
get
());
mlir
::
Operation
*
op
=
it
->
second
(
*
this
,
np
.
get
());
// builders that have multiple result values will update the value map, and set their ret values to null
// This assumes simple 1:1 mapping between output edges and generated MLIR op results
if
(
mlir_value
)
// If the mapping is more complex, the create_op helper can return null operation
// and handles populating the value map itself
if
(
op
)
{
{
update_tensor_value
(
np
->
get_output_tensor_ptr
().
get
(),
mlir_value
);
for
(
auto
i
=
0
;
i
<
op
->
getNumResults
();
i
++
)
{
mlir
::
Value
*
result
=
op
->
getResult
(
i
);
if
(
result
)
{
update_tensor_value
(
np
->
get_output_tensor_ptr
(
i
).
get
(),
result
);
}
}
}
}
}
}
create_return
();
create_return
();
...
@@ -299,133 +310,125 @@ namespace ngraph
...
@@ -299,133 +310,125 @@ namespace ngraph
namespace
ngmlir
namespace
ngmlir
{
{
template
<>
template
<>
mlir
::
Value
*
MLIRCompiler
::
COMPILE_OP_DECL
(
ngraph
::
op
::
Add
)
mlir
::
Operation
*
MLIRCompiler
::
COMPILE_OP_DECL
(
ngraph
::
op
::
Add
)
{
{
return
compiler
.
create_
binary
_op
<
mlir
::
NGAddOp
>
(
ng_node
);
return
compiler
.
create_
generic
_op
<
mlir
::
NGAddOp
>
(
ng_node
);
}
}
template
<>
template
<>
mlir
::
Value
*
MLIRCompiler
::
COMPILE_OP_DECL
(
ngraph
::
op
::
Subtract
)
mlir
::
Operation
*
MLIRCompiler
::
COMPILE_OP_DECL
(
ngraph
::
op
::
Subtract
)
{
{
return
compiler
.
create_
binary
_op
<
mlir
::
NGSubOp
>
(
ng_node
);
return
compiler
.
create_
generic
_op
<
mlir
::
NGSubOp
>
(
ng_node
);
}
}
template
<>
template
<>
mlir
::
Value
*
MLIRCompiler
::
COMPILE_OP_DECL
(
ngraph
::
op
::
Multiply
)
mlir
::
Operation
*
MLIRCompiler
::
COMPILE_OP_DECL
(
ngraph
::
op
::
Multiply
)
{
{
return
compiler
.
create_
binary
_op
<
mlir
::
NGMulOp
>
(
ng_node
);
return
compiler
.
create_
generic
_op
<
mlir
::
NGMulOp
>
(
ng_node
);
}
}
template
<>
template
<>
mlir
::
Value
*
MLIRCompiler
::
COMPILE_OP_DECL
(
ngraph
::
op
::
Divide
)
mlir
::
Operation
*
MLIRCompiler
::
COMPILE_OP_DECL
(
ngraph
::
op
::
Divide
)
{
{
return
compiler
.
create_
binary
_op
<
mlir
::
NGDivOp
>
(
ng_node
);
return
compiler
.
create_
generic
_op
<
mlir
::
NGDivOp
>
(
ng_node
);
}
}
template
<>
template
<>
mlir
::
Value
*
MLIRCompiler
::
COMPILE_OP_DECL
(
ngraph
::
op
::
Greater
)
mlir
::
Operation
*
MLIRCompiler
::
COMPILE_OP_DECL
(
ngraph
::
op
::
Greater
)
{
{
return
compiler
.
create_
binary
_op
<
mlir
::
NGGreaterOp
>
(
ng_node
);
return
compiler
.
create_
generic
_op
<
mlir
::
NGGreaterOp
>
(
ng_node
);
}
}
template
<>
template
<>
mlir
::
Value
*
MLIRCompiler
::
COMPILE_OP_DECL
(
ngraph
::
op
::
Less
)
mlir
::
Operation
*
MLIRCompiler
::
COMPILE_OP_DECL
(
ngraph
::
op
::
Less
)
{
{
return
compiler
.
create_
binary
_op
<
mlir
::
NGLessOp
>
(
ng_node
);
return
compiler
.
create_
generic
_op
<
mlir
::
NGLessOp
>
(
ng_node
);
}
}
template
<>
template
<>
mlir
::
Value
*
MLIRCompiler
::
COMPILE_OP_DECL
(
ngraph
::
op
::
Maximum
)
mlir
::
Operation
*
MLIRCompiler
::
COMPILE_OP_DECL
(
ngraph
::
op
::
Maximum
)
{
{
return
compiler
.
create_
binary
_op
<
mlir
::
NGMaxOp
>
(
ng_node
);
return
compiler
.
create_
generic
_op
<
mlir
::
NGMaxOp
>
(
ng_node
);
}
}
template
<>
template
<>
mlir
::
Value
*
MLIRCompiler
::
COMPILE_OP_DECL
(
ngraph
::
op
::
Minimum
)
mlir
::
Operation
*
MLIRCompiler
::
COMPILE_OP_DECL
(
ngraph
::
op
::
Minimum
)
{
{
return
compiler
.
create_
binary
_op
<
mlir
::
NGMinOp
>
(
ng_node
);
return
compiler
.
create_
generic
_op
<
mlir
::
NGMinOp
>
(
ng_node
);
}
}
template
<>
template
<>
mlir
::
Value
*
MLIRCompiler
::
COMPILE_OP_DECL
(
ngraph
::
op
::
ArgMax
)
mlir
::
Operation
*
MLIRCompiler
::
COMPILE_OP_DECL
(
ngraph
::
op
::
ArgMax
)
{
{
return
compiler
.
create_index_reduction
<
mlir
::
NGArgMaxRedOp
>
(
ng_node
);
return
compiler
.
create_index_reduction
<
mlir
::
NGArgMaxRedOp
>
(
ng_node
);
}
}
template
<>
template
<>
mlir
::
Value
*
MLIRCompiler
::
COMPILE_OP_DECL
(
ngraph
::
op
::
ArgMin
)
mlir
::
Operation
*
MLIRCompiler
::
COMPILE_OP_DECL
(
ngraph
::
op
::
ArgMin
)
{
{
return
compiler
.
create_index_reduction
<
mlir
::
NGArgMinRedOp
>
(
ng_node
);
return
compiler
.
create_index_reduction
<
mlir
::
NGArgMinRedOp
>
(
ng_node
);
}
}
template
<>
template
<>
mlir
::
Value
*
MLIRCompiler
::
COMPILE_OP_DECL
(
ngraph
::
op
::
Dot
)
mlir
::
Operation
*
MLIRCompiler
::
COMPILE_OP_DECL
(
ngraph
::
op
::
Dot
)
{
{
return
compiler
.
create_
binary
_op
<
mlir
::
NGDotOp
>
(
ng_node
);
return
compiler
.
create_
generic
_op
<
mlir
::
NGDotOp
>
(
ng_node
);
}
}
template
<>
template
<>
mlir
::
Value
*
MLIRCompiler
::
COMPILE_OP_DECL
(
ngraph
::
op
::
Concat
)
mlir
::
Operation
*
MLIRCompiler
::
COMPILE_OP_DECL
(
ngraph
::
op
::
Concat
)
{
{
return
compiler
.
create_concat
(
ng_node
);
auto
ng_node_concat
=
static_cast
<
const
ngraph
::
op
::
Concat
*>
(
ng_node
);
auto
op
=
compiler
.
create_generic_op
<
mlir
::
NGConcatOp
>
(
ng_node
);
op
->
setAttr
(
"concatenation_axis"
,
compiler
.
m_builder
->
getI64IntegerAttr
(
ng_node_concat
->
get_concatenation_axis
()));
return
op
;
}
}
template
<>
template
<>
mlir
::
Value
*
MLIRCompiler
::
COMPILE_OP_DECL
(
ngraph
::
op
::
Relu
)
mlir
::
Operation
*
MLIRCompiler
::
COMPILE_OP_DECL
(
ngraph
::
op
::
Gather
)
{
{
return
compiler
.
create_unary_op
<
mlir
::
NGReluOp
>
(
ng_node
);
auto
ng_node_gather
=
static_cast
<
const
ngraph
::
op
::
Gather
*>
(
ng_node
);
auto
op
=
compiler
.
create_generic_op
<
mlir
::
NGGatherOp
>
(
ng_node
);
op
->
setAttr
(
"axis"
,
compiler
.
m_builder
->
getI64IntegerAttr
(
ng_node_gather
->
get_axis
()));
return
op
;
}
}
}
}
}
}
}
}
const
MLIRCompiler
::
MLIRCompOpMap
MLIRCompiler
::
op_dispatcher
{
template
<
typename
Op
>
#define MLIR_OP(OP) {TI(ngraph::op::OP), &MLIRCompiler::create_op<ngraph::op::OP>},
mlir
::
Operation
*
MLIRCompiler
::
create_generic_op
(
const
ngraph
::
Node
*
ng_node
)
#include "ops_supported.inc"
};
template
<
typename
UnaryOp
>
mlir
::
Value
*
MLIRCompiler
::
create_unary_op
(
const
ngraph
::
Node
*
ng_node
)
{
auto
lhs
=
ng_node
->
get_argument
(
0
)
->
get_output_tensor_ptr
();
auto
lhs_v
=
get_tensor_value
(
lhs
.
get
()).
m_value
;
auto
res_type
=
get_mlir_type
(
ng_node
->
get_output_tensor_ptr
().
get
());
return
m_builder
->
create
<
UnaryOp
>
(
mlir
::
UnknownLoc
::
get
(
&
m_context
),
res_type
,
lhs_v
)
.
getResult
();
}
template
<
typename
BinOp
>
mlir
::
Value
*
MLIRCompiler
::
create_binary_op
(
const
ngraph
::
Node
*
ng_node
)
{
auto
lhs
=
ng_node
->
get_argument
(
0
)
->
get_output_tensor_ptr
();
auto
rhs
=
ng_node
->
get_argument
(
1
)
->
get_output_tensor_ptr
();
auto
lhs_v
=
get_tensor_value
(
lhs
.
get
()).
m_value
;
auto
rhs_v
=
get_tensor_value
(
rhs
.
get
()).
m_value
;
auto
res_type
=
get_mlir_type
(
ng_node
->
get_output_tensor_ptr
().
get
());
return
m_builder
->
create
<
BinOp
>
(
mlir
::
UnknownLoc
::
get
(
&
m_context
),
res_type
,
lhs_v
,
rhs_v
)
.
getResult
();
}
mlir
::
Value
*
MLIRCompiler
::
create_concat
(
const
ngraph
::
Node
*
ng_node
)
{
{
std
::
vector
<
mlir
::
Value
*>
arg_values
;
std
::
vector
<
mlir
::
Value
*>
arg_values
;
auto
ng_node_concat
=
static_cast
<
const
ngraph
::
op
::
Concat
*>
(
ng_node
)
;
std
::
vector
<
mlir
::
Type
>
res_types
;
for
(
auto
&
arg
:
ng_node
->
get_arguments
())
for
(
auto
&
arg
:
ng_node
->
get_arguments
())
{
{
auto
arg_tensor
=
arg
->
get_output_tensor_ptr
();
auto
arg_tensor
=
arg
->
get_output_tensor_ptr
();
auto
arg_v
=
get_tensor_value
(
arg_tensor
.
get
()).
m_value
;
auto
arg_v
=
get_tensor_value
(
arg_tensor
.
get
()).
m_value
;
arg_values
.
push_back
(
arg_v
);
arg_values
.
push_back
(
arg_v
);
}
}
auto
res_type
=
get_mlir_type
(
ng_node
->
get_output_tensor_ptr
().
get
());
return
m_builder
for
(
auto
&
output
:
ng_node
->
outputs
())
->
create
<
mlir
::
NGConcatOp
>
(
{
mlir
::
UnknownLoc
::
get
(
&
m_context
),
res_types
.
push_back
(
get_mlir_type
(
output
.
get_tensor_ptr
().
get
()));
res_type
,
}
arg_values
,
m_builder
->
getI64IntegerAttr
(
ng_node_concat
->
get_concatenation_axis
()))
return
(
m_builder
->
create
<
Op
,
.
getResult
();
ArrayRef
<
mlir
::
Type
>
,
ArrayRef
<
mlir
::
Value
*>
,
ArrayRef
<
mlir
::
NamedAttribute
>>
(
mlir
::
UnknownLoc
::
get
(
&
m_context
),
res_types
,
arg_values
,
{
/* no attrs */
}))
.
getOperation
();
}
}
const
MLIRCompiler
::
MLIRCompOpMap
MLIRCompiler
::
op_dispatcher
{
#define MLIR_OP(OP) {TI(ngraph::op::OP), &MLIRCompiler::create_op<ngraph::op::OP>},
#include "ops_supported.inc"
};
void
MLIRCompiler
::
create_return
()
void
MLIRCompiler
::
create_return
()
{
{
std
::
vector
<
mlir
::
Value
*>
value_list
;
std
::
vector
<
mlir
::
Value
*>
value_list
;
...
@@ -437,21 +440,16 @@ void MLIRCompiler::create_return()
...
@@ -437,21 +440,16 @@ void MLIRCompiler::create_return()
}
}
template
<
typename
RedOp
>
template
<
typename
RedOp
>
mlir
::
Value
*
MLIRCompiler
::
create_index_reduction
(
const
ngraph
::
Node
*
ng_node
)
mlir
::
Operation
*
MLIRCompiler
::
create_index_reduction
(
const
ngraph
::
Node
*
ng_node
)
{
{
auto
*
idx_red
=
static_cast
<
const
ngraph
::
op
::
util
::
IndexReduction
*>
(
ng_node
);
auto
*
idx_red
=
static_cast
<
const
ngraph
::
op
::
util
::
IndexReduction
*>
(
ng_node
);
auto
op
=
create_generic_op
<
RedOp
>
(
ng_node
);
auto
arg
=
idx_red
->
get_argument
(
0
);
mlir
::
ArrayAttr
red_axes_attr
=
size_t
red_axis
=
idx_red
->
get_reduction_axis
();
m_builder
->
getI64ArrayAttr
({(
int64_t
)
idx_red
->
get_reduction_axis
()});
op
->
setAttr
(
"axes"
,
red_axes_attr
);
mlir
::
Value
*
arg_val
=
get_tensor_value
(
arg
->
get_output_tensor_ptr
().
get
()).
m_value
;
return
op
;
mlir
::
ArrayAttr
red_axes_attr
=
m_builder
->
getI64ArrayAttr
({(
int64_t
)
red_axis
});
return
m_builder
->
create
<
RedOp
>
(
mlir
::
UnknownLoc
::
get
(
&
m_context
),
get_mlir_type
(
ng_node
),
arg_val
,
red_axes_attr
)
.
getResult
();
}
}
// Binds MLIR function arguments to the proper values. This includes externally allocated tensors
// Binds MLIR function arguments to the proper values. This includes externally allocated tensors
// helpers to be used inside the function.
// helpers to be used inside the function.
void
MLIRCompiler
::
bind_arguments
()
void
MLIRCompiler
::
bind_arguments
()
...
...
src/contrib/mlir/compiler.hpp
View file @
c04c0349
...
@@ -98,25 +98,21 @@ namespace ngraph
...
@@ -98,25 +98,21 @@ namespace ngraph
void
build_ng_dialect
();
void
build_ng_dialect
();
template
<
typename
OP
>
template
<
typename
Op
>
static
mlir
::
Value
*
create_op
(
MLIRCompiler
&
compiler
,
const
ngraph
::
Node
*
ng_node
)
static
mlir
::
Operation
*
create_op
(
MLIRCompiler
&
compiler
,
const
ngraph
::
Node
*
ng_node
)
{
{
throw
std
::
runtime_error
(
"Unimplemented op '"
+
ng_node
->
description
()
+
throw
std
::
runtime_error
(
"Unimplemented op '"
+
ng_node
->
description
()
+
"' in MLIR Compiler"
);
"' in MLIR Compiler"
);
}
}
template
<
typename
UnaryOp
>
// Generic op lowerer to ng dialect.
mlir
::
Value
*
create_unary_op
(
const
ngraph
::
Node
*
ng_node
);
// Simply maps ngraph tensors to values and generate an OP. No op-specific logic.
template
<
typename
Op
>
template
<
typename
BinOp
>
mlir
::
Operation
*
create_generic_op
(
const
ngraph
::
Node
*
ng_node
);
mlir
::
Value
*
create_binary_op
(
const
ngraph
::
Node
*
ng_node
);
// TODO(amprocte): Can we have a create_variadic_op that is able to handle the
// attributes?
mlir
::
Value
*
create_concat
(
const
ngraph
::
Node
*
ng_node
);
template
<
typename
RedOp
>
template
<
typename
RedOp
>
mlir
::
Value
*
create_index_reduction
(
const
ngraph
::
Node
*
ng_node
);
mlir
::
Operation
*
create_index_reduction
(
const
ngraph
::
Node
*
ng_node
);
void
create_return
();
void
create_return
();
...
@@ -150,7 +146,7 @@ namespace ngraph
...
@@ -150,7 +146,7 @@ namespace ngraph
using
TensorToInfo
=
std
::
pair
<
descriptor
::
Tensor
*
,
TensorInfo
>
;
using
TensorToInfo
=
std
::
pair
<
descriptor
::
Tensor
*
,
TensorInfo
>
;
using
TensorToInfoMap
=
std
::
unordered_map
<
descriptor
::
Tensor
*
,
TensorInfo
>
;
using
TensorToInfoMap
=
std
::
unordered_map
<
descriptor
::
Tensor
*
,
TensorInfo
>
;
using
MLIRCompOpFunction
=
using
MLIRCompOpFunction
=
std
::
function
<
mlir
::
Value
*
(
MLIRCompiler
&
compiler
,
const
ngraph
::
Node
*
)
>
;
std
::
function
<
mlir
::
Operation
*
(
MLIRCompiler
&
compiler
,
const
ngraph
::
Node
*
)
>
;
using
MLIRCompOpMap
=
std
::
unordered_map
<
std
::
type_index
,
MLIRCompOpFunction
>
;
using
MLIRCompOpMap
=
std
::
unordered_map
<
std
::
type_index
,
MLIRCompOpFunction
>
;
// Maps tensor to the value it represents in the IR
// Maps tensor to the value it represents in the IR
...
...
src/contrib/mlir/dialect/ops.cpp
View file @
c04c0349
...
@@ -168,6 +168,39 @@ static mlir::LogicalResult verifyCmpOp(T* op)
...
@@ -168,6 +168,39 @@ static mlir::LogicalResult verifyCmpOp(T* op)
return
mlir
::
success
();
return
mlir
::
success
();
}
}
template
<>
mlir
::
LogicalResult
verifyOp
(
NGGatherOp
*
op
)
{
Type
ty
=
op
->
params
()
->
getType
();
NGTensorType
inputType
=
ty
.
cast
<
NGTensorType
>
();
ty
=
op
->
indices
()
->
getType
();
NGTensorType
indicesType
=
ty
.
cast
<
NGTensorType
>
();
// ensure axis < params rank
if
(
op
->
axis
().
getSExtValue
()
>=
inputType
.
getRank
())
return
op
->
emitOpError
(
"Gather axis is larger than input rank"
);
ty
=
indicesType
.
getElementType
();
// ensure indices are I32 or I64
if
(
!
ty
.
isa
<
NGIntegerType
>
())
return
op
->
emitOpError
(
"Indices tensor is not of Integer type"
);
NGIntegerType
indicesEltType
=
ty
.
cast
<
NGIntegerType
>
();
if
(
!
indicesEltType
.
isInt32
()
&&
!
indicesEltType
.
isInt64
())
return
op
->
emitOpError
(
"Indices tensor is not of I32 or I64 type"
);
mlir
::
Type
r0
=
op
->
res
()
->
getType
();
NGTensorType
resType
=
r0
.
cast
<
NGTensorType
>
();
// ensure result is compatible with input
if
(
!
resType
.
getRank
()
==
inputType
.
getRank
()
+
indicesType
.
getRank
()
-
1
)
return
op
->
emitOpError
(
"Incompatible result shape and/or type"
);
return
mlir
::
success
();
}
namespace
mlir
namespace
mlir
{
{
#define GET_OP_CLASSES
#define GET_OP_CLASSES
...
...
src/contrib/mlir/dialect/ops.td
View file @
c04c0349
...
@@ -200,7 +200,7 @@ class NG_Axis_Reduction_Op<string mnemonic, list<OpTrait> traits = []> :
...
@@ -200,7 +200,7 @@ class NG_Axis_Reduction_Op<string mnemonic, list<OpTrait> traits = []> :
{
{
let summary = "Base class for reduction operations that perform a reduction "
let summary = "Base class for reduction operations that perform a reduction "
"across the axes of a single tensor.";
"across the axes of a single tensor.";
let description =
"Axes are represented as an array of I64 attributes."
;
let description =
[{Axes are represented as an array of I64 attributes.}]
;
let parser = [{ NGRAPH_CHECK(false, "No parser support"); return mlir::failure(); }];
let parser = [{ NGRAPH_CHECK(false, "No parser support"); return mlir::failure(); }];
...
@@ -257,6 +257,24 @@ def NGAnyRedOp : NG_Axis_Reduction_Op<"any.red">
...
@@ -257,6 +257,24 @@ def NGAnyRedOp : NG_Axis_Reduction_Op<"any.red">
let verifier = [{ return verifyLogicalReductionOp(this); }];
let verifier = [{ return verifyLogicalReductionOp(this); }];
}
}
// Gather
def NGGatherOp :
NG_OneResult_Op<"gather", [NoSideEffect]>,
Arguments<(ins NG_TensorType:$params, NG_TensorType:$indices, I64Attr:$axis)>
{
let summary = "Gather slices from params along the specified axis according to indices";
let description = [{
Gather slices from axis of params according to indices
params The tensor from which slices are gathered
indices Index tensor. Data type must be `element::i32` or `element::i64`
axis Axis in params to gather
}];
let parser = [{ NGRAPH_CHECK(false, "No parser support"); return mlir::failure(); }];
let verifier = [{ return verifyOp(this); }];
}
// Terminator Ops
// Terminator Ops
def NGReturnOp : NG_Terminator_Op<"return">;
def NGReturnOp : NG_Terminator_Op<"return">;
...
...
src/contrib/mlir/dialect/type.hpp
View file @
c04c0349
...
@@ -199,6 +199,7 @@ namespace mlir
...
@@ -199,6 +199,7 @@ namespace mlir
}
}
Shape
getShape
()
const
{
return
m_shape
;
}
Shape
getShape
()
const
{
return
m_shape
;
}
int64_t
getRank
()
const
{
return
m_shape
.
size
();
}
EltType
getElementType
()
const
{
return
m_eltType
;
}
EltType
getElementType
()
const
{
return
m_eltType
;
}
private
:
private
:
NGTensorTypeStorage
(
EltType
eltType
,
Shape
shape
)
NGTensorTypeStorage
(
EltType
eltType
,
Shape
shape
)
...
...
src/contrib/mlir/lowerer.cpp
View file @
c04c0349
...
@@ -646,6 +646,123 @@ namespace
...
@@ -646,6 +646,123 @@ namespace
return
matchSuccess
();
return
matchSuccess
();
}
}
REWRITER
(
NGGatherOp
)
{
auto
gatherOp
=
cast
<
NGGatherOp
>
(
op
);
auto
loc
=
gatherOp
.
getLoc
();
ScopedContext
scope
(
rewriter
,
loc
);
// Get operands
Value
*
result
=
m_pass
.
buildOutputDefs
(
op
,
rewriter
)[
0
];
NGRAPH_CHECK
(
result
,
"Unexpected null result in GatherOp"
);
auto
resultTy
=
result
->
getType
().
cast
<
MemRefType
>
();
Value
*
params
=
operands
[
0
];
Value
*
indices
=
operands
[
1
];
auto
axis
=
gatherOp
.
axis
().
getSExtValue
();
// Create view to write into result.
MemRefView
vRes
(
result
),
vParams
(
params
),
vIndices
(
indices
);
// Indexed Values
IndexedValue
iRes
(
result
),
iParams
(
params
),
iIndices
(
indices
);
// Construct outer loop for params dims. Exclude the axis dim.
SmallVector
<
ValueHandle
,
4
>
paramsLbs
,
paramsUbs
;
SmallVector
<
IndexHandle
,
4
>
paramsIVs
;
SmallVector
<
int64_t
,
4
>
paramsSteps
;
SmallVector
<
ValueHandle
*
,
4
>
paramsIVPtrs
;
for
(
auto
i
=
0
;
i
<
vParams
.
rank
();
i
++
)
{
// skip gather axis
if
(
i
==
axis
)
continue
;
paramsLbs
.
push_back
(
IndexHandle
(
vParams
.
lb
(
i
)));
paramsUbs
.
push_back
(
IndexHandle
(
vParams
.
ub
(
i
)));
paramsSteps
.
push_back
(
vParams
.
step
(
i
));
}
NGRAPH_CHECK
(
paramsLbs
.
size
()
==
vParams
.
rank
()
-
1
&&
paramsUbs
.
size
()
==
paramsLbs
.
size
()
&&
paramsSteps
.
size
()
==
paramsLbs
.
size
(),
"Incorrect loop nest bounds size for gather params"
);
paramsIVs
=
IndexHandle
::
makeIndexHandles
(
vParams
.
rank
()
-
1
);
paramsIVPtrs
=
IndexHandle
::
makeIndexHandlePointers
(
paramsIVs
);
auto
indicesLbs
=
vIndices
.
getLbs
();
auto
indicesUbs
=
vIndices
.
getUbs
();
auto
indicesSteps
=
vIndices
.
getSteps
();
auto
indicesIVs
=
IndexHandle
::
makeIndexHandles
(
vIndices
.
rank
());
auto
indicesIVPtrs
=
IndexHandle
::
makeIndexHandlePointers
(
indicesIVs
);
SmallVector
<
IndexHandle
,
8
>
paramsIndices
,
resIndices
;
// Make sure we are going to create loops
NGRAPH_CHECK
(
vParams
.
rank
()
>
0
,
"Invalid size for indices steps"
);
// Let params rank : N
// Let indices rank : M
// Let axis be A
// Generate
// params loops
// for P_0: 0 -> params.dim[0]
// for P_1: 0 -> params.dim[1]
// for P_2: 0 -> params.dim[2]
// ...
// for P_(A-1):0 -> params.dim[A-1]
// for P_(A+1):0 -> params.dim[A+1]
// ...
// for P_(N-1):0 -> params.dim[N-1]
// indices loops
// for I_0:0 -> indices.dim[0]
// ...
// for I_(M-1):0 -> indices.dim[M-1]
// res[P_0, P_1, .. P_(A-1), I_0, .., I_(M-1), P_(A+1), ... P_(N-1)] =
// params[P_0, P_1, .. P_(A-1), indices[I_0, .., I_(M-1)], P_(A+1), ... P_(N-1)];
LoopNestBuilder
(
paramsIVPtrs
,
paramsLbs
,
paramsUbs
,
paramsSteps
)([
&
]
{
LoopNestBuilder
(
indicesIVPtrs
,
indicesLbs
,
indicesUbs
,
indicesSteps
)([
&
]
{
// Load axis value from indices array and cast it to Index Type
ValueHandle
axisIdx
=
ValueHandle
::
create
<
IndexCastOp
>
(
(
ValueHandle
)
iIndices
(
indicesIVs
),
rewriter
.
getIndexType
());
// construct indices for param
// [P_0, P_1, .. P_axis-1, Indices[I0, I1, .. I_k-1], P_axis+1, P_axis+2, .. P_n-1]
for
(
auto
i
=
0
,
j
=
0
;
i
<
vParams
.
rank
();
i
++
)
{
if
(
i
==
axis
)
{
paramsIndices
.
push_back
(
IndexHandle
(
axisIdx
));
}
else
{
paramsIndices
.
push_back
(
paramsIVs
[
j
++
]);
}
}
// construct indices for result
// [P_0, P_1, .. P_axis-1, I0, I1, .. I_k-1, P_axis+1, P_axis+2, .. P_n-1]
for
(
auto
i
=
0
,
j
=
0
;
i
<
vParams
.
rank
()
+
vIndices
.
rank
()
-
1
;)
{
if
(
i
==
axis
&&
indicesIVs
.
size
()
>
0
)
{
resIndices
.
append
(
indicesIVs
.
begin
(),
indicesIVs
.
end
());
i
+=
indicesIVs
.
size
();
}
else
{
resIndices
.
push_back
(
paramsIVs
[
j
++
]);
i
++
;
}
}
// Store into result
iRes
(
resIndices
)
=
iParams
(
paramsIndices
);
});
});
rewriter
.
replaceOp
(
op
,
{
result
});
return
matchSuccess
();
}
REWRITER
(
NGReturnOp
)
REWRITER
(
NGReturnOp
)
{
{
rewriter
.
replaceOpWithNewOp
<
ReturnOp
>
(
op
);
rewriter
.
replaceOpWithNewOp
<
ReturnOp
>
(
op
);
...
@@ -653,7 +770,7 @@ namespace
...
@@ -653,7 +770,7 @@ namespace
}
}
#undef REWRITER
#undef REWRITER
/// End of pattern matchers
template
<
typename
OP
>
template
<
typename
OP
>
void
lower_binary_elementwise
(
Operation
*
op
,
void
lower_binary_elementwise
(
Operation
*
op
,
ArrayRef
<
Value
*>
operands
,
ArrayRef
<
Value
*>
operands
,
...
...
src/contrib/mlir/op_lowerers.inc
View file @
c04c0349
...
@@ -29,6 +29,7 @@ MLIR_OP(NGArgMinRedOp)
...
@@ -29,6 +29,7 @@ MLIR_OP(NGArgMinRedOp)
MLIR_OP
(
NGConcatOp
)
MLIR_OP
(
NGConcatOp
)
MLIR_OP
(
NGDivOp
)
MLIR_OP
(
NGDivOp
)
MLIR_OP
(
NGDotOp
)
MLIR_OP
(
NGDotOp
)
MLIR_OP
(
NGGatherOp
)
MLIR_OP
(
NGGreaterOp
)
MLIR_OP
(
NGGreaterOp
)
MLIR_OP
(
NGLessOp
)
MLIR_OP
(
NGLessOp
)
MLIR_OP
(
NGMulOp
)
MLIR_OP
(
NGMulOp
)
...
...
src/contrib/mlir/ops_supported.inc
View file @
c04c0349
...
@@ -9,6 +9,7 @@ MLIR_OP(ArgMax)
...
@@ -9,6 +9,7 @@ MLIR_OP(ArgMax)
MLIR_OP
(
Divide
)
MLIR_OP
(
Divide
)
MLIR_OP
(
Dot
)
MLIR_OP
(
Dot
)
MLIR_OP
(
Concat
)
MLIR_OP
(
Concat
)
MLIR_OP
(
Gather
)
MLIR_OP
(
Greater
)
MLIR_OP
(
Greater
)
MLIR_OP
(
Less
)
MLIR_OP
(
Less
)
MLIR_OP
(
Maximum
)
MLIR_OP
(
Maximum
)
...
...
src/contrib/mlir/pass/mlir_subgraph_extraction.cpp
View file @
c04c0349
...
@@ -25,6 +25,7 @@
...
@@ -25,6 +25,7 @@
#include "ngraph/op/divide.hpp"
#include "ngraph/op/divide.hpp"
#include "ngraph/op/dot.hpp"
#include "ngraph/op/dot.hpp"
#include "ngraph/op/experimental/compiled_kernel.hpp"
#include "ngraph/op/experimental/compiled_kernel.hpp"
#include "ngraph/op/gather.hpp"
#include "ngraph/op/get_output_element.hpp"
#include "ngraph/op/get_output_element.hpp"
#include "ngraph/op/greater.hpp"
#include "ngraph/op/greater.hpp"
#include "ngraph/op/less.hpp"
#include "ngraph/op/less.hpp"
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment