Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
N
ngraph
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
ngraph
Commits
ba1141e0
Unverified
Commit
ba1141e0
authored
Aug 06, 2019
by
Ewa Tusień
Committed by
GitHub
Aug 06, 2019
Browse files
Options
Browse Files
Download
Plain Diff
Merge branch 'master' into etusien/depth_to_space
parents
cad5a6b7
31fae943
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
72 changed files
with
697 additions
and
128 deletions
+697
-128
ngversions.html
doc/sphinx/ngraph_theme/ngversions.html
+1
-1
conf.py
doc/sphinx/source/conf.py
+2
-2
release-notes.rst
doc/sphinx/source/project/release-notes.rst
+18
-8
pad.cpp
src/ngraph/op/pad.cpp
+3
-3
pad.hpp
src/ngraph/op/pad.hpp
+14
-2
parameter.hpp
src/ngraph/op/parameter.hpp
+1
-0
passthrough.cpp
src/ngraph/op/passthrough.cpp
+15
-0
passthrough.hpp
src/ngraph/op/passthrough.hpp
+7
-0
power.cpp
src/ngraph/op/power.cpp
+1
-3
power.hpp
src/ngraph/op/power.hpp
+3
-2
product.cpp
src/ngraph/op/product.cpp
+0
-4
product.hpp
src/ngraph/op/product.hpp
+1
-1
quantize.hpp
src/ngraph/op/quantize.hpp
+2
-0
quantized_convolution.hpp
src/ngraph/op/quantized_convolution.hpp
+2
-0
relu.cpp
src/ngraph/op/relu.cpp
+1
-1
relu.hpp
src/ngraph/op/relu.hpp
+2
-1
replace_slice.hpp
src/ngraph/op/replace_slice.hpp
+7
-0
reverse.cpp
src/ngraph/op/reverse.cpp
+3
-3
reverse.hpp
src/ngraph/op/reverse.hpp
+8
-2
reverse_sequence.cpp
src/ngraph/op/reverse_sequence.cpp
+6
-6
reverse_sequence.hpp
src/ngraph/op/reverse_sequence.hpp
+5
-2
scatter_add.hpp
src/ngraph/op/scatter_add.hpp
+5
-4
scatter_nd_add.hpp
src/ngraph/op/scatter_nd_add.hpp
+5
-4
select.cpp
src/ngraph/op/select.cpp
+5
-5
sigmoid.cpp
src/ngraph/op/sigmoid.cpp
+4
-4
sigmoid.hpp
src/ngraph/op/sigmoid.hpp
+4
-2
sign.cpp
src/ngraph/op/sign.cpp
+1
-1
sign.hpp
src/ngraph/op/sign.hpp
+2
-1
sin.cpp
src/ngraph/op/sin.cpp
+2
-2
sin.hpp
src/ngraph/op/sin.hpp
+2
-1
sinh.cpp
src/ngraph/op/sinh.cpp
+1
-1
sinh.hpp
src/ngraph/op/sinh.hpp
+2
-1
slice.cpp
src/ngraph/op/slice.cpp
+1
-5
slice.hpp
src/ngraph/op/slice.hpp
+1
-1
softmax.cpp
src/ngraph/op/softmax.cpp
+2
-2
softmax.hpp
src/ngraph/op/softmax.hpp
+3
-1
sqrt.cpp
src/ngraph/op/sqrt.cpp
+2
-2
sqrt.hpp
src/ngraph/op/sqrt.hpp
+2
-1
stop_gradient.cpp
src/ngraph/op/stop_gradient.cpp
+1
-1
stop_gradient.hpp
src/ngraph/op/stop_gradient.hpp
+2
-1
subtract.cpp
src/ngraph/op/subtract.cpp
+2
-2
sum.cpp
src/ngraph/op/sum.cpp
+0
-4
sum.hpp
src/ngraph/op/sum.hpp
+1
-1
tan.cpp
src/ngraph/op/tan.cpp
+2
-2
tan.hpp
src/ngraph/op/tan.hpp
+2
-1
tanh.cpp
src/ngraph/op/tanh.cpp
+2
-2
tanh.hpp
src/ngraph/op/tanh.hpp
+2
-1
topk.cpp
src/ngraph/op/topk.cpp
+2
-5
topk.hpp
src/ngraph/op/topk.hpp
+1
-1
constant_folding.cpp
src/ngraph/pass/constant_folding.cpp
+0
-0
int_executable.cpp
src/ngraph/runtime/interpreter/int_executable.cpp
+0
-2
int_executable.hpp
src/ngraph/runtime/interpreter/int_executable.hpp
+0
-0
add.hpp
src/ngraph/runtime/reference/add.hpp
+19
-0
and.hpp
src/ngraph/runtime/reference/and.hpp
+14
-0
autobroadcast_binop.hpp
src/ngraph/runtime/reference/autobroadcast_binop.hpp
+146
-0
divide.hpp
src/ngraph/runtime/reference/divide.hpp
+60
-0
equal.hpp
src/ngraph/runtime/reference/equal.hpp
+14
-0
greater.hpp
src/ngraph/runtime/reference/greater.hpp
+14
-0
greater_eq.hpp
src/ngraph/runtime/reference/greater_eq.hpp
+14
-0
less.hpp
src/ngraph/runtime/reference/less.hpp
+14
-0
less_eq.hpp
src/ngraph/runtime/reference/less_eq.hpp
+14
-0
maximum.hpp
src/ngraph/runtime/reference/maximum.hpp
+14
-0
minimum.hpp
src/ngraph/runtime/reference/minimum.hpp
+14
-0
multiply.hpp
src/ngraph/runtime/reference/multiply.hpp
+14
-0
not_equal.hpp
src/ngraph/runtime/reference/not_equal.hpp
+14
-0
or.hpp
src/ngraph/runtime/reference/or.hpp
+14
-0
power.hpp
src/ngraph/runtime/reference/power.hpp
+14
-0
subtract.hpp
src/ngraph/runtime/reference/subtract.hpp
+14
-0
xor.hpp
src/ngraph/runtime/reference/xor.hpp
+14
-0
serializer.cpp
src/ngraph/serializer.cpp
+1
-1
constant_folding.cpp
test/constant_folding.cpp
+98
-20
cpu_test.cpp
test/cpu_test.cpp
+14
-5
No files found.
doc/sphinx/ngraph_theme/ngversions.html
View file @
ba1141e0
...
...
@@ -9,11 +9,11 @@
<dt>
{{ _('Recent Versions') }}
</dt>
<dd>
<!-- Until our https://docs.ngraph.ai/ publishing is set up, we link to GitHub -->
<ul>
<li><a
href=
"https://github.com/NervanaSystems/ngraph/releases/tag/v0.24.0"
>
0.24.0
</a></li>
<li><a
href=
"https://github.com/NervanaSystems/ngraph/releases/tag/v0.23.0"
>
0.23.0
</a></li>
<li><a
href=
"https://github.com/NervanaSystems/ngraph/releases/tag/v0.22.0"
>
0.22.0
</a></li>
<li><a
href=
"https://github.com/NervanaSystems/ngraph/releases/tag/v0.21.0"
>
0.21.0
</a></li>
<li><a
href=
"https://github.com/NervanaSystems/ngraph/releases/tag/v0.20.0"
>
0.20.0
</a></li>
<li><a
href=
"https://github.com/NervanaSystems/ngraph/releases/tag/v0.19.0"
>
0.19.0
</a></li>
</ul></dd>
</dl>
<dl>
...
...
doc/sphinx/source/conf.py
View file @
ba1141e0
...
...
@@ -73,11 +73,11 @@ author = 'Intel Corporation'
# built documents.
#
# The short X.Y version.
version
=
'0.2
4
'
version
=
'0.2
5
'
# The Documentation full version, including alpha/beta/rc tags. Some features
# available in the latest code will not necessarily be documented first
release
=
'0.2
4
.0'
release
=
'0.2
5
.0'
# The language for content autogenerated by Sphinx. Refer to documentation
# for a list of supported languages.
...
...
doc/sphinx/source/project/release-notes.rst
View file @
ba1141e0
...
...
@@ -16,14 +16,11 @@ We are pleased to announce the release of version |version|-doc.
Core updates for |version|
~~~~~~~~~~~~~~~~~~~~~~~~~~~
+ More ONNX ops
+ Elementwise divide defaults to Python semantics
+ GenerateMask seed optional
+ Graph visualization improvements
+ Preserve control dependencies in more places
+ GetOutputElement has single input
+ Better PlaidML support
+ Double-buffering support
+ Constant folding
+ Support for static linking
+ Additional ops
.. Latest doc updates
.. ~~~~~~~~~~~~~~~~~~
...
...
@@ -37,6 +34,19 @@ Core updates for |version|
Changelog on Previous Releases
==============================
0.24
----
+ Fixes reshape sink/swim issue
+ More ONNX ops
+ Elementwise divide defaults to Python semantics
+ GenerateMask seed optional
+ Graph visualization improvements
+ Preserve control dependencies in more places
+ GetOutputElement has single input
.. + Add instructions how to build ``NGRAPH_PLAIDML`` backend.
0.23
----
...
...
src/ngraph/op/pad.cpp
View file @
ba1141e0
...
...
@@ -23,12 +23,12 @@ using namespace ngraph;
const
string
op
::
Pad
::
type_name
{
"Pad"
};
op
::
Pad
::
Pad
(
const
shared_ptr
<
Node
>&
arg
,
const
shared_ptr
<
Node
>&
arg_pad_value
,
op
::
Pad
::
Pad
(
const
Output
<
Node
>&
arg
,
const
Output
<
Node
>&
arg_pad_value
,
const
CoordinateDiff
&
padding_below
,
const
CoordinateDiff
&
padding_above
,
PadMode
pad_mode
)
:
Op
(
check_single_output_args
({
arg
,
arg_pad_value
})
)
:
Op
(
{
arg
,
arg_pad_value
}
)
,
m_padding_below
(
padding_below
)
,
m_padding_above
(
padding_above
)
,
m_padding_interior_fake
(
padding_below
.
size
())
...
...
src/ngraph/op/pad.hpp
View file @
ba1141e0
...
...
@@ -32,14 +32,16 @@ namespace ngraph
static
const
std
::
string
type_name
;
const
std
::
string
&
description
()
const
override
{
return
type_name
;
}
/// \brief Constructs a generic padding operation.
Pad
()
=
default
;
/// \brief Constructs a generic padding operation.
///
/// \param arg The node producing input tensor to be padded.
/// \param arg_pad_value The node producing the scalar value to be inserted for padding.
/// \param padding_below The padding-below widths.
/// \param padding_above The padding-above widths.
/// \param pad_mode The padding mode: CONSTANT(default), EDGE, REFLECT or SYMMETRIC.
Pad
(
const
std
::
shared_ptr
<
Node
>&
arg
,
const
std
::
shared_ptr
<
Node
>&
arg_pad_value
,
Pad
(
const
Output
<
Node
>&
arg
,
const
Output
<
Node
>&
arg_pad_value
,
const
CoordinateDiff
&
padding_below
,
const
CoordinateDiff
&
padding_above
,
PadMode
pad_mode
=
PadMode
::
CONSTANT
);
...
...
@@ -49,14 +51,24 @@ namespace ngraph
void
validate_and_infer_types
()
override
;
/// \return The padding-below sizes.
const
CoordinateDiff
&
get_padding_below
()
const
{
return
m_padding_below
;
}
void
set_padding_below
(
const
CoordinateDiff
&
padding_below
)
{
m_padding_below
=
padding_below
;
}
/// \return The padding-above sizes.
const
CoordinateDiff
&
get_padding_above
()
const
{
return
m_padding_above
;
}
void
set_padding_above
(
const
CoordinateDiff
&
padding_above
)
{
m_padding_below
=
padding_above
;
}
/// \brief DEPRECATED. This is just a stub for backends that used to implement the
/// interior padding feature, which is no longer supported.
/// \return Returns a shape full of zeros, with the same rank as get_padding_below().
const
Shape
&
get_padding_interior
()
const
{
return
m_padding_interior_fake
;
}
/// \return The padding mode.
PadMode
get_pad_mode
()
const
{
return
m_pad_mode
;
}
void
set_pad_mode
(
PadMode
pad_mode
)
{
m_pad_mode
=
pad_mode
;
}
/// \return The default value for Pad.
virtual
std
::
shared_ptr
<
Node
>
get_default_value
()
const
override
;
...
...
src/ngraph/op/parameter.hpp
View file @
ba1141e0
...
...
@@ -38,6 +38,7 @@ namespace ngraph
NGRAPH_API
static
const
std
::
string
type_name
;
const
std
::
string
&
description
()
const
override
{
return
type_name
;
}
Parameter
()
=
default
;
/// \brief Constructions a tensor-typed parameter node.
///
/// \param element_type The element type of the parameter.
...
...
src/ngraph/op/passthrough.cpp
View file @
ba1141e0
...
...
@@ -38,6 +38,21 @@ ngraph::op::Passthrough::Passthrough(const std::string& logical_type,
constructor_validate_and_infer_types
();
}
ngraph
::
op
::
Passthrough
::
Passthrough
(
const
std
::
string
&
logical_type
,
const
std
::
string
&
language
,
const
std
::
string
&
function
,
const
OutputVector
&
args
,
std
::
vector
<
std
::
tuple
<
element
::
Type
,
PartialShape
>>
outputs
)
:
Op
{
args
}
,
m_logical_type
{
logical_type
}
,
m_language
{
language
}
,
m_function
{
function
}
,
m_output_shapes
{
std
::
move
(
outputs
)}
{
set_output_size
(
m_output_shapes
.
size
());
constructor_validate_and_infer_types
();
}
void
ngraph
::
op
::
Passthrough
::
validate_and_infer_types
()
{
// N.B. It would be useful to have the backend deduce the output
...
...
src/ngraph/op/passthrough.hpp
View file @
ba1141e0
...
...
@@ -41,12 +41,19 @@ public:
NGRAPH_API
static
const
std
::
string
type_name
;
const
std
::
string
&
description
()
const
override
{
return
type_name
;
}
Passthrough
()
=
default
;
Passthrough
(
const
std
::
string
&
logical_type
,
// aka "What this operation is doing"
const
std
::
string
&
language
,
// The language the implementation is written in
const
std
::
string
&
function
,
// The operation implementation
const
NodeVector
&
args
,
std
::
vector
<
std
::
tuple
<
element
::
Type
,
PartialShape
>>
outputs
);
Passthrough
(
const
std
::
string
&
logical_type
,
// aka "What this operation is doing"
const
std
::
string
&
language
,
// The language the implementation is written in
const
std
::
string
&
function
,
// The operation implementation
const
OutputVector
&
args
,
std
::
vector
<
std
::
tuple
<
element
::
Type
,
PartialShape
>>
outputs
);
void
validate_and_infer_types
()
final
;
std
::
shared_ptr
<
Node
>
copy_with_new_args
(
const
NodeVector
&
new_args
)
const
final
;
...
...
src/ngraph/op/power.cpp
View file @
ba1141e0
...
...
@@ -24,9 +24,7 @@ using namespace ngraph;
const
string
op
::
Power
::
type_name
{
"Power"
};
op
::
Power
::
Power
(
const
shared_ptr
<
Node
>&
arg0
,
const
shared_ptr
<
Node
>&
arg1
,
const
AutoBroadcastSpec
&
autob
)
op
::
Power
::
Power
(
const
Output
<
Node
>&
arg0
,
const
Output
<
Node
>&
arg1
,
const
AutoBroadcastSpec
&
autob
)
:
BinaryElementwiseArithmetic
(
arg0
,
arg1
,
autob
)
{
constructor_validate_and_infer_types
();
...
...
src/ngraph/op/power.hpp
View file @
ba1141e0
...
...
@@ -42,13 +42,14 @@ namespace ngraph
NGRAPH_API
static
const
std
::
string
type_name
;
const
std
::
string
&
description
()
const
override
{
return
type_name
;
}
Power
()
=
default
;
/// \brief Constructs an exponentiation operation.
///
/// \param arg0 Node that produces the first input tensor.
/// \param arg1 Node that produces the second input tensor.
/// \param autob Auto broadcast specification
Power
(
const
std
::
shared_ptr
<
Node
>&
arg0
,
const
std
::
shared_ptr
<
Node
>&
arg1
,
Power
(
const
Output
<
Node
>&
arg0
,
const
Output
<
Node
>&
arg1
,
const
AutoBroadcastSpec
&
autob
=
AutoBroadcastSpec
());
virtual
std
::
shared_ptr
<
Node
>
...
...
src/ngraph/op/product.cpp
View file @
ba1141e0
...
...
@@ -21,10 +21,6 @@ using namespace ngraph;
const
string
op
::
Product
::
type_name
{
"Product"
};
op
::
Product
::
Product
()
{
}
op
::
Product
::
Product
(
const
Output
<
Node
>&
arg
,
const
AxisSet
&
reduction_axes
)
:
ArithmeticReduction
(
arg
,
reduction_axes
)
{
...
...
src/ngraph/op/product.hpp
View file @
ba1141e0
...
...
@@ -33,7 +33,7 @@ namespace ngraph
static
const
std
::
string
type_name
;
const
std
::
string
&
description
()
const
override
{
return
type_name
;
}
/// \brief Constructs a product reduction operation.
Product
();
Product
()
=
default
;
/// \brief Constructs a product reduction operation.
///
/// \param arg The tensor to be reduced.
...
...
src/ngraph/op/quantize.hpp
View file @
ba1141e0
...
...
@@ -92,6 +92,8 @@ namespace ngraph
const
ngraph
::
AxisSet
&
axes
,
RoundMode
round_mode
);
Quantize
()
=
default
;
void
validate_and_infer_types
()
override
;
virtual
std
::
shared_ptr
<
Node
>
...
...
src/ngraph/op/quantized_convolution.hpp
View file @
ba1141e0
...
...
@@ -66,6 +66,8 @@ namespace ngraph
const
ngraph
::
AxisSet
&
filter_axes
=
ngraph
::
AxisSet
{},
const
ngraph
::
AxisSet
&
output_axes
=
ngraph
::
AxisSet
{});
QuantizedConvolution
()
=
default
;
const
Strides
&
get_window_movement_strides
()
const
{
return
m_window_movement_strides
;
}
const
Strides
&
get_window_dilation_strides
()
const
{
return
m_window_dilation_strides
;
}
const
CoordinateDiff
&
get_padding_below
()
const
{
return
m_padding_below
;
}
...
...
src/ngraph/op/relu.cpp
View file @
ba1141e0
...
...
@@ -23,7 +23,7 @@ using namespace ngraph;
const
string
op
::
Relu
::
type_name
{
"Relu"
};
const
string
op
::
ReluBackprop
::
type_name
{
"ReluBackprop"
};
op
::
Relu
::
Relu
(
shared_ptr
<
Node
>
arg
)
op
::
Relu
::
Relu
(
const
Output
<
Node
>&
arg
)
:
UnaryElementwiseArithmetic
(
arg
)
{
constructor_validate_and_infer_types
();
...
...
src/ngraph/op/relu.hpp
View file @
ba1141e0
...
...
@@ -36,10 +36,11 @@ namespace ngraph
NGRAPH_API
static
const
std
::
string
type_name
;
const
std
::
string
&
description
()
const
override
{
return
type_name
;
}
Relu
()
=
default
;
/// \brief Constructs a Relu operation.
///
/// \param arg Node that produces the input tensor.
Relu
(
std
::
shared_ptr
<
ngraph
::
Node
>
arg
);
Relu
(
const
Output
<
ngraph
::
Node
>&
arg
);
virtual
std
::
shared_ptr
<
Node
>
copy_with_new_args
(
const
NodeVector
&
new_args
)
const
override
;
...
...
src/ngraph/op/replace_slice.hpp
View file @
ba1141e0
...
...
@@ -53,6 +53,7 @@ namespace ngraph
NGRAPH_API
static
const
std
::
string
type_name
;
const
std
::
string
&
description
()
const
override
{
return
type_name
;
}
ReplaceSlice
()
=
default
;
/// \brief Constructs a tensor slice replacement operation.
///
/// \param arg0 The tensor to overwrite into.
...
...
@@ -85,10 +86,16 @@ namespace ngraph
/// \return The inclusive lower-bound coordinates.
const
Coordinate
&
get_lower_bounds
()
const
{
return
m_lower_bounds
;
}
void
set_lower_bounds
(
const
Coordinate
&
lower_bounds
)
{
m_lower_bounds
=
lower_bounds
;
}
/// \return The exclusive upper-bound coordinates.
const
Coordinate
&
get_upper_bounds
()
const
{
return
m_upper_bounds
;
}
void
set_uppper_bounds
(
const
Coordinate
&
upper_bounds
)
{
m_upper_bounds
=
upper_bounds
;
}
/// \return The slicing strides.
const
Strides
&
get_strides
()
const
{
return
m_strides
;
}
void
set_strides
(
const
Strides
&
strides
)
{
m_strides
=
strides
;
}
protected
:
virtual
void
generate_adjoints
(
autodiff
::
Adjoints
&
adjoints
,
const
NodeVector
&
deltas
)
override
;
...
...
src/ngraph/op/reverse.cpp
View file @
ba1141e0
...
...
@@ -25,8 +25,8 @@ using namespace ngraph;
const
string
op
::
Reverse
::
type_name
{
"Reverse"
};
op
::
Reverse
::
Reverse
(
const
shared_ptr
<
Node
>&
arg
,
const
AxisSet
&
reversed_axes
)
:
Op
(
check_single_output_args
({
arg
})
)
op
::
Reverse
::
Reverse
(
const
Output
<
Node
>&
arg
,
const
AxisSet
&
reversed_axes
)
:
Op
(
{
arg
}
)
,
m_reversed_axes
(
reversed_axes
)
{
constructor_validate_and_infer_types
();
...
...
@@ -65,7 +65,7 @@ void op::Reverse::generate_adjoints(autodiff::Adjoints& adjoints, const NodeVect
{
auto
delta
=
deltas
.
at
(
0
);
auto
x
=
get_argument
(
0
);
auto
x
=
input
(
0
).
get_source_output
(
);
adjoints
.
add_delta
(
x
,
make_shared
<
op
::
Reverse
>
(
delta
,
m_reversed_axes
));
}
src/ngraph/op/reverse.hpp
View file @
ba1141e0
...
...
@@ -49,11 +49,12 @@ namespace ngraph
NGRAPH_API
static
const
std
::
string
type_name
;
const
std
::
string
&
description
()
const
override
{
return
type_name
;
}
Reverse
()
=
default
;
/// \brief Constructs a reverse operation.
///
/// \param arg The input tensor, some of whose axes are to be reversed.
/// \param reversed_axes The axes to reverse.
Reverse
(
const
std
::
shared_ptr
<
Node
>&
arg
,
const
AxisSet
&
reversed_axes
);
Reverse
(
const
Output
<
Node
>&
arg
,
const
AxisSet
&
reversed_axes
);
void
validate_and_infer_types
()
override
;
...
...
@@ -62,11 +63,16 @@ namespace ngraph
/// \return The set of axes to reverse.
const
AxisSet
&
get_reversed_axes
()
const
{
return
m_reversed_axes
;
}
void
set_reversed_axes
(
const
AxisSet
&
reversed_axes
)
{
m_reversed_axes
=
reversed_axes
;
}
protected
:
virtual
void
generate_adjoints
(
autodiff
::
Adjoints
&
adjoints
,
const
NodeVector
&
deltas
)
override
;
const
AxisSet
m_reversed_axes
;
AxisSet
m_reversed_axes
;
};
}
}
src/ngraph/op/reverse_sequence.cpp
View file @
ba1141e0
...
...
@@ -27,11 +27,11 @@ using namespace ngraph;
const
string
op
::
ReverseSequence
::
type_name
{
"ReverseSequence"
};
op
::
ReverseSequence
::
ReverseSequence
(
const
std
::
shared_ptr
<
Node
>
arg
,
const
std
::
shared_ptr
<
Node
>
seq_indices
,
op
::
ReverseSequence
::
ReverseSequence
(
const
Output
<
Node
>&
arg
,
const
Output
<
Node
>&
seq_indices
,
size_t
batch_axis
,
size_t
seq_axis
)
:
Op
(
check_single_output_args
({
arg
,
seq_indices
})
)
:
Op
(
{
arg
,
seq_indices
}
)
,
m_batch_axis
(
batch_axis
)
,
m_seq_axis
(
seq_axis
)
{
...
...
@@ -104,8 +104,8 @@ shared_ptr<Node> op::ReverseSequence::copy_with_new_args(const NodeVector& new_a
void
op
::
ReverseSequence
::
generate_adjoints
(
autodiff
::
Adjoints
&
adjoints
,
const
NodeVector
&
deltas
)
{
auto
x
=
get_argument
(
0
);
auto
rs_delta
=
make_shared
<
ReverseSequence
>
(
deltas
.
at
(
0
),
get_argument
(
1
),
m_batch_axis
,
m_seq_axis
);
auto
x
=
input
(
0
).
get_source_output
(
);
auto
rs_delta
=
make_shared
<
ReverseSequence
>
(
deltas
.
at
(
0
),
input
(
1
).
get_source_output
(
),
m_batch_axis
,
m_seq_axis
);
adjoints
.
add_delta
(
x
,
rs_delta
);
}
src/ngraph/op/reverse_sequence.hpp
View file @
ba1141e0
...
...
@@ -28,11 +28,12 @@ namespace ngraph
NGRAPH_API
static
const
std
::
string
type_name
;
const
std
::
string
&
description
()
const
override
{
return
type_name
;
}
ReverseSequence
()
=
default
;
/// \brief Constructs an arcsin operation.
///
/// \param arg Node that produces the input tensor.
ReverseSequence
(
const
std
::
shared_ptr
<
Node
>
arg
,
const
std
::
shared_ptr
<
Node
>
seq_lengths
,
ReverseSequence
(
const
Output
<
Node
>&
arg
,
const
Output
<
Node
>&
seq_lengths
,
size_t
batch_axis
,
size_t
seq_axis
);
...
...
@@ -42,7 +43,9 @@ namespace ngraph
copy_with_new_args
(
const
NodeVector
&
new_args
)
const
override
;
size_t
get_batch_axis
()
const
{
return
m_batch_axis
;
}
void
set_batch_axis
(
size_t
batch_axis
)
{
m_batch_axis
=
batch_axis
;
}
size_t
get_sequence_axis
()
const
{
return
m_seq_axis
;
}
void
set_sequence_axis
(
size_t
sequence_axis
)
{
m_seq_axis
=
sequence_axis
;
}
protected
:
virtual
void
generate_adjoints
(
autodiff
::
Adjoints
&
adjoints
,
const
NodeVector
&
deltas
)
override
;
...
...
src/ngraph/op/scatter_add.hpp
View file @
ba1141e0
...
...
@@ -29,13 +29,14 @@ namespace ngraph
NGRAPH_API
static
const
std
::
string
type_name
;
const
std
::
string
&
description
()
const
override
{
return
type_name
;
}
ScatterAdd
()
=
default
;
/// \param inputs Tensor
/// \param indices Index tensor: Data type must be `element::i32` or `element::i64`
/// \param updates Tensor: Must have same type as inputs
ScatterAdd
(
const
std
::
shared_ptr
<
Node
>&
inputs
,
const
std
::
shared_ptr
<
Node
>&
indices
,
const
std
::
shared_ptr
<
Node
>&
updates
)
:
Op
(
check_single_output_args
({
inputs
,
indices
,
updates
})
)
ScatterAdd
(
const
Output
<
Node
>&
inputs
,
const
Output
<
Node
>&
indices
,
const
Output
<
Node
>&
updates
)
:
Op
(
{
inputs
,
indices
,
updates
}
)
{
constructor_validate_and_infer_types
();
}
...
...
src/ngraph/op/scatter_nd_add.hpp
View file @
ba1141e0
...
...
@@ -29,13 +29,14 @@ namespace ngraph
NGRAPH_API
static
const
std
::
string
type_name
;
const
std
::
string
&
description
()
const
override
{
return
type_name
;
}
ScatterNDAdd
()
=
default
;
/// \param inputs Tensor
/// \param indices Index tensor: Data type must be `element::i32` or `element::i64`
/// \param updates Tensor: Must have same type as inputs
ScatterNDAdd
(
const
std
::
shared_ptr
<
Node
>&
inputs
,
const
std
::
shared_ptr
<
Node
>&
indices
,
const
std
::
shared_ptr
<
Node
>&
updates
)
:
Op
(
check_single_output_args
({
inputs
,
indices
,
updates
})
)
ScatterNDAdd
(
const
Output
<
Node
>&
inputs
,
const
Output
<
Node
>&
indices
,
const
Output
<
Node
>&
updates
)
:
Op
(
{
inputs
,
indices
,
updates
}
)
{
constructor_validate_and_infer_types
();
}
...
...
src/ngraph/op/select.cpp
View file @
ba1141e0
...
...
@@ -72,12 +72,12 @@ void op::Select::generate_adjoints(autodiff::Adjoints& adjoints, const NodeVecto
{
auto
delta
=
deltas
.
at
(
0
);
auto
p
=
get_argument
(
0
);
auto
x
=
get_argument
(
1
);
auto
y
=
get_argument
(
2
);
auto
p
=
input
(
0
).
get_source_output
(
);
auto
x
=
input
(
1
).
get_source_output
(
);
auto
y
=
input
(
2
).
get_source_output
(
);
auto
p_as_x_type
=
make_shared
<
op
::
Convert
>
(
p
,
x
->
get_element_type
());
auto
not_p_as_y_type
=
make_shared
<
op
::
Convert
>
(
make_shared
<
op
::
Not
>
(
p
),
y
->
get_element_type
());
auto
p_as_x_type
=
make_shared
<
op
::
Convert
>
(
p
,
x
.
get_element_type
());
auto
not_p_as_y_type
=
make_shared
<
op
::
Convert
>
(
make_shared
<
op
::
Not
>
(
p
),
y
.
get_element_type
());
adjoints
.
add_delta
(
x
,
delta
*
p_as_x_type
);
adjoints
.
add_delta
(
y
,
delta
*
not_p_as_y_type
);
...
...
src/ngraph/op/sigmoid.cpp
View file @
ba1141e0
...
...
@@ -30,13 +30,13 @@ shared_ptr<Node> op::Sigmoid::copy_with_new_args(const NodeVector& new_args) con
return
make_shared
<
Sigmoid
>
(
new_args
.
at
(
0
));
}
op
::
Sigmoid
::
Sigmoid
(
shared_ptr
<
Node
>
arg
)
op
::
Sigmoid
::
Sigmoid
(
const
Output
<
Node
>&
arg
)
:
UnaryElementwiseArithmetic
(
arg
)
{
constructor_validate_and_infer_types
();
}
op
::
SigmoidBackprop
::
SigmoidBackprop
(
shared_ptr
<
Node
>
arg
,
shared_ptr
<
Node
>
delta
)
op
::
SigmoidBackprop
::
SigmoidBackprop
(
const
Output
<
Node
>&
arg
,
const
Output
<
Node
>&
delta
)
:
BinaryElementwiseArithmetic
(
arg
,
delta
)
{
constructor_validate_and_infer_types
();
...
...
@@ -52,6 +52,6 @@ void op::Sigmoid::generate_adjoints(autodiff::Adjoints& adjoints, const NodeVect
{
auto
delta
=
deltas
.
at
(
0
);
auto
backprop
=
make_shared
<
op
::
SigmoidBackprop
>
(
get_argument
(
0
),
delta
);
adjoints
.
add_delta
(
get_argument
(
0
),
backprop
);
auto
backprop
=
make_shared
<
op
::
SigmoidBackprop
>
(
input
(
0
).
get_source_output
(
),
delta
);
adjoints
.
add_delta
(
input
(
0
).
get_source_output
(
),
backprop
);
}
src/ngraph/op/sigmoid.hpp
View file @
ba1141e0
...
...
@@ -31,7 +31,8 @@ namespace ngraph
NGRAPH_API
static
const
std
::
string
type_name
;
const
std
::
string
&
description
()
const
override
{
return
type_name
;
}
Sigmoid
(
std
::
shared_ptr
<
Node
>
arg
);
Sigmoid
(
const
Output
<
Node
>&
arg
);
Sigmoid
()
=
default
;
virtual
std
::
shared_ptr
<
Node
>
copy_with_new_args
(
const
NodeVector
&
new_args
)
const
override
;
virtual
void
generate_adjoints
(
autodiff
::
Adjoints
&
adjoints
,
...
...
@@ -46,10 +47,11 @@ namespace ngraph
NGRAPH_API
static
const
std
::
string
type_name
;
const
std
::
string
&
description
()
const
override
{
return
type_name
;
}
SigmoidBackprop
()
=
default
;
/// \brief Constructs a SigmoidBackprop operation.
///
/// \param arg Node that produces the Sigmoid forward input tensor.
SigmoidBackprop
(
std
::
shared_ptr
<
ngraph
::
Node
>
arg
,
std
::
shared_ptr
<
ngraph
::
Node
>
delta
);
SigmoidBackprop
(
const
Output
<
Node
>&
arg
,
const
Output
<
Node
>&
delta
);
virtual
std
::
shared_ptr
<
Node
>
copy_with_new_args
(
const
NodeVector
&
new_args
)
const
override
;
...
...
src/ngraph/op/sign.cpp
View file @
ba1141e0
...
...
@@ -21,7 +21,7 @@ using namespace ngraph;
const
string
op
::
Sign
::
type_name
{
"Sign"
};
op
::
Sign
::
Sign
(
const
shared_ptr
<
Node
>&
arg
)
op
::
Sign
::
Sign
(
const
Output
<
Node
>&
arg
)
:
UnaryElementwiseArithmetic
(
arg
)
{
constructor_validate_and_infer_types
();
...
...
src/ngraph/op/sign.hpp
View file @
ba1141e0
...
...
@@ -30,10 +30,11 @@ namespace ngraph
NGRAPH_API
static
const
std
::
string
type_name
;
const
std
::
string
&
description
()
const
override
{
return
type_name
;
}
Sign
()
=
default
;
/// \brief Constructs an elementwise sign operation.
///
/// \param arg Node that produces the input tensor.
Sign
(
const
std
::
shared_ptr
<
Node
>&
arg
);
Sign
(
const
Output
<
Node
>&
arg
);
virtual
std
::
shared_ptr
<
Node
>
copy_with_new_args
(
const
NodeVector
&
new_args
)
const
override
;
...
...
src/ngraph/op/sin.cpp
View file @
ba1141e0
...
...
@@ -23,7 +23,7 @@ using namespace ngraph;
const
string
op
::
Sin
::
type_name
{
"Sin"
};
op
::
Sin
::
Sin
(
const
shared_ptr
<
Node
>&
arg
)
op
::
Sin
::
Sin
(
const
Output
<
Node
>&
arg
)
:
UnaryElementwiseArithmetic
(
arg
)
{
constructor_validate_and_infer_types
();
...
...
@@ -39,7 +39,7 @@ void op::Sin::generate_adjoints(autodiff::Adjoints& adjoints, const NodeVector&
{
auto
delta
=
deltas
.
at
(
0
);
auto
x
=
get_argument
(
0
);
auto
x
=
input
(
0
).
get_source_output
(
);
adjoints
.
add_delta
(
x
,
delta
*
(
make_shared
<
op
::
Cos
>
(
x
)));
}
src/ngraph/op/sin.hpp
View file @
ba1141e0
...
...
@@ -44,7 +44,8 @@ namespace ngraph
/// \brief Constructs a sine operation.
///
/// \param arg Node that produces the input tensor.
Sin
(
const
std
::
shared_ptr
<
Node
>&
arg
);
Sin
(
const
Output
<
Node
>&
arg
);
Sin
()
=
default
;
virtual
std
::
shared_ptr
<
Node
>
copy_with_new_args
(
const
NodeVector
&
new_args
)
const
override
;
...
...
src/ngraph/op/sinh.cpp
View file @
ba1141e0
...
...
@@ -23,7 +23,7 @@ using namespace ngraph;
const
string
op
::
Sinh
::
type_name
{
"Sinh"
};
op
::
Sinh
::
Sinh
(
const
shared_ptr
<
Node
>&
arg
)
op
::
Sinh
::
Sinh
(
const
Output
<
Node
>&
arg
)
:
UnaryElementwiseArithmetic
(
arg
)
{
constructor_validate_and_infer_types
();
...
...
src/ngraph/op/sinh.hpp
View file @
ba1141e0
...
...
@@ -32,7 +32,8 @@ namespace ngraph
/// \brief Constructs a hyperbolic sine operation.
///
/// \param arg Node that produces the input tensor.
Sinh
(
const
std
::
shared_ptr
<
Node
>&
arg
);
Sinh
(
const
Output
<
Node
>&
arg
);
Sinh
()
=
default
;
virtual
std
::
shared_ptr
<
Node
>
copy_with_new_args
(
const
NodeVector
&
new_args
)
const
override
;
...
...
src/ngraph/op/slice.cpp
View file @
ba1141e0
...
...
@@ -21,10 +21,6 @@ using namespace ngraph;
const
string
op
::
Slice
::
type_name
{
"Slice"
};
op
::
Slice
::
Slice
()
{
}
op
::
Slice
::
Slice
(
const
Output
<
Node
>&
arg
,
const
Coordinate
&
lower_bounds
,
const
Coordinate
&
upper_bounds
,
...
...
@@ -139,7 +135,7 @@ void op::Slice::generate_adjoints(autodiff::Adjoints& adjoints, const NodeVector
{
auto
delta
=
deltas
.
at
(
0
);
auto
x
=
get_argument
(
0
);
auto
x
=
input
(
0
).
get_source_output
(
);
adjoints
.
add_delta_to_slice
(
x
,
delta
,
m_lower_bounds
,
m_upper_bounds
,
m_strides
);
}
src/ngraph/op/slice.hpp
View file @
ba1141e0
...
...
@@ -32,7 +32,7 @@ namespace ngraph
static
const
std
::
string
type_name
;
const
std
::
string
&
description
()
const
override
{
return
type_name
;
}
/// \brief Constructs a tensor slice operation
Slice
();
Slice
()
=
default
;
/// \brief Constructs a tensor slice operation.
///
/// \param arg The tensor to be sliced.
...
...
src/ngraph/op/softmax.cpp
View file @
ba1141e0
...
...
@@ -31,7 +31,7 @@ using namespace ngraph;
const
string
op
::
Softmax
::
type_name
{
"Softmax"
};
op
::
Softmax
::
Softmax
(
const
shared_ptr
<
Node
>&
arg
,
const
AxisSet
&
axes
)
op
::
Softmax
::
Softmax
(
const
Output
<
Node
>&
arg
,
const
AxisSet
&
axes
)
:
UnaryElementwiseArithmetic
(
arg
)
,
m_axes
(
axes
)
{
...
...
@@ -88,6 +88,6 @@ void op::Softmax::generate_adjoints(autodiff::Adjoints& adjoints, const NodeVect
auto
adjoint
=
z
-
builder
::
make_with_numpy_broadcast
<
op
::
Multiply
>
(
output
(
0
),
zreshape
);
auto
x
=
get_argument
(
0
);
auto
x
=
input
(
0
).
get_source_output
(
);
adjoints
.
add_delta
(
x
,
adjoint
);
}
src/ngraph/op/softmax.hpp
View file @
ba1141e0
...
...
@@ -30,6 +30,7 @@ namespace ngraph
NGRAPH_API
static
const
std
::
string
type_name
;
const
std
::
string
&
description
()
const
override
{
return
type_name
;
}
Softmax
()
=
default
;
/// \brief Constructs a softmax operation.
///
/// \param arg Node that produces the first input tensor.<br>
...
...
@@ -38,12 +39,13 @@ namespace ngraph
///
/// Output `[d0, ...]`
///
Softmax
(
const
std
::
shared_ptr
<
Node
>&
arg
,
const
AxisSet
&
axes
);
Softmax
(
const
Output
<
Node
>&
arg
,
const
AxisSet
&
axes
);
virtual
std
::
shared_ptr
<
Node
>
copy_with_new_args
(
const
NodeVector
&
new_args
)
const
override
;
const
AxisSet
&
get_axes
()
const
{
return
m_axes
;
}
void
set_axes
(
const
AxisSet
&
axes
)
{
m_axes
=
axes
;
}
protected
:
virtual
void
generate_adjoints
(
autodiff
::
Adjoints
&
adjoints
,
const
NodeVector
&
deltas
)
override
;
...
...
src/ngraph/op/sqrt.cpp
View file @
ba1141e0
...
...
@@ -23,7 +23,7 @@ using namespace ngraph;
const
string
op
::
Sqrt
::
type_name
{
"Sqrt"
};
op
::
Sqrt
::
Sqrt
(
const
shared_ptr
<
Node
>&
arg
)
op
::
Sqrt
::
Sqrt
(
const
Output
<
Node
>&
arg
)
:
UnaryElementwiseArithmetic
(
arg
)
{
constructor_validate_and_infer_types
();
...
...
@@ -39,7 +39,7 @@ void op::Sqrt::generate_adjoints(autodiff::Adjoints& adjoints, const NodeVector&
{
auto
delta
=
deltas
.
at
(
0
);
auto
x
=
get_argument
(
0
);
auto
x
=
input
(
0
).
get_source_output
(
);
adjoints
.
add_delta
(
x
,
delta
/
(
shared_from_this
()
+
shared_from_this
()));
}
src/ngraph/op/sqrt.hpp
View file @
ba1141e0
...
...
@@ -44,7 +44,8 @@ namespace ngraph
/// \brief Constructs a square operation.
///
/// \param arg Node that produces the input tensor.
Sqrt
(
const
std
::
shared_ptr
<
Node
>&
arg
);
Sqrt
(
const
Output
<
Node
>&
arg
);
Sqrt
()
=
default
;
virtual
std
::
shared_ptr
<
Node
>
copy_with_new_args
(
const
NodeVector
&
new_args
)
const
override
;
...
...
src/ngraph/op/stop_gradient.cpp
View file @
ba1141e0
...
...
@@ -23,7 +23,7 @@ using namespace ngraph;
const
string
op
::
StopGradient
::
type_name
{
"StopGradient"
};
op
::
StopGradient
::
StopGradient
(
const
shared_ptr
<
Node
>&
arg
)
op
::
StopGradient
::
StopGradient
(
const
Output
<
Node
>&
arg
)
:
UnaryElementwiseArithmetic
(
arg
)
{
constructor_validate_and_infer_types
();
...
...
src/ngraph/op/stop_gradient.hpp
View file @
ba1141e0
...
...
@@ -32,7 +32,8 @@ namespace ngraph
/// \brief Constructs StopGradient
///
/// \param arg Node that produces the input tensor.
StopGradient
(
const
std
::
shared_ptr
<
Node
>&
arg
);
StopGradient
(
const
Output
<
Node
>&
arg
);
StopGradient
()
=
default
;
virtual
std
::
shared_ptr
<
Node
>
copy_with_new_args
(
const
NodeVector
&
new_args
)
const
override
;
...
...
src/ngraph/op/subtract.cpp
View file @
ba1141e0
...
...
@@ -45,8 +45,8 @@ void op::Subtract::generate_adjoints(autodiff::Adjoints& adjoints, const NodeVec
auto
delta
=
deltas
.
at
(
0
);
auto
x
=
get_argument
(
0
);
auto
y
=
get_argument
(
1
);
auto
x
=
input
(
0
).
get_source_output
(
);
auto
y
=
input
(
1
).
get_source_output
(
);
adjoints
.
add_delta
(
x
,
delta
);
adjoints
.
add_delta
(
y
,
-
delta
);
...
...
src/ngraph/op/sum.cpp
View file @
ba1141e0
...
...
@@ -22,10 +22,6 @@ using namespace ngraph;
const
string
op
::
Sum
::
type_name
{
"Sum"
};
op
::
Sum
::
Sum
()
{
}
op
::
Sum
::
Sum
(
const
Output
<
Node
>&
arg
,
const
AxisSet
&
reduction_axes
)
:
ArithmeticReduction
(
arg
,
reduction_axes
)
{
...
...
src/ngraph/op/sum.hpp
View file @
ba1141e0
...
...
@@ -78,7 +78,7 @@ namespace ngraph
static
const
std
::
string
type_name
;
const
std
::
string
&
description
()
const
override
{
return
type_name
;
}
/// \brief Constructs a summation operation.
Sum
();
Sum
()
=
default
;
/// \brief Constructs a summation operation.
///
/// \param arg The tensor to be summed.
...
...
src/ngraph/op/tan.cpp
View file @
ba1141e0
...
...
@@ -24,7 +24,7 @@ using namespace ngraph;
const
string
op
::
Tan
::
type_name
{
"Tan"
};
op
::
Tan
::
Tan
(
const
shared_ptr
<
Node
>&
arg
)
op
::
Tan
::
Tan
(
const
Output
<
Node
>&
arg
)
:
UnaryElementwiseArithmetic
(
arg
)
{
constructor_validate_and_infer_types
();
...
...
@@ -40,7 +40,7 @@ void op::Tan::generate_adjoints(autodiff::Adjoints& adjoints, const NodeVector&
{
auto
delta
=
deltas
.
at
(
0
);
auto
x
=
get_argument
(
0
);
auto
x
=
input
(
0
).
get_source_output
(
);
auto
c
=
make_shared
<
op
::
Cos
>
(
x
);
...
...
src/ngraph/op/tan.hpp
View file @
ba1141e0
...
...
@@ -44,7 +44,8 @@ namespace ngraph
/// \brief Constructs a tangent operation.
///
/// \param arg Node that produces the input tensor.
Tan
(
const
std
::
shared_ptr
<
Node
>&
arg
);
Tan
(
const
Output
<
Node
>&
arg
);
Tan
()
=
default
;
virtual
std
::
shared_ptr
<
Node
>
copy_with_new_args
(
const
NodeVector
&
new_args
)
const
override
;
...
...
src/ngraph/op/tanh.cpp
View file @
ba1141e0
...
...
@@ -23,7 +23,7 @@ using namespace ngraph;
const
string
op
::
Tanh
::
type_name
{
"Tanh"
};
op
::
Tanh
::
Tanh
(
const
shared_ptr
<
Node
>&
arg
)
op
::
Tanh
::
Tanh
(
const
Output
<
Node
>&
arg
)
:
UnaryElementwiseArithmetic
(
arg
)
{
constructor_validate_and_infer_types
();
...
...
@@ -39,7 +39,7 @@ void op::Tanh::generate_adjoints(autodiff::Adjoints& adjoints, const NodeVector&
{
auto
delta
=
deltas
.
at
(
0
);
auto
x
=
get_argument
(
0
);
auto
x
=
input
(
0
).
get_source_output
(
);
adjoints
.
add_delta
(
x
,
delta
-
(
delta
*
(
shared_from_this
()
*
shared_from_this
())));
}
src/ngraph/op/tanh.hpp
View file @
ba1141e0
...
...
@@ -32,7 +32,8 @@ namespace ngraph
/// \brief Constructs a hyperbolic tangent operation.
///
/// \param arg Node that produces the input tensor.
Tanh
(
const
std
::
shared_ptr
<
Node
>&
arg
);
Tanh
(
const
Output
<
Node
>&
arg
);
Tanh
()
=
default
;
virtual
std
::
shared_ptr
<
Node
>
copy_with_new_args
(
const
NodeVector
&
new_args
)
const
override
;
...
...
src/ngraph/op/topk.cpp
View file @
ba1141e0
...
...
@@ -26,10 +26,6 @@ using namespace ngraph;
const
string
op
::
TopK
::
type_name
{
"TopK"
};
op
::
TopK
::
TopK
()
{
}
op
::
TopK
::
TopK
(
const
Output
<
Node
>&
arg
,
size_t
top_k_axis
,
const
element
::
Type
&
index_element_type
,
...
...
@@ -63,7 +59,8 @@ op::TopK::TopK(const Output<Node>& arg,
size_t
op
::
TopK
::
get_k
()
const
{
size_t
k
=
0
;
if
(
auto
const_op
=
dynamic_pointer_cast
<
op
::
Constant
>
(
get_argument
(
1
)))
if
(
auto
const_op
=
dynamic_pointer_cast
<
op
::
Constant
>
(
input
(
1
).
get_source_output
().
get_node_shared_ptr
()))
{
k
=
const_op
->
get_vector
<
int64_t
>
()[
0
];
}
...
...
src/ngraph/op/topk.hpp
View file @
ba1141e0
...
...
@@ -44,7 +44,7 @@ namespace ngraph
static
const
std
::
string
type_name
;
const
std
::
string
&
description
()
const
override
{
return
type_name
;
}
/// \brief Constructs a TopK operation
TopK
();
TopK
()
=
default
;
/// \brief Constructs a TopK operation.
///
/// \param arg The input tensor
...
...
src/ngraph/pass/constant_folding.cpp
View file @
ba1141e0
This diff is collapsed.
Click to expand it.
src/ngraph/runtime/interpreter/int_executable.cpp
View file @
ba1141e0
...
...
@@ -24,7 +24,6 @@
#include "ngraph/pass/assign_layout.hpp"
#include "ngraph/pass/core_fusion.hpp"
#include "ngraph/pass/fused_op_decomposition.hpp"
#include "ngraph/pass/implicit_broadcast_elimination.hpp"
#include "ngraph/pass/like_replacement.hpp"
#include "ngraph/pass/liveness.hpp"
#include "ngraph/pass/manager.hpp"
...
...
@@ -48,7 +47,6 @@ runtime::interpreter::INTExecutable::INTExecutable(const shared_ptr<Function>& f
pass
::
Manager
pass_manager
;
pass_manager
.
register_pass
<
pass
::
LikeReplacement
>
();
pass_manager
.
register_pass
<
pass
::
FusedOpDecomposition
>
();
pass_manager
.
register_pass
<
pass
::
ImplicitBroadcastElimination
>
();
pass_manager
.
register_pass
<
pass
::
AssignLayout
<
DenseTensorLayout
>>
();
pass_manager
.
register_pass
<
pass
::
Liveness
>
();
pass_manager
.
run_passes
(
m_function
);
...
...
src/ngraph/runtime/interpreter/int_executable.hpp
View file @
ba1141e0
This diff is collapsed.
Click to expand it.
src/ngraph/runtime/reference/add.hpp
View file @
ba1141e0
...
...
@@ -18,6 +18,11 @@
#include <cstddef>
#include "ngraph/coordinate_transform.hpp"
#include "ngraph/op/util/attr_types.hpp"
#include "ngraph/runtime/reference/autobroadcast_binop.hpp"
#include "ngraph/shape_util.hpp"
namespace
ngraph
{
namespace
runtime
...
...
@@ -32,6 +37,20 @@ namespace ngraph
out
[
i
]
=
arg0
[
i
]
+
arg1
[
i
];
}
}
template
<
typename
T
>
void
add
(
const
T
*
arg0
,
const
T
*
arg1
,
T
*
out
,
const
Shape
&
arg0_shape
,
const
Shape
&
arg1_shape
,
const
op
::
AutoBroadcastSpec
&
broadcast_spec
)
{
autobroadcast_binop
(
arg0
,
arg1
,
out
,
arg0_shape
,
arg1_shape
,
broadcast_spec
,
[](
T
x
,
T
y
)
->
T
{
return
x
+
y
;
});
}
}
}
}
src/ngraph/runtime/reference/and.hpp
View file @
ba1141e0
...
...
@@ -32,6 +32,20 @@ namespace ngraph
out
[
i
]
=
static_cast
<
T
>
(
arg0
[
i
]
&&
arg1
[
i
]);
}
}
template
<
typename
T
>
void
logical_and
(
const
T
*
arg0
,
const
T
*
arg1
,
T
*
out
,
const
Shape
&
arg0_shape
,
const
Shape
&
arg1_shape
,
const
op
::
AutoBroadcastSpec
&
broadcast_spec
)
{
autobroadcast_binop
(
arg0
,
arg1
,
out
,
arg0_shape
,
arg1_shape
,
broadcast_spec
,
[](
T
x
,
T
y
)
->
T
{
return
static_cast
<
T
>
(
x
&&
y
);
});
}
}
}
}
src/ngraph/runtime/reference/autobroadcast_binop.hpp
0 → 100644
View file @
ba1141e0
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#pragma once
#include <cstddef>
#include "ngraph/coordinate_transform.hpp"
#include "ngraph/op/util/attr_types.hpp"
#include "ngraph/shape_util.hpp"
namespace
ngraph
{
namespace
runtime
{
namespace
reference
{
/// \brief Helper function to implement autobroadcasting elementwise binop references.
///
/// \tparam T Element type of the input tensors.
/// \tparam U Element type of the output tensor.
/// \tparam Functor Type of the functor for the elementwise operation. Must support
/// operator()(T,T), and operator()(T,T) must return a value of type
/// U.
///
/// \param arg0 Pointer to the buffer for left operand input tensor.
/// \param arg1 Pointer to the buffer for right operand input tensor.
/// \param out Pointer to the buffer for output tensor. This must be pre-allocated by
/// the caller, and must be large enough to hold a tensor of the correct
/// shape.
/// \param broadcast_spec Specification of the auto-broadcasting scheme.
/// \param elementwise_functor Functor implementing the elementwise operation to be
/// applied across the input tensors. Must accept two
/// arguments of type T, and return a value of type U.
template
<
typename
T
,
typename
U
,
typename
Functor
>
void
autobroadcast_binop
(
const
T
*
arg0
,
const
T
*
arg1
,
U
*
out
,
const
Shape
&
arg0_shape
,
const
Shape
&
arg1_shape
,
const
op
::
AutoBroadcastSpec
&
broadcast_spec
,
Functor
elementwise_functor
)
{
switch
(
broadcast_spec
.
m_type
)
{
case
op
:
:
AutoBroadcastType
::
NONE
:
for
(
size_t
i
=
0
;
i
<
shape_size
(
arg0_shape
);
i
++
)
{
out
[
i
]
=
elementwise_functor
(
arg0
[
i
],
arg1
[
i
]);
}
break
;
case
op
:
:
AutoBroadcastType
::
NUMPY
:
// We'll be using CoordinateTransform to handle the broadcasting. The general
// procedure is as follows:
//
// (1) Left pad the shorter of the two shapes with ones.
// (2) Squeeze (remove ones from) both shapes, and record the squeezed axis
// indices.
// (3) Using CoordinateTransform, broadcast both args to the final output
// shape. The "broadcasted axes" will be those that were squeezed in step
// 2.
//
// Example:
//
// Input shape->Padded shape->Squeezed Shape/Squeezed Axes
// ----------- ------------ ----------------------------
// a: [ 3, 2, 1] [ 3, 2, 1] [ 3, 2 ] {2}
// b: [ 1, 6] [ 1, 1, 6] [ 6] {0,1}
// | | |
// v v v
// Output shape
// ------------
// [ 3, 2, 6]
Shape
arg0_padded_shape
=
arg0_shape
;
Shape
arg1_padded_shape
=
arg1_shape
;
while
(
arg0_padded_shape
.
size
()
<
arg1_padded_shape
.
size
())
{
arg0_padded_shape
.
insert
(
arg0_padded_shape
.
begin
(),
1
);
}
while
(
arg1_padded_shape
.
size
()
<
arg0_padded_shape
.
size
())
{
arg1_padded_shape
.
insert
(
arg1_padded_shape
.
begin
(),
1
);
}
Shape
arg0_squeezed_shape
;
Shape
arg1_squeezed_shape
;
AxisSet
arg0_squeezed_axes
;
AxisSet
arg1_squeezed_axes
;
Shape
output_shape
;
for
(
size_t
i
=
0
;
i
<
arg0_padded_shape
.
size
();
i
++
)
{
if
(
arg0_padded_shape
[
i
]
==
1
)
{
arg0_squeezed_axes
.
insert
(
i
);
}
else
{
arg0_squeezed_shape
.
push_back
(
arg0_padded_shape
[
i
]);
}
if
(
arg1_padded_shape
[
i
]
==
1
)
{
arg1_squeezed_axes
.
insert
(
i
);
}
else
{
arg1_squeezed_shape
.
push_back
(
arg1_padded_shape
[
i
]);
}
output_shape
.
push_back
(
arg0_padded_shape
[
i
]
==
1
?
arg1_padded_shape
[
i
]
:
arg0_padded_shape
[
i
]);
}
CoordinateTransform
arg0_transform
(
arg0_squeezed_shape
);
CoordinateTransform
arg1_transform
(
arg1_squeezed_shape
);
CoordinateTransform
output_transform
(
output_shape
);
for
(
const
Coordinate
&
output_coord
:
output_transform
)
{
Coordinate
arg0_coord
=
reduce
(
output_coord
,
arg0_squeezed_axes
);
Coordinate
arg1_coord
=
reduce
(
output_coord
,
arg1_squeezed_axes
);
out
[
output_transform
.
index
(
output_coord
)]
=
elementwise_functor
(
arg0
[
arg0_transform
.
index
(
arg0_coord
)],
arg1
[
arg1_transform
.
index
(
arg1_coord
)]);
}
}
}
}
}
}
src/ngraph/runtime/reference/divide.hpp
View file @
ba1141e0
...
...
@@ -67,6 +67,47 @@ namespace ngraph
}
}
template
<
typename
T
>
typename
std
::
enable_if
<
std
::
is_integral
<
T
>::
value
>::
type
divide
(
const
T
*
arg0
,
const
T
*
arg1
,
T
*
out
,
const
Shape
&
arg0_shape
,
const
Shape
&
arg1_shape
,
const
op
::
AutoBroadcastSpec
&
broadcast_spec
,
bool
pythondiv
)
{
auto
functor
=
[
pythondiv
](
T
x
,
T
y
)
->
T
{
if
(
pythondiv
)
{
if
(
y
==
0
)
{
throw
std
::
domain_error
(
"integer division by zero"
);
}
T
quot
=
x
/
y
;
T
rem
=
x
%
y
;
if
((
rem
!=
0
)
&&
((
x
<
0
)
!=
(
y
<
0
)))
{
return
quot
-
1
;
}
else
{
return
quot
;
}
}
else
{
if
(
y
==
0
)
{
throw
std
::
domain_error
(
"integer division by zero"
);
}
return
x
/
y
;
}
};
autobroadcast_binop
(
arg0
,
arg1
,
out
,
arg0_shape
,
arg1_shape
,
broadcast_spec
,
functor
);
}
// In English: return type is void and T must be a standard floating point type, or
// bfloat16, or float16.
template
<
typename
T
>
...
...
@@ -83,6 +124,25 @@ namespace ngraph
out
[
i
]
=
arg0
[
i
]
/
arg1
[
i
];
}
}
template
<
typename
T
>
typename
std
::
enable_if
<
std
::
is_floating_point
<
T
>::
value
||
std
::
is_same
<
T
,
bfloat16
>::
value
||
std
::
is_same
<
T
,
float16
>::
value
>::
type
divide
(
const
T
*
arg0
,
const
T
*
arg1
,
T
*
out
,
const
Shape
&
arg0_shape
,
const
Shape
&
arg1_shape
,
const
op
::
AutoBroadcastSpec
&
broadcast_spec
,
bool
pythondiv
)
{
(
void
)
pythondiv
;
autobroadcast_binop
(
arg0
,
arg1
,
out
,
arg0_shape
,
arg1_shape
,
broadcast_spec
,
[](
T
x
,
T
y
)
->
T
{
return
x
/
y
;
});
}
}
}
}
src/ngraph/runtime/reference/equal.hpp
View file @
ba1141e0
...
...
@@ -40,6 +40,20 @@ namespace ngraph
out
[
i
]
=
arg0
[
i
]
==
arg1
[
i
];
}
}
template
<
typename
T
>
void
equal
(
const
T
*
arg0
,
const
T
*
arg1
,
char
*
out
,
const
Shape
&
arg0_shape
,
const
Shape
&
arg1_shape
,
const
op
::
AutoBroadcastSpec
&
broadcast_spec
)
{
autobroadcast_binop
(
arg0
,
arg1
,
out
,
arg0_shape
,
arg1_shape
,
broadcast_spec
,
[](
T
x
,
T
y
)
->
T
{
return
x
==
y
;
});
}
}
}
}
...
...
src/ngraph/runtime/reference/greater.hpp
View file @
ba1141e0
...
...
@@ -35,6 +35,20 @@ namespace ngraph
out
[
i
]
=
arg0
[
i
]
>
arg1
[
i
];
}
}
template
<
typename
T
>
void
greater
(
const
T
*
arg0
,
const
T
*
arg1
,
char
*
out
,
const
Shape
&
arg0_shape
,
const
Shape
&
arg1_shape
,
const
op
::
AutoBroadcastSpec
&
broadcast_spec
)
{
autobroadcast_binop
(
arg0
,
arg1
,
out
,
arg0_shape
,
arg1_shape
,
broadcast_spec
,
[](
T
x
,
T
y
)
->
T
{
return
x
>
y
;
});
}
}
}
}
src/ngraph/runtime/reference/greater_eq.hpp
View file @
ba1141e0
...
...
@@ -35,6 +35,20 @@ namespace ngraph
out
[
i
]
=
arg0
[
i
]
>=
arg1
[
i
];
}
}
template
<
typename
T
>
void
greater_eq
(
const
T
*
arg0
,
const
T
*
arg1
,
char
*
out
,
const
Shape
&
arg0_shape
,
const
Shape
&
arg1_shape
,
const
op
::
AutoBroadcastSpec
&
broadcast_spec
)
{
autobroadcast_binop
(
arg0
,
arg1
,
out
,
arg0_shape
,
arg1_shape
,
broadcast_spec
,
[](
T
x
,
T
y
)
->
T
{
return
x
>=
y
;
});
}
}
}
}
src/ngraph/runtime/reference/less.hpp
View file @
ba1141e0
...
...
@@ -35,6 +35,20 @@ namespace ngraph
out
[
i
]
=
arg0
[
i
]
<
arg1
[
i
];
}
}
template
<
typename
T
>
void
less
(
const
T
*
arg0
,
const
T
*
arg1
,
char
*
out
,
const
Shape
&
arg0_shape
,
const
Shape
&
arg1_shape
,
const
op
::
AutoBroadcastSpec
&
broadcast_spec
)
{
autobroadcast_binop
(
arg0
,
arg1
,
out
,
arg0_shape
,
arg1_shape
,
broadcast_spec
,
[](
T
x
,
T
y
)
->
T
{
return
x
<
y
;
});
}
}
}
}
src/ngraph/runtime/reference/less_eq.hpp
View file @
ba1141e0
...
...
@@ -35,6 +35,20 @@ namespace ngraph
out
[
i
]
=
arg0
[
i
]
<=
arg1
[
i
];
}
}
template
<
typename
T
>
void
less_eq
(
const
T
*
arg0
,
const
T
*
arg1
,
char
*
out
,
const
Shape
&
arg0_shape
,
const
Shape
&
arg1_shape
,
const
op
::
AutoBroadcastSpec
&
broadcast_spec
)
{
autobroadcast_binop
(
arg0
,
arg1
,
out
,
arg0_shape
,
arg1_shape
,
broadcast_spec
,
[](
T
x
,
T
y
)
->
T
{
return
x
<=
y
;
});
}
}
}
}
src/ngraph/runtime/reference/maximum.hpp
View file @
ba1141e0
...
...
@@ -32,6 +32,20 @@ namespace ngraph
out
[
i
]
=
arg0
[
i
]
>
arg1
[
i
]
?
arg0
[
i
]
:
arg1
[
i
];
}
}
template
<
typename
T
>
void
maximum
(
const
T
*
arg0
,
const
T
*
arg1
,
T
*
out
,
const
Shape
&
arg0_shape
,
const
Shape
&
arg1_shape
,
const
op
::
AutoBroadcastSpec
&
broadcast_spec
)
{
autobroadcast_binop
(
arg0
,
arg1
,
out
,
arg0_shape
,
arg1_shape
,
broadcast_spec
,
[](
T
x
,
T
y
)
->
T
{
return
x
>
y
?
x
:
y
;
});
}
}
}
}
src/ngraph/runtime/reference/minimum.hpp
View file @
ba1141e0
...
...
@@ -32,6 +32,20 @@ namespace ngraph
out
[
i
]
=
arg0
[
i
]
<
arg1
[
i
]
?
arg0
[
i
]
:
arg1
[
i
];
}
}
template
<
typename
T
>
void
minimum
(
const
T
*
arg0
,
const
T
*
arg1
,
T
*
out
,
const
Shape
&
arg0_shape
,
const
Shape
&
arg1_shape
,
const
op
::
AutoBroadcastSpec
&
broadcast_spec
)
{
autobroadcast_binop
(
arg0
,
arg1
,
out
,
arg0_shape
,
arg1_shape
,
broadcast_spec
,
[](
T
x
,
T
y
)
->
T
{
return
x
<
y
?
x
:
y
;
});
}
}
}
}
src/ngraph/runtime/reference/multiply.hpp
View file @
ba1141e0
...
...
@@ -32,6 +32,20 @@ namespace ngraph
out
[
i
]
=
arg0
[
i
]
*
arg1
[
i
];
}
}
template
<
typename
T
>
void
multiply
(
const
T
*
arg0
,
const
T
*
arg1
,
T
*
out
,
const
Shape
&
arg0_shape
,
const
Shape
&
arg1_shape
,
const
op
::
AutoBroadcastSpec
&
broadcast_spec
)
{
autobroadcast_binop
(
arg0
,
arg1
,
out
,
arg0_shape
,
arg1_shape
,
broadcast_spec
,
[](
T
x
,
T
y
)
->
T
{
return
x
*
y
;
});
}
}
}
}
src/ngraph/runtime/reference/not_equal.hpp
View file @
ba1141e0
...
...
@@ -40,6 +40,20 @@ namespace ngraph
out
[
i
]
=
arg0
[
i
]
!=
arg1
[
i
];
}
}
template
<
typename
T
>
void
not_equal
(
const
T
*
arg0
,
const
T
*
arg1
,
char
*
out
,
const
Shape
&
arg0_shape
,
const
Shape
&
arg1_shape
,
const
op
::
AutoBroadcastSpec
&
broadcast_spec
)
{
autobroadcast_binop
(
arg0
,
arg1
,
out
,
arg0_shape
,
arg1_shape
,
broadcast_spec
,
[](
T
x
,
T
y
)
->
T
{
return
x
!=
y
;
});
}
}
}
}
...
...
src/ngraph/runtime/reference/or.hpp
View file @
ba1141e0
...
...
@@ -32,6 +32,20 @@ namespace ngraph
out
[
i
]
=
static_cast
<
T
>
(
arg0
[
i
]
||
arg1
[
i
]);
}
}
template
<
typename
T
>
void
logical_or
(
const
T
*
arg0
,
const
T
*
arg1
,
T
*
out
,
const
Shape
&
arg0_shape
,
const
Shape
&
arg1_shape
,
const
op
::
AutoBroadcastSpec
&
broadcast_spec
)
{
autobroadcast_binop
(
arg0
,
arg1
,
out
,
arg0_shape
,
arg1_shape
,
broadcast_spec
,
[](
T
x
,
T
y
)
->
T
{
return
static_cast
<
T
>
(
x
||
y
);
});
}
}
}
}
src/ngraph/runtime/reference/power.hpp
View file @
ba1141e0
...
...
@@ -33,6 +33,20 @@ namespace ngraph
out
[
i
]
=
std
::
pow
(
arg0
[
i
],
arg1
[
i
]);
}
}
template
<
typename
T
>
void
power
(
const
T
*
arg0
,
const
T
*
arg1
,
T
*
out
,
const
Shape
&
arg0_shape
,
const
Shape
&
arg1_shape
,
const
op
::
AutoBroadcastSpec
&
broadcast_spec
)
{
autobroadcast_binop
(
arg0
,
arg1
,
out
,
arg0_shape
,
arg1_shape
,
broadcast_spec
,
[](
T
x
,
T
y
)
->
T
{
return
std
::
pow
(
x
,
y
);
});
}
}
}
}
src/ngraph/runtime/reference/subtract.hpp
View file @
ba1141e0
...
...
@@ -32,6 +32,20 @@ namespace ngraph
out
[
i
]
=
arg0
[
i
]
-
arg1
[
i
];
}
}
template
<
typename
T
>
void
subtract
(
const
T
*
arg0
,
const
T
*
arg1
,
T
*
out
,
const
Shape
&
arg0_shape
,
const
Shape
&
arg1_shape
,
const
op
::
AutoBroadcastSpec
&
broadcast_spec
)
{
autobroadcast_binop
(
arg0
,
arg1
,
out
,
arg0_shape
,
arg1_shape
,
broadcast_spec
,
[](
T
x
,
T
y
)
->
T
{
return
x
-
y
;
});
}
}
}
}
src/ngraph/runtime/reference/xor.hpp
View file @
ba1141e0
...
...
@@ -32,6 +32,20 @@ namespace ngraph
out
[
i
]
=
static_cast
<
T
>
((
arg0
[
i
]
||
arg1
[
i
])
&&
!
(
arg0
[
i
]
&&
arg1
[
i
]));
}
}
template
<
typename
T
>
void
logical_xor
(
const
T
*
arg0
,
const
T
*
arg1
,
T
*
out
,
const
Shape
&
arg0_shape
,
const
Shape
&
arg1_shape
,
const
op
::
AutoBroadcastSpec
&
broadcast_spec
)
{
autobroadcast_binop
(
arg0
,
arg1
,
out
,
arg0_shape
,
arg1_shape
,
broadcast_spec
,
[](
T
x
,
T
y
)
->
T
{
return
static_cast
<
T
>
((
x
||
y
)
&&
!
(
x
&&
y
));
});
}
}
}
}
src/ngraph/serializer.cpp
View file @
ba1141e0
...
...
@@ -1576,7 +1576,7 @@ shared_ptr<Node> JSONDeserializer::deserialize_node(json node_js)
node
=
make_shared
<
op
::
Passthrough
>
(
node_js
.
at
(
"logical_type"
),
node_js
.
at
(
"language"
),
node_js
.
at
(
"function"
),
args
,
static_cast
<
OutputVector
>
(
args
)
,
std
::
move
(
outputs
));
break
;
}
...
...
test/constant_folding.cpp
View file @
ba1141e0
...
...
@@ -168,15 +168,24 @@ static std::vector<T> get_result_constant(std::shared_ptr<Function> f, size_t po
TEST
(
constant_folding
,
constant_unary_binary
)
{
Shape
shape_in
{
4
};
vector
<
int
>
values_a
{
1
,
2
,
3
,
4
};
vector
<
int
>
values_b
{
1
,
2
,
3
,
4
};
vector
<
int
>
values_c
{
-
1
,
-
1
,
-
1
,
-
1
};
vector
<
int
>
values_d
{
1
,
4
,
9
,
16
};
auto
a
=
make_shared
<
op
::
Constant
>
(
element
::
i32
,
shape_in
,
values_a
);
auto
b
=
make_shared
<
op
::
Constant
>
(
element
::
i32
,
shape_in
,
values_b
);
auto
c
=
make_shared
<
op
::
Constant
>
(
element
::
i32
,
shape_in
,
values_c
);
auto
d
=
make_shared
<
op
::
Constant
>
(
element
::
i32
,
shape_in
,
values_d
);
vector
<
int
>
values_e
{
5
,
6
};
vector
<
int
>
values_f
{
0
,
10
};
vector
<
int
>
values_g
{
1
,
4
};
vector
<
char
>
values_h
{
0
,
0
,
1
,
1
};
vector
<
char
>
values_i
{
0
,
1
};
auto
a
=
make_shared
<
op
::
Constant
>
(
element
::
i32
,
Shape
{
2
,
2
},
values_a
);
auto
b
=
make_shared
<
op
::
Constant
>
(
element
::
i32
,
Shape
{
2
,
2
},
values_b
);
auto
c
=
make_shared
<
op
::
Constant
>
(
element
::
i32
,
Shape
{
2
,
2
},
values_c
);
auto
d
=
make_shared
<
op
::
Constant
>
(
element
::
i32
,
Shape
{
2
,
2
},
values_d
);
auto
e
=
make_shared
<
op
::
Constant
>
(
element
::
i32
,
Shape
{
2
},
values_e
);
auto
f
=
make_shared
<
op
::
Constant
>
(
element
::
i32
,
Shape
{
2
},
values_f
);
auto
g
=
make_shared
<
op
::
Constant
>
(
element
::
i32
,
Shape
{
2
},
values_g
);
auto
h
=
make_shared
<
op
::
Constant
>
(
element
::
boolean
,
Shape
{
2
,
2
},
values_h
);
auto
i
=
make_shared
<
op
::
Constant
>
(
element
::
boolean
,
Shape
{
2
},
values_i
);
auto
add
=
a
+
b
;
auto
sub
=
a
-
b
;
...
...
@@ -187,15 +196,54 @@ TEST(constant_folding, constant_unary_binary)
auto
absn
=
make_shared
<
op
::
Abs
>
(
c
);
auto
neg
=
make_shared
<
op
::
Negative
>
(
c
);
auto
sqrt
=
make_shared
<
op
::
Sqrt
>
(
d
);
auto
add_autob_numpy
=
make_shared
<
op
::
Add
>
(
a
,
e
,
op
::
AutoBroadcastType
::
NUMPY
);
auto
sub_autob_numpy
=
make_shared
<
op
::
Subtract
>
(
a
,
e
,
op
::
AutoBroadcastType
::
NUMPY
);
auto
mul_autob_numpy
=
make_shared
<
op
::
Multiply
>
(
a
,
e
,
op
::
AutoBroadcastType
::
NUMPY
);
auto
div_autob_numpy
=
make_shared
<
op
::
Divide
>
(
a
,
g
,
op
::
AutoBroadcastType
::
NUMPY
);
auto
min_autob_numpy
=
make_shared
<
op
::
Minimum
>
(
a
,
f
,
op
::
AutoBroadcastType
::
NUMPY
);
auto
max_autob_numpy
=
make_shared
<
op
::
Maximum
>
(
a
,
f
,
op
::
AutoBroadcastType
::
NUMPY
);
auto
equal_autob_numpy
=
make_shared
<
op
::
Equal
>
(
a
,
g
,
op
::
AutoBroadcastType
::
NUMPY
);
auto
not_equal_autob_numpy
=
make_shared
<
op
::
NotEqual
>
(
a
,
g
,
op
::
AutoBroadcastType
::
NUMPY
);
auto
greater_autob_numpy
=
make_shared
<
op
::
Greater
>
(
a
,
g
,
op
::
AutoBroadcastType
::
NUMPY
);
auto
greater_eq_autob_numpy
=
make_shared
<
op
::
GreaterEq
>
(
a
,
g
,
op
::
AutoBroadcastType
::
NUMPY
);
auto
less_autob_numpy
=
make_shared
<
op
::
Less
>
(
a
,
g
,
op
::
AutoBroadcastType
::
NUMPY
);
auto
less_eq_autob_numpy
=
make_shared
<
op
::
LessEq
>
(
a
,
g
,
op
::
AutoBroadcastType
::
NUMPY
);
auto
logical_and_autob_numpy
=
make_shared
<
op
::
And
>
(
h
,
i
,
op
::
AutoBroadcastType
::
NUMPY
);
auto
logical_or_autob_numpy
=
make_shared
<
op
::
Or
>
(
h
,
i
,
op
::
AutoBroadcastType
::
NUMPY
);
auto
logical_xor_autob_numpy
=
make_shared
<
op
::
Xor
>
(
h
,
i
,
op
::
AutoBroadcastType
::
NUMPY
);
auto
neg_sqrt
=
make_shared
<
op
::
Sqrt
>
(
c
);
auto
f
=
make_shared
<
Function
>
(
NodeVector
{
add
,
sub
,
mul
,
divn
,
min
,
max
,
absn
,
neg
,
sqrt
},
ParameterVector
{});
auto
f_error
=
make_shared
<
Function
>
(
NodeVector
{
neg_sqrt
},
ParameterVector
{});
auto
func
=
make_shared
<
Function
>
(
NodeVector
{
add
,
sub
,
mul
,
divn
,
min
,
max
,
absn
,
neg
,
sqrt
,
add_autob_numpy
,
sub_autob_numpy
,
mul_autob_numpy
,
div_autob_numpy
,
min_autob_numpy
,
max_autob_numpy
,
equal_autob_numpy
,
not_equal_autob_numpy
,
greater_autob_numpy
,
greater_eq_autob_numpy
,
less_autob_numpy
,
less_eq_autob_numpy
,
logical_and_autob_numpy
,
logical_or_autob_numpy
,
logical_xor_autob_numpy
},
ParameterVector
{});
auto
func_error
=
make_shared
<
Function
>
(
NodeVector
{
neg_sqrt
},
ParameterVector
{});
pass
::
Manager
pass_manager
;
pass_manager
.
register_pass
<
pass
::
ConstantFolding
>
();
pass_manager
.
run_passes
(
f
);
pass_manager
.
run_passes
(
f
unc
);
//expected values
vector
<
int
>
add_expected
{
2
,
4
,
6
,
8
};
...
...
@@ -206,17 +254,47 @@ TEST(constant_folding, constant_unary_binary)
vector
<
int
>
max_expected
{
1
,
2
,
3
,
4
};
vector
<
int
>
abs_neg_expected
{
1
,
1
,
1
,
1
};
vector
<
int
>
sqrt_expected
{
1
,
2
,
3
,
4
};
ASSERT_EQ
(
get_result_constant
<
int
>
(
f
,
0
),
add_expected
);
ASSERT_EQ
(
get_result_constant
<
int
>
(
f
,
1
),
sub_expected
);
ASSERT_EQ
(
get_result_constant
<
int
>
(
f
,
2
),
mul_expected
);
ASSERT_EQ
(
get_result_constant
<
int
>
(
f
,
3
),
div_expected
);
ASSERT_EQ
(
get_result_constant
<
int
>
(
f
,
4
),
min_expected
);
ASSERT_EQ
(
get_result_constant
<
int
>
(
f
,
5
),
max_expected
);
ASSERT_EQ
(
get_result_constant
<
int
>
(
f
,
6
),
abs_neg_expected
);
ASSERT_EQ
(
get_result_constant
<
int
>
(
f
,
7
),
abs_neg_expected
);
ASSERT_EQ
(
get_result_constant
<
int
>
(
f
,
8
),
sqrt_expected
);
ASSERT_ANY_THROW
(
pass_manager
.
run_passes
(
f_error
));
vector
<
int
>
add_autob_numpy_expected
{
6
,
8
,
8
,
10
};
vector
<
int
>
sub_autob_numpy_expected
{
-
4
,
-
4
,
-
2
,
-
2
};
vector
<
int
>
mul_autob_numpy_expected
{
5
,
12
,
15
,
24
};
vector
<
int
>
div_autob_numpy_expected
{
1
,
0
,
3
,
1
};
vector
<
int
>
min_autob_numpy_expected
{
0
,
2
,
0
,
4
};
vector
<
int
>
max_autob_numpy_expected
{
1
,
10
,
3
,
10
};
vector
<
char
>
equal_autob_numpy_expected
{
1
,
0
,
0
,
1
};
vector
<
char
>
not_equal_autob_numpy_expected
{
0
,
1
,
1
,
0
};
vector
<
char
>
greater_autob_numpy_expected
{
0
,
0
,
1
,
0
};
vector
<
char
>
greater_eq_autob_numpy_expected
{
1
,
0
,
1
,
1
};
vector
<
char
>
less_autob_numpy_expected
{
0
,
1
,
0
,
0
};
vector
<
char
>
less_eq_autob_numpy_expected
{
1
,
1
,
0
,
1
};
vector
<
char
>
logical_and_autob_numpy_expected
{
0
,
0
,
0
,
1
};
vector
<
char
>
logical_or_autob_numpy_expected
{
0
,
1
,
1
,
1
};
vector
<
char
>
logical_xor_autob_numpy_expected
{
0
,
1
,
1
,
0
};
ASSERT_EQ
(
get_result_constant
<
int
>
(
func
,
0
),
add_expected
);
ASSERT_EQ
(
get_result_constant
<
int
>
(
func
,
1
),
sub_expected
);
ASSERT_EQ
(
get_result_constant
<
int
>
(
func
,
2
),
mul_expected
);
ASSERT_EQ
(
get_result_constant
<
int
>
(
func
,
3
),
div_expected
);
ASSERT_EQ
(
get_result_constant
<
int
>
(
func
,
4
),
min_expected
);
ASSERT_EQ
(
get_result_constant
<
int
>
(
func
,
5
),
max_expected
);
ASSERT_EQ
(
get_result_constant
<
int
>
(
func
,
6
),
abs_neg_expected
);
ASSERT_EQ
(
get_result_constant
<
int
>
(
func
,
7
),
abs_neg_expected
);
ASSERT_EQ
(
get_result_constant
<
int
>
(
func
,
8
),
sqrt_expected
);
ASSERT_EQ
(
get_result_constant
<
int
>
(
func
,
9
),
add_autob_numpy_expected
);
ASSERT_EQ
(
get_result_constant
<
int
>
(
func
,
10
),
sub_autob_numpy_expected
);
ASSERT_EQ
(
get_result_constant
<
int
>
(
func
,
11
),
mul_autob_numpy_expected
);
ASSERT_EQ
(
get_result_constant
<
int
>
(
func
,
12
),
div_autob_numpy_expected
);
ASSERT_EQ
(
get_result_constant
<
int
>
(
func
,
13
),
min_autob_numpy_expected
);
ASSERT_EQ
(
get_result_constant
<
int
>
(
func
,
14
),
max_autob_numpy_expected
);
ASSERT_EQ
(
get_result_constant
<
char
>
(
func
,
15
),
equal_autob_numpy_expected
);
ASSERT_EQ
(
get_result_constant
<
char
>
(
func
,
16
),
not_equal_autob_numpy_expected
);
ASSERT_EQ
(
get_result_constant
<
char
>
(
func
,
17
),
greater_autob_numpy_expected
);
ASSERT_EQ
(
get_result_constant
<
char
>
(
func
,
18
),
greater_eq_autob_numpy_expected
);
ASSERT_EQ
(
get_result_constant
<
char
>
(
func
,
19
),
less_autob_numpy_expected
);
ASSERT_EQ
(
get_result_constant
<
char
>
(
func
,
20
),
less_eq_autob_numpy_expected
);
ASSERT_EQ
(
get_result_constant
<
char
>
(
func
,
21
),
logical_and_autob_numpy_expected
);
ASSERT_EQ
(
get_result_constant
<
char
>
(
func
,
22
),
logical_or_autob_numpy_expected
);
ASSERT_EQ
(
get_result_constant
<
char
>
(
func
,
23
),
logical_xor_autob_numpy_expected
);
ASSERT_ANY_THROW
(
pass_manager
.
run_passes
(
func_error
));
}
TEST
(
constant_folding
,
const_dequantize
)
...
...
test/cpu_test.cpp
View file @
ba1141e0
...
...
@@ -1172,7 +1172,7 @@ static std::vector<T> get_result_constant(std::shared_ptr<Function> f, size_t po
TEST
(
cpu_test
,
constant_unary_binary
)
{
Shape
shape_in
{
4
};
Shape
shape_in
{
2
,
2
};
vector
<
int
>
values_a
{
1
,
2
,
3
,
4
};
vector
<
int
>
values_b
{
1
,
2
,
3
,
4
};
vector
<
int
>
values_c
{
-
1
,
-
1
,
-
1
,
-
1
};
...
...
@@ -1184,6 +1184,7 @@ TEST(cpu_test, constant_unary_binary)
vector
<
char
>
values_i
{
0
,
0
,
1
,
1
};
vector
<
char
>
values_j
{
0
,
1
,
0
,
1
};
vector
<
float
>
values_k
{
-
0.1
f
,
0.0
f
,
-
1.5
f
,
2.6
f
};
vector
<
int
>
values_l
{
1
,
2
};
auto
a
=
make_shared
<
op
::
Constant
>
(
element
::
i32
,
shape_in
,
values_a
);
auto
b
=
make_shared
<
op
::
Constant
>
(
element
::
i32
,
shape_in
,
values_b
);
auto
c
=
make_shared
<
op
::
Constant
>
(
element
::
i32
,
shape_in
,
values_c
);
...
...
@@ -1195,6 +1196,7 @@ TEST(cpu_test, constant_unary_binary)
auto
i
=
make_shared
<
op
::
Constant
>
(
element
::
boolean
,
shape_in
,
values_i
);
auto
j
=
make_shared
<
op
::
Constant
>
(
element
::
boolean
,
shape_in
,
values_j
);
auto
k
=
make_shared
<
op
::
Constant
>
(
element
::
f32
,
shape_in
,
values_k
);
auto
l
=
make_shared
<
op
::
Constant
>
(
element
::
i32
,
Shape
{
2
},
values_l
);
auto
add
=
a
+
b
;
auto
sub
=
a
-
b
;
...
...
@@ -1220,12 +1222,17 @@ TEST(cpu_test, constant_unary_binary)
auto
ceil
=
make_shared
<
op
::
Ceiling
>
(
k
);
auto
floor
=
make_shared
<
op
::
Floor
>
(
k
);
auto
logical_not
=
make_shared
<
op
::
Not
>
(
j
);
// Note: The CPU functors do not actually support autobroadcast yet; instead the pass itself
// falls back if autobroadcasting is in use. Putting this check here just to make sure the
// fallback works as expected, but if direct support for autobroadcast is added to the CPU
// folders we should add more comprehensive tests here. --amprocte
auto
add_autob_numpy
=
make_shared
<
op
::
Add
>
(
a
,
l
,
op
::
AutoBroadcastType
::
NUMPY
);
auto
func
=
make_shared
<
Function
>
(
NodeVector
{
add
,
sub
,
mul
,
divn
,
min
,
max
,
absn
,
neg
,
sqrt
,
relu
,
sign
,
equal
,
not_equal
,
greater
,
greater_eq
,
less
,
less_eq
,
logical_and
,
logical_or
,
logical_xor
,
ceil
,
floor
,
logical_not
},
NodeVector
{
add
,
sub
,
mul
,
divn
,
min
,
max
,
absn
,
neg
,
sqrt
,
relu
,
sign
,
equal
,
not_equal
,
greater
,
greater_eq
,
less
,
less_eq
,
logical_and
,
logical_or
,
logical_xor
,
ceil
,
floor
,
logical_not
,
add_autob_numpy
},
ParameterVector
{});
auto
func_error
=
make_shared
<
Function
>
(
NodeVector
{
neg_sqrt
},
ParameterVector
{});
...
...
@@ -1282,6 +1289,7 @@ TEST(cpu_test, constant_unary_binary)
vector
<
float
>
ceil_expected
{
0.0
f
,
0.0
f
,
-
1.0
f
,
3.0
f
};
vector
<
float
>
floor_expected
{
-
1.0
f
,
0.0
f
,
-
2.0
f
,
2.0
f
};
vector
<
char
>
not_expected
{
1
,
0
,
1
,
0
};
vector
<
int
>
add_autob_numpy_expected
{
2
,
4
,
4
,
6
};
ASSERT_EQ
(
get_result_constant
<
int
>
(
func
,
0
),
add_expected
);
ASSERT_EQ
(
get_result_constant
<
int
>
(
func
,
1
),
sub_expected
);
...
...
@@ -1308,6 +1316,7 @@ TEST(cpu_test, constant_unary_binary)
ASSERT_TRUE
(
test
::
all_close_f
(
get_result_constant
<
float
>
(
func
,
21
),
floor_expected
,
MIN_FLOAT_TOLERANCE_BITS
));
ASSERT_EQ
(
get_result_constant
<
char
>
(
func
,
22
),
not_expected
);
ASSERT_EQ
(
get_result_constant
<
int
>
(
func
,
23
),
add_autob_numpy_expected
);
ASSERT_ANY_THROW
(
pass_manager
.
run_passes
(
func_error
));
}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment