Commit b5fb2e86 authored by Jayaram Bobba's avatar Jayaram Bobba Committed by Robert Kimball

Support dynamic scales for quantization in the CPU backend (#2042)

* Support dynamic scales for quantization

* Avoid static object inside functors

* Added missing capture and removed mkldnn_submit

* fix merge error
parent b025ac0e
...@@ -20,6 +20,7 @@ ...@@ -20,6 +20,7 @@
#include "ngraph/op/dequantize.hpp" #include "ngraph/op/dequantize.hpp"
#include "ngraph/op/quantize.hpp" #include "ngraph/op/quantize.hpp"
#include "ngraph/runtime/cpu/cpu_builder.hpp" #include "ngraph/runtime/cpu/cpu_builder.hpp"
#include "ngraph/runtime/cpu/cpu_executor.hpp"
#include "ngraph/runtime/cpu/mkldnn_invoke.hpp" #include "ngraph/runtime/cpu/mkldnn_invoke.hpp"
#include "ngraph/runtime/cpu/mkldnn_utils.hpp" #include "ngraph/runtime/cpu/mkldnn_utils.hpp"
#include "ngraph/runtime/reference/dequantize.hpp" #include "ngraph/runtime/reference/dequantize.hpp"
...@@ -200,13 +201,49 @@ namespace ngraph ...@@ -200,13 +201,49 @@ namespace ngraph
auto scale_const_op = auto scale_const_op =
std::dynamic_pointer_cast<ngraph::op::Constant>(quantize->get_argument(1)); std::dynamic_pointer_cast<ngraph::op::Constant>(quantize->get_argument(1));
std::vector<float> scales;
if (scale_const_op == nullptr) if (scale_const_op == nullptr)
{ {
throw ngraph_error("Quantize scale must be a constant"); auto& arg1_tensor = external_function->get_tensor_data(args[1].get_name());
auto scales_size = shape_size(args[1].get_shape());
// Dummy value while we wait for the actual values that are provided during
// execution
scales.push_back(1.0f);
size_t quantize_index =
mkldnn_emitter->build_quantize_reorder(input_desc, result_desc, scales);
auto& deps = mkldnn_emitter->get_primitive_deps(quantize_index);
auto functor = [&, input_desc, result_desc, scales_size, quantize_index](
CPURuntimeContext* ctx, CPUExecutionContext* ectx) {
// Create MKLDNN reorder primitive during the first iteration.
// Assumes the scales dont change for the duration of the graph
if (ctx->first_iteration)
{
mkldnn::primitive_attr attr;
vector<float> dyn_scales;
dyn_scales.assign(static_cast<float*>(arg1_tensor),
static_cast<float*>(arg1_tensor) + scales_size);
attr.set_output_scales(0, dyn_scales);
attr.set_int_output_round_mode(mkldnn::round_mode::round_nearest);
auto reorder_desc = mkldnn::reorder::primitive_desc(
{input_desc, executor::global_cpu_engine},
{result_desc, executor::global_cpu_engine},
attr);
ctx->mkldnn_primitives[quantize_index]->reset(
(new mkldnn::reorder(reorder_desc,
*ctx->mkldnn_primitives[deps[0]],
*ctx->mkldnn_primitives[deps[1]]))
->get());
} }
cpu::mkldnn_utils::set_memory_ptr(ctx, deps[0], arg0_tensor);
cpu::mkldnn_utils::set_memory_ptr(ctx, deps[1], out_tensor);
cpu::mkldnn_utils::mkldnn_invoke_primitive(ctx, quantize_index);
};
functors.emplace_back(functor);
}
else
{
auto scale = scale_const_op->get_vector<float>(); auto scale = scale_const_op->get_vector<float>();
std::vector<float> scales;
scales.push_back(1.0 / scale[0]); scales.push_back(1.0 / scale[0]);
size_t quantize_index = size_t quantize_index =
mkldnn_emitter->build_quantize_reorder(input_desc, result_desc, scales); mkldnn_emitter->build_quantize_reorder(input_desc, result_desc, scales);
...@@ -219,6 +256,7 @@ namespace ngraph ...@@ -219,6 +256,7 @@ namespace ngraph
}; };
functors.emplace_back(functor); functors.emplace_back(functor);
} }
}
else else
{ {
auto& functors = external_function->get_functors(); auto& functors = external_function->get_functors();
......
...@@ -369,6 +369,30 @@ TEST(builder, scaled_Q_unsigned) ...@@ -369,6 +369,30 @@ TEST(builder, scaled_Q_unsigned)
EXPECT_EQ((vector<uint8_t>{0, 0, 1, 1, 2, 64, 127, 255}), read_vector<uint8_t>(result)); EXPECT_EQ((vector<uint8_t>{0, 0, 1, 1, 2, 64, 127, 255}), read_vector<uint8_t>(result));
} }
TEST(builder, dynamic_scaled_Q_unsigned)
{
vector<float> a_data = {-255.0, 0.0, 1.0, 1.25, 1.75, 64.0, 127.0, 500.0};
Shape shape_a{8};
AxisSet quantization_axes;
op::Quantize::RoundMode round_mode = op::Quantize::RoundMode::ROUND_NEAREST_TOWARD_EVEN;
auto A = make_shared<op::Parameter>(element::f32, shape_a);
auto B = make_shared<op::Parameter>(element::f32, Shape{});
auto C = make_shared<op::Parameter>(element::f32, Shape{});
auto QT = ngraph::builder::ScaledQuantize(A, B, C, element::u8, quantization_axes, round_mode);
auto f = make_shared<Function>(NodeVector{QT}, ParameterVector{A, B, C});
auto backend = runtime::Backend::create("CPU");
// Create some tensors for input/output
auto a = backend->create_tensor(element::f32, shape_a);
auto b = backend->create_tensor(element::f32, Shape{});
auto c = backend->create_tensor(element::f32, Shape{});
copy_data(a, a_data);
copy_data(b, vector<float>{-255.0f});
copy_data(c, vector<float>{127.0f});
auto result = backend->create_tensor(element::u8, shape_a);
backend->call_with_validate(f, {result}, {a, b, c});
EXPECT_EQ((vector<uint8_t>{0, 0, 1, 1, 2, 64, 127, 255}), read_vector<uint8_t>(result));
}
TEST(builder, scaled_Q_signed) TEST(builder, scaled_Q_signed)
{ {
vector<float> a_data = {-127.0, 0.0, 1.0, 3.0, 5.0, 64.0, 127.0, 500.0}; vector<float> a_data = {-127.0, 0.0, 1.0, 3.0, 5.0, 64.0, 127.0, 500.0};
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment